//! A specialized 2D grid implementation optimized for use in a terminal. use std::cmp::{max, min}; use std::iter::{Map, TakeWhile}; use std::ops::{Bound, Deref, Index, IndexMut, Range, RangeBounds, RangeInclusive}; use serde::{Deserialize, Serialize}; use crate::ansi::{CharsetIndex, StandardCharset}; use crate::index::{Column, IndexRange, Line, Point}; use crate::term::cell::{Flags, ResetDiscriminant}; pub mod resize; mod row; mod storage; #[cfg(test)] mod tests; pub use self::row::Row; use self::storage::Storage; pub trait GridCell: Sized { /// Check if the cell contains any content. fn is_empty(&self) -> bool; /// Perform an opinionated cell reset based on a template cell. fn reset(&mut self, template: &Self); fn flags(&self) -> &Flags; fn flags_mut(&mut self) -> &mut Flags; } #[derive(Debug, Default, Clone, PartialEq, Eq)] pub struct Cursor { /// The location of this cursor. pub point: Point, /// Template cell when using this cursor. pub template: T, /// Currently configured graphic character sets. pub charsets: Charsets, /// Tracks if the next call to input will need to first handle wrapping. /// /// This is true after the last column is set with the input function. Any function that /// implicitly sets the line or column needs to set this to false to avoid wrapping twice. /// /// Tracking `input_needs_wrap` makes it possible to not store a cursor position that exceeds /// the number of columns, which would lead to index out of bounds when interacting with arrays /// without sanitization. pub input_needs_wrap: bool, } #[derive(Debug, Default, Copy, Clone, PartialEq, Eq)] pub struct Charsets([StandardCharset; 4]); impl Index for Charsets { type Output = StandardCharset; fn index(&self, index: CharsetIndex) -> &StandardCharset { &self.0[index as usize] } } impl IndexMut for Charsets { fn index_mut(&mut self, index: CharsetIndex) -> &mut StandardCharset { &mut self.0[index as usize] } } #[derive(Debug, Copy, Clone)] pub enum Scroll { Delta(isize), PageUp, PageDown, Top, Bottom, } /// Grid based terminal content storage. /// /// ```notrust /// ┌─────────────────────────┐ <-- max_scroll_limit + lines /// │ │ /// │ UNINITIALIZED │ /// │ │ /// ├─────────────────────────┤ <-- self.raw.inner.len() /// │ │ /// │ RESIZE BUFFER │ /// │ │ /// ├─────────────────────────┤ <-- self.history_size() + lines /// │ │ /// │ SCROLLUP REGION │ /// │ │ /// ├─────────────────────────┤v lines /// │ │| /// │ VISIBLE REGION │| /// │ │| /// ├─────────────────────────┤^ <-- display_offset /// │ │ /// │ SCROLLDOWN REGION │ /// │ │ /// └─────────────────────────┘ <-- zero /// ^ /// cols /// ``` #[derive(Serialize, Deserialize, Clone, Debug)] pub struct Grid { /// Current cursor for writing data. #[serde(skip)] pub cursor: Cursor, /// Last saved cursor. #[serde(skip)] pub saved_cursor: Cursor, /// Lines in the grid. Each row holds a list of cells corresponding to the /// columns in that row. raw: Storage, /// Number of columns. cols: Column, /// Number of visible lines. lines: Line, /// Offset of displayed area. /// /// If the displayed region isn't at the bottom of the screen, it stays /// stationary while more text is emitted. The scrolling implementation /// updates this offset accordingly. display_offset: usize, /// Maximum number of lines in history. max_scroll_limit: usize, } impl Grid { pub fn new(lines: Line, cols: Column, max_scroll_limit: usize) -> Grid { Grid { raw: Storage::with_capacity(lines, cols), max_scroll_limit, display_offset: 0, saved_cursor: Cursor::default(), cursor: Cursor::default(), lines, cols, } } /// Update the size of the scrollback history. pub fn update_history(&mut self, history_size: usize) { let current_history_size = self.history_size(); if current_history_size > history_size { self.raw.shrink_lines(current_history_size - history_size); } self.display_offset = min(self.display_offset, history_size); self.max_scroll_limit = history_size; } pub fn scroll_display(&mut self, scroll: Scroll) { self.display_offset = match scroll { Scroll::Delta(count) => min( max((self.display_offset as isize) + count, 0isize) as usize, self.history_size(), ), Scroll::PageUp => min(self.display_offset + self.lines.0, self.history_size()), Scroll::PageDown => self.display_offset.saturating_sub(self.lines.0), Scroll::Top => self.history_size(), Scroll::Bottom => 0, }; } fn increase_scroll_limit(&mut self, count: usize) { let count = min(count, self.max_scroll_limit - self.history_size()); if count != 0 { self.raw.initialize(count, self.cols); } } fn decrease_scroll_limit(&mut self, count: usize) { let count = min(count, self.history_size()); if count != 0 { self.raw.shrink_lines(min(count, self.history_size())); self.display_offset = min(self.display_offset, self.history_size()); } } #[inline] pub fn scroll_down(&mut self, region: &Range, positions: Line) where T: ResetDiscriminant, D: PartialEq, { let screen_lines = self.screen_lines().0; // When rotating the entire region, just reset everything. if positions >= region.end - region.start { for i in region.start.0..region.end.0 { let index = screen_lines - i - 1; self.raw[index].reset(&self.cursor.template); } return; } // Which implementation we can use depends on the existence of a scrollback history. // // Since a scrollback history prevents us from rotating the entire buffer downwards, we // instead have to rely on a slower, swap-based implementation. if self.max_scroll_limit == 0 { // Swap the lines fixed at the bottom to their target positions after rotation. // // Since we've made sure that the rotation will never rotate away the entire region, we // know that the position of the fixed lines before the rotation must already be // visible. // // We need to start from the top, to make sure the fixed lines aren't swapped with each // other. let fixed_lines = screen_lines - region.end.0; for i in (0..fixed_lines).rev() { self.raw.swap(i, i + positions.0); } // Rotate the entire line buffer downward. self.raw.rotate_down(*positions); // Ensure all new lines are fully cleared. for i in 0..positions.0 { let index = screen_lines - i - 1; self.raw[index].reset(&self.cursor.template); } // Swap the fixed lines at the top back into position. for i in 0..region.start.0 { let index = screen_lines - i - 1; self.raw.swap(index, index - positions.0); } } else { // Subregion rotation. for line in IndexRange((region.start + positions)..region.end).rev() { self.raw.swap_lines(line, line - positions); } for line in IndexRange(region.start..(region.start + positions)) { self.raw[line].reset(&self.cursor.template); } } } /// Move lines at the bottom toward the top. /// /// This is the performance-sensitive part of scrolling. pub fn scroll_up(&mut self, region: &Range, positions: Line) where T: ResetDiscriminant, D: PartialEq, { let screen_lines = self.screen_lines().0; // When rotating the entire region with fixed lines at the top, just reset everything. if positions >= region.end - region.start && region.start != Line(0) { for i in region.start.0..region.end.0 { let index = screen_lines - i - 1; self.raw[index].reset(&self.cursor.template); } return; } // Update display offset when not pinned to active area. if self.display_offset != 0 { self.display_offset = min(self.display_offset + *positions, self.max_scroll_limit); } // Create scrollback for the new lines. self.increase_scroll_limit(*positions); // Swap the lines fixed at the top to their target positions after rotation. // // Since we've made sure that the rotation will never rotate away the entire region, we // know that the position of the fixed lines before the rotation must already be // visible. // // We need to start from the bottom, to make sure the fixed lines aren't swapped with each // other. for i in (0..region.start.0).rev() { let index = screen_lines - i - 1; self.raw.swap(index, index - positions.0); } // Rotate the entire line buffer upward. self.raw.rotate(-(positions.0 as isize)); // Ensure all new lines are fully cleared. for i in 0..positions.0 { self.raw[i].reset(&self.cursor.template); } // Swap the fixed lines at the bottom back into position. let fixed_lines = screen_lines - region.end.0; for i in 0..fixed_lines { self.raw.swap(i, i + positions.0); } } pub fn clear_viewport(&mut self) where T: ResetDiscriminant, D: PartialEq, { // Determine how many lines to scroll up by. let end = Point { line: 0, column: self.cols() }; let mut iter = self.iter_from(end); while let Some(cell) = iter.prev() { if !cell.is_empty() || cell.point.line >= *self.lines { break; } } debug_assert!(iter.point.line <= *self.lines); let positions = self.lines - iter.point.line; let region = Line(0)..self.screen_lines(); // Reset display offset. self.display_offset = 0; // Clear the viewport. self.scroll_up(®ion, positions); // Reset rotated lines. for i in positions.0..self.lines.0 { self.raw[i].reset(&self.cursor.template); } } /// Completely reset the grid state. pub fn reset(&mut self) where T: ResetDiscriminant, D: PartialEq, { self.clear_history(); self.saved_cursor = Cursor::default(); self.cursor = Cursor::default(); self.display_offset = 0; // Reset all visible lines. for row in 0..self.raw.len() { self.raw[row].reset(&self.cursor.template); } } } impl Grid { /// Reset a visible region within the grid. pub fn reset_region>(&mut self, bounds: R) where T: ResetDiscriminant + GridCell + Clone + Default, D: PartialEq, { let start = match bounds.start_bound() { Bound::Included(line) => *line, Bound::Excluded(line) => *line + 1, Bound::Unbounded => Line(0), }; let end = match bounds.end_bound() { Bound::Included(line) => *line + 1, Bound::Excluded(line) => *line, Bound::Unbounded => self.screen_lines(), }; debug_assert!(start < self.screen_lines()); debug_assert!(end <= self.screen_lines()); for row in start.0..end.0 { self.raw[Line(row)].reset(&self.cursor.template); } } /// Clamp a buffer point to the visible region. pub fn clamp_buffer_to_visible(&self, point: Point) -> Point { if point.line < self.display_offset { Point::new(self.lines - 1, self.cols - 1) } else if point.line >= self.display_offset + self.lines.0 { Point::new(Line(0), Column(0)) } else { // Since edgecases are handled, conversion is identical as visible to buffer. self.visible_to_buffer(point.into()).into() } } // Clamp a buffer point based range to the viewport. // // This will make sure the content within the range is visible and return `None` whenever the // entire range is outside the visible region. pub fn clamp_buffer_range_to_visible( &self, range: &RangeInclusive>, ) -> Option> { let start = range.start(); let end = range.end(); // Check if the range is completely offscreen let viewport_end = self.display_offset; let viewport_start = viewport_end + self.lines.0 - 1; if end.line > viewport_start || start.line < viewport_end { return None; } let start = self.clamp_buffer_to_visible(*start); let end = self.clamp_buffer_to_visible(*end); Some(start..=end) } /// Convert viewport relative point to global buffer indexing. #[inline] pub fn visible_to_buffer(&self, point: Point) -> Point { Point { line: self.lines.0 + self.display_offset - point.line.0 - 1, column: point.column } } #[inline] pub fn clear_history(&mut self) { // Explicitly purge all lines from history. self.raw.shrink_lines(self.history_size()); } /// This is used only for initializing after loading ref-tests. #[inline] pub fn initialize_all(&mut self) where T: GridCell + Clone + Default, { // Remove all cached lines to clear them of any content. self.truncate(); // Initialize everything with empty new lines. self.raw.initialize(self.max_scroll_limit - self.history_size(), self.cols); } /// This is used only for truncating before saving ref-tests. #[inline] pub fn truncate(&mut self) { self.raw.truncate(); } #[inline] pub fn iter_from(&self, point: Point) -> GridIterator<'_, T> { GridIterator { grid: self, point } } /// Iterator over all visible cells. #[inline] pub fn display_iter(&self) -> DisplayIter<'_, T> { let start = Point::new(self.display_offset + self.lines.0, self.cols() - 1); let end = Point::new(self.display_offset, self.cols()); let iter = GridIterator { grid: self, point: start }; let display_offset = self.display_offset; let lines = self.lines.0; let take_while: DisplayIterTakeFun<'_, T> = Box::new(move |indexed: &Indexed<&T>| indexed.point <= end); let map: DisplayIterMapFun<'_, T> = Box::new(move |indexed: Indexed<&T>| { let line = Line(lines + display_offset - indexed.point.line - 1); Indexed { point: Point::new(line, indexed.point.column), cell: indexed.cell } }); iter.take_while(take_while).map(map) } #[inline] pub fn display_offset(&self) -> usize { self.display_offset } #[inline] pub fn cursor_cell(&mut self) -> &mut T { let point = self.cursor.point; &mut self[point.line][point.column] } } impl PartialEq for Grid { fn eq(&self, other: &Self) -> bool { // Compare struct fields and check result of grid comparison. self.raw.eq(&other.raw) && self.cols.eq(&other.cols) && self.lines.eq(&other.lines) && self.display_offset.eq(&other.display_offset) } } impl Index for Grid { type Output = Row; #[inline] fn index(&self, index: Line) -> &Row { &self.raw[index] } } impl IndexMut for Grid { #[inline] fn index_mut(&mut self, index: Line) -> &mut Row { &mut self.raw[index] } } impl Index for Grid { type Output = Row; #[inline] fn index(&self, index: usize) -> &Row { &self.raw[index] } } impl IndexMut for Grid { #[inline] fn index_mut(&mut self, index: usize) -> &mut Row { &mut self.raw[index] } } impl Index> for Grid { type Output = T; #[inline] fn index(&self, point: Point) -> &T { &self[point.line][point.column] } } impl IndexMut> for Grid { #[inline] fn index_mut(&mut self, point: Point) -> &mut T { &mut self[point.line][point.column] } } impl Index for Grid { type Output = T; #[inline] fn index(&self, point: Point) -> &T { &self[point.line][point.column] } } impl IndexMut for Grid { #[inline] fn index_mut(&mut self, point: Point) -> &mut T { &mut self[point.line][point.column] } } /// Grid dimensions. pub trait Dimensions { /// Total number of lines in the buffer, this includes scrollback and visible lines. fn total_lines(&self) -> usize; /// Height of the viewport in lines. fn screen_lines(&self) -> Line; /// Width of the terminal in columns. fn cols(&self) -> Column; /// Number of invisible lines part of the scrollback history. #[inline] fn history_size(&self) -> usize { self.total_lines() - self.screen_lines().0 } } impl Dimensions for Grid { #[inline] fn total_lines(&self) -> usize { self.raw.len() } #[inline] fn screen_lines(&self) -> Line { self.lines } #[inline] fn cols(&self) -> Column { self.cols } } #[cfg(test)] impl Dimensions for (Line, Column) { fn total_lines(&self) -> usize { *self.0 } fn screen_lines(&self) -> Line { self.0 } fn cols(&self) -> Column { self.1 } } #[derive(Debug, PartialEq)] pub struct Indexed { pub point: Point, pub cell: T, } impl Deref for Indexed { type Target = T; #[inline] fn deref(&self) -> &T { &self.cell } } /// Grid cell iterator. pub struct GridIterator<'a, T> { /// Immutable grid reference. grid: &'a Grid, /// Current position of the iterator within the grid. point: Point, } impl<'a, T> GridIterator<'a, T> { /// Current iteratior position. pub fn point(&self) -> Point { self.point } /// Cell at the current iteratior position. pub fn cell(&self) -> &'a T { &self.grid[self.point] } } impl<'a, T> Iterator for GridIterator<'a, T> { type Item = Indexed<&'a T>; fn next(&mut self) -> Option { let last_col = self.grid.cols() - 1; match self.point { Point { line, column: col } if line == 0 && col == last_col => return None, Point { column: col, .. } if (col == last_col) => { self.point.line -= 1; self.point.column = Column(0); }, _ => self.point.column += Column(1), } Some(Indexed { cell: &self.grid[self.point], point: self.point }) } } /// Bidirectional iterator. pub trait BidirectionalIterator: Iterator { fn prev(&mut self) -> Option; } impl<'a, T> BidirectionalIterator for GridIterator<'a, T> { fn prev(&mut self) -> Option { let last_col = self.grid.cols() - 1; match self.point { Point { line, column: Column(0) } if line == self.grid.total_lines() - 1 => { return None }, Point { column: Column(0), .. } => { self.point.line += 1; self.point.column = last_col; }, _ => self.point.column -= Column(1), } Some(Indexed { cell: &self.grid[self.point], point: self.point }) } } pub type DisplayIter<'a, T> = Map, DisplayIterTakeFun<'a, T>>, DisplayIterMapFun<'a, T>>; type DisplayIterTakeFun<'a, T> = Box) -> bool>; type DisplayIterMapFun<'a, T> = Box) -> Indexed<&'a T, Line>>;