1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE IncoherentInstances #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE UndecidableInstances #-}
module Language.Fiddle.Compiler.ConsistencyCheck (consistencyCheckPhase) where
import Control.Monad (forM_, unless, when)
import Control.Monad.RWS (MonadWriter (tell))
import Control.Monad.Trans.Writer (Writer, execWriter)
import Data.Foldable (foldlM, toList)
import Data.Functor.Identity
import qualified Data.IntMap as IntMap
import Data.List (intercalate)
import qualified Data.List.NonEmpty as NonEmpty
import qualified Data.Text as Text
import Data.Typeable
import GHC.TypeError as TypeError
import Language.Fiddle.Ast
import Language.Fiddle.Compiler
import Language.Fiddle.Internal.UnitInterface as UnitInterface
import Language.Fiddle.Internal.UnitNumbers
import Language.Fiddle.Types
import Text.Printf (printf)
import Prelude hiding (unzip)
type S = Qualified
type S' = Checked
type F = Identity
type A = Commented SourceSpan
type M = Compile ()
pattern QMdP :: t -> Identity (When True t)
pattern QMdP t = Identity (Present t)
instance CompilationStage Checked where
type StageAfter Checked = TypeError (TypeError.Text "No stage after Checked")
type StageMonad Checked = M
type StageState Checked = ()
type StageFunctor Checked = Identity
type StageAnnotation Checked = A
instance CompilationStage S where
type StageAfter S = S'
type StageMonad S = M
type StageState S = ()
type StageFunctor S = F
type StageAnnotation S = A
consistencyCheckPhase :: CompilationPhase S S'
consistencyCheckPhase = pureCompilationPhase $ advanceStage ()
instance AdvanceStage S ObjTypeBody where
advanceStage () objTypeBody = snd <$> advanceObjTypeBody objTypeBody 0
deriving instance AdvanceStage S AnonymousBitsType
deriving instance AdvanceStage S ImportStatement
instance AdvanceStage S BitType where
customAdvanceStage t _ = do
case t of
(EnumBitType sz (Identity body) _) -> do
checkEnumConsistency sz body
_ -> return ()
return Nothing
deriving instance AdvanceStage S EnumBody
deriving instance AdvanceStage S EnumConstantDecl
deriving instance AdvanceStage S PackageBody
deriving instance AdvanceStage S FiddleDecl
deriving instance AdvanceStage S (ConstExpression u)
instance AdvanceStage S FiddleUnit where
advanceStage () fu@(FiddleUnit _ decls a) =
FiddleUnit (Present $ getUnitInterface fu) <$> mapM (advanceStage ()) decls <*> pure a
where
getUnitInterface = execWriter . walk_ doWalk
doWalk :: forall t'. (Walk t', Typeable t') => t' F A -> Writer UnitInterface ()
doWalk t =
case () of
()
| (Just (PackageDecl {packageQualificationMetadata = (QMdP d)})) <-
castTS t ->
tell (UnitInterface.singleton d)
| (Just (LocationDecl {locationQualificationMetadata = (QMdP d)})) <-
castTS t ->
tell (UnitInterface.singleton d)
| (Just (BitsDecl {bitsQualificationMetadata = (QMdP d)})) <-
castTS t ->
tell (UnitInterface.singleton d)
| (Just (ObjTypeDecl {objTypeQualificationMetadata = (QMdP d)})) <-
castTS t ->
tell (UnitInterface.singleton d)
| (Just (ObjectDecl {objectQualificationMetadata = (QMdP d)})) <-
castTS t ->
tell (UnitInterface.singleton d)
| (Just (ImportStatement {importInterface = ii})) <-
castTS t ->
tell (UnitInterface mempty (dependencies (unwrap ii)))
_ -> return ()
castTS ::
(Typeable t', Typeable t, Typeable f, Typeable a) =>
t' f a ->
Maybe (t S f a)
castTS = cast
deriving instance AdvanceStage S (Expression u)
deriving instance AdvanceStage S RegisterBitsTypeRef
deriving instance AdvanceStage S ObjType
deriving instance (AdvanceStage S t) => AdvanceStage S (Directed t)
advanceObjTypeBody :: ObjTypeBody S F A -> N Bytes -> M (N Bytes, ObjTypeBody S' F A)
advanceObjTypeBody (ObjTypeBody us decls a) startOffset = do
(decls', _) <- advanceDecls
calcSize <- case us of
Union {} -> do
checkJagged decls'
return $ maximum (map fst decls')
Struct {} -> return $ sum (map fst decls')
return (calcSize, ObjTypeBody us (reverse $ map snd decls') a)
where
advanceDecls :: M ([(N Bytes, Directed ObjTypeDecl S' F A)], N Bytes)
advanceDecls = do
foldlM
( \(ret, offset) d ->
let advanceOffset :: N Bytes -> N Bytes -> N Bytes
advanceOffset = case us of
Union {} -> const
Struct {} -> (+)
doReturn ::
(Monad m) =>
ObjTypeDecl S' F A ->
N Bytes ->
m ([(N Bytes, Directed ObjTypeDecl S' F A)], N Bytes)
doReturn x size = return ((size, mapDirected (const x) d) : ret, advanceOffset offset size)
in case undirected d of
e@AssertPosStatement {assertExpr = expr} -> do
assertedPos <- expressionToIntM expr
checkPositionAssertion (annot e) assertedPos offset
return (ret, offset)
(SkipToStatement _ qmeta expr ann) -> do
let pos = trueValue expr
sz = if pos < offset then 0 else pos - offset
span = Present (FieldSpan offset sz)
qmeta' = fmap (\q -> q {regSpan = span}) qmeta
szExpr = ConstExpression (LeftV sz) (annot expr)
in do
if pos < offset
then do
emitDiagnosticError "Skip to backwards" ann
return (ret, offset)
else
if sz == 0
then
return (ret, offset)
else do
doReturn
( BufferDecl
qmeta'
( Guaranteed
( Identifier
( Text.pack $
basenamePart (regFullPath (unwrap qmeta'))
)
a
)
)
szExpr
ann
)
sz
(BufferDecl qmeta (Guaranteed ident) sz a) -> do
sz' <- advanceStage () sz
let size = trueValue sz'
span = Present (FieldSpan offset size)
qmeta' = fmap (\q -> q {regSpan = span}) qmeta
doReturn (BufferDecl qmeta' (Guaranteed ident) sz' a) size
(RegisterDecl qmeta mod ident size Nothing a) -> do
let declaredSize = regSzToBits (getLeft size)
reifiedSizeBytes <- checkBitsSizeMod8 a declaredSize
let span = Present (FieldSpan offset reifiedSizeBytes)
qmeta' = fmap (\q -> q {regSpan = span}) qmeta
doReturn (RegisterDecl qmeta' mod ident (changeRight size) Nothing a)
=<< checkBitsSizeMod8 a declaredSize
(RegisterDecl qmeta mod ident size (Just body) a) -> do
let declaredSize = regSzToBits (getLeft size)
(actualSize, body') <- advanceRegisterBody 0 body
checkSizeMismatch a declaredSize actualSize
reifiedSizeBytes <- checkBitsSizeMod8 a declaredSize
let span = Present (FieldSpan offset reifiedSizeBytes)
qmeta' = fmap (\q -> q {regSpan = span}) qmeta
doReturn
( RegisterDecl
qmeta'
mod
ident
(changeRight size)
(Just body')
a
)
reifiedSizeBytes
(TypeSubStructure (Identity body) name a) -> do
(size, body') <- advanceObjTypeBody body offset
doReturn (TypeSubStructure (Identity body') name a) size
)
(([], startOffset) :: ([(N Bytes, Directed ObjTypeDecl S' F A)], N Bytes))
decls
advanceAndGetSize :: Expression u S F A -> M (Expression u S' F A, N u)
advanceAndGetSize e = (,) <$> advanceStage () e <*> expressionToIntM e
pattern RegisterBodyPattern :: BodyType F A -> [Directed RegisterBitsDecl s F A] -> A -> A -> RegisterBody s F A
pattern RegisterBodyPattern u decls a b = RegisterBody u (Identity (DeferredRegisterBody decls b)) a
-- registerBodyPattern u decls a b = RegisterBody u (Identity (DeferredRegisterBody decls a)) a
advanceRegisterBody :: N Bits -> RegisterBody S F A -> M (N Bits, RegisterBody S' F A)
-- Handle the case where it's a union.
advanceRegisterBody
startOffset
(RegisterBodyPattern us (NonEmpty.nonEmpty -> Just decls) a b) = do
(structSize, reverse -> decls') <-
foldlM
( \(offset, ret) d -> do
(sz, t) <- advanceDecl offset (undirected d)
let advanceOffset off sz =
case us of
Union {} -> off
Struct {} -> off + sz
return (advanceOffset offset sz, (sz, mapDirected (const t) d) : ret)
)
(startOffset, [])
decls
calcSize <- case us of
Union {} -> do
checkJagged decls'
return $ maximum (map fst decls')
Struct {} -> return (structSize - startOffset)
return (calcSize, RegisterBodyPattern us (map snd $ toList decls') a b)
-- Handle the case where there's no decls.
advanceRegisterBody _ (RegisterBodyPattern u _ a b) =
return (0, RegisterBodyPattern u [] a b)
advanceRegisterBody _ RegisterBody {} = error "GHC not smart enuf"
checkJagged :: (Annotated t) => [(N u, t f A)] -> Compile s ()
checkJagged decls = do
let expectedSize = maximum (fmap fst decls)
forM_ decls $ \(sz, annot -> a) ->
when (sz /= expectedSize) $
emitDiagnosticWarning
( printf
"[JaggedUnion] - All elements of a union should be the same size. \
\ this element is size %d, expected size %d. Maybe bundle this with \
\ reserved(%d)?"
sz
expectedSize
(expectedSize - sz)
)
a
advanceDecl :: N Bits -> RegisterBitsDecl S F A -> M (N Bits, RegisterBitsDecl S' F A)
advanceDecl offset = \case
ReservedBits expr an -> do
sz <- expressionToIntM expr
(sz,)
<$> ( ReservedBits
<$> advanceStage () expr
<*> pure an
)
DefinedBits qmeta mod ident typ annot -> do
size <- bitsTypeSize typ
let span = Present (FieldSpan offset size)
qmeta' = fmap (\q -> q {bitsSpan = span}) qmeta
(size,)
<$> (DefinedBits qmeta' mod ident <$> advanceStage () typ <*> pure annot)
BitsSubStructure subBody subName ann -> do
(sz, body') <- advanceRegisterBody offset subBody
return (sz, BitsSubStructure body' subName ann)
bitsTypeSize :: RegisterBitsTypeRef S F A -> M (N Bits)
bitsTypeSize (RegisterBitsArray tr nExpr _) = do
sz <- bitsTypeSize tr
return (sz .*. trueValue nExpr)
bitsTypeSize
RegisterBitsReference
{ bitsRefQualificationMetadata =
QMdP (ExportedBitsDecl {exportedBitsDeclSizeBits = sz})
} = return sz
bitsTypeSize (RegisterBitsReference {}) = error "should be exhaustive"
bitsTypeSize (RegisterBitsJustBits expr _) = return $ trueValue expr
checkSizeMismatch :: (NamedUnit u) => A -> N u -> N u -> Compile s ()
checkSizeMismatch _ a b | a == b = return ()
checkSizeMismatch pos declaredSize calculatedSize =
emitDiagnosticError
( printf
"Size assertion failed. Declared size %s, calculated %s"
(unitName declaredSize)
(unitName calculatedSize)
)
pos
checkPositionAssertion :: A -> N u -> N u -> Compile s ()
checkPositionAssertion _ a b | a == b = return ()
checkPositionAssertion pos declaredPosition calculatedPostion =
emitDiagnosticError
( printf
"Position assertion failed. Asserted 0x%x, calculated 0x%x"
declaredPosition
calculatedPostion
)
pos
expressionToIntM ::
(stage .< Expanded ~ False) =>
Expression u stage f A ->
Compile s (N u)
expressionToIntM expr =
resolveOrFail $
either
( \reason -> Left [Diagnostic Error reason (unCommented $ annot expr)]
)
return
(expressionToInt expr)
checkBitsSizeMod8 :: A -> N Bits -> M (N Bytes)
checkBitsSizeMod8 a w = do
let (x, rem) = bitsToBytes w
when (rem /= 0) $
emitDiagnosticError
(printf "Register size %d is not a multiple of 8. Please add padding to this register." w)
a
return x
checkEnumConsistency :: Expression Bits S F A -> EnumBody S F A -> M ()
checkEnumConsistency expr enumBody@(EnumBody {enumConsts = constants}) = do
declaredSize <- expressionToIntM expr
-- If the declared size is less than or equal to 4, we'll enforce that the
-- enum is packed. This is to make sure the user has covered all bases.
when (declaredSize <= 4) $ do
imap <-
foldlM
( \imap (undirected -> enumConst) -> do
number <- case enumConst of
EnumConstantDecl _ expr _ -> return $ trueValue expr
EnumConstantReserved expr _ -> expressionToIntM expr
when (number >= 2 ^ declaredSize) $
emitDiagnosticError
( printf
"Enum constant too large. Max allowed %d\n"
((2 :: Int) ^ declaredSize)
)
(annot enumConst)
return $ IntMap.insert (fromIntegral number) True imap
)
IntMap.empty
constants
let missing =
filter (not . (`IntMap.member` imap)) [0 .. 2 ^ declaredSize - 1]
unless (null missing) $
emitDiagnosticWarning
( printf
"Missing enum constants %s. Small enums should be fully \
\ populated. Use 'reserved' if needed."
(intercalate ", " (map show missing))
)
(annot enumBody)
|