aboutsummaryrefslogtreecommitdiff
path: root/src/nvim/linematch.c
diff options
context:
space:
mode:
authorJonathon <32371757+jwhite510@users.noreply.github.com>2023-06-07 08:29:23 -0400
committerGitHub <noreply@github.com>2023-06-07 13:29:23 +0100
commit0381f5af5bdc504f92be35dd89ac1328096eb8e6 (patch)
treed4698507cd22f78ff2303b4f8d930dfcfe8de272 /src/nvim/linematch.c
parent5f4895200a49d92e636dea9c5474ab5b0882384d (diff)
downloadrneovim-0381f5af5bdc504f92be35dd89ac1328096eb8e6.tar.gz
rneovim-0381f5af5bdc504f92be35dd89ac1328096eb8e6.tar.bz2
rneovim-0381f5af5bdc504f92be35dd89ac1328096eb8e6.zip
feat(diff): grouping optimization for linematch algorithm
Diffstat (limited to 'src/nvim/linematch.c')
-rw-r--r--src/nvim/linematch.c117
1 files changed, 67 insertions, 50 deletions
diff --git a/src/nvim/linematch.c b/src/nvim/linematch.c
index 7bde6bb121..e22cc2d9a1 100644
--- a/src/nvim/linematch.c
+++ b/src/nvim/linematch.c
@@ -2,6 +2,7 @@
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
#include <assert.h>
+#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
@@ -10,14 +11,19 @@
#include "nvim/macros.h"
#include "nvim/memory.h"
+#define LN_MAX_BUFS 8
+#define LN_DECISION_MAX 255 // pow(2, LN_MAX_BUFS(8)) - 1 = 255
+
// struct for running the diff linematch algorithm
-typedef struct {
- int *df_decision; // to keep track of this path traveled
+typedef struct diffcmppath_S diffcmppath_T;
+struct diffcmppath_S {
int df_lev_score; // to keep track of the total score of this path
- size_t df_path_idx; // current index of this path
-} diffcmppath_T;
-
-#define LN_MAX_BUFS 8
+ size_t df_path_n; // current index of this path
+ int df_choice_mem[LN_DECISION_MAX + 1];
+ int df_choice[LN_DECISION_MAX];
+ diffcmppath_T *df_decision[LN_DECISION_MAX]; // to keep track of this path traveled
+ size_t df_optimal_choice;
+};
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "linematch.c.generated.h"
@@ -64,26 +70,6 @@ static int matching_chars_iwhite(const char *s1, const char *s2)
return matching;
}
-/// update the path of a point in the diff linematch algorithm
-/// @param diffcmppath
-/// @param score
-/// @param to
-/// @param from
-/// @param choice
-static void update_path_flat(diffcmppath_T *diffcmppath, int score, size_t to, size_t from,
- const int choice)
-{
- size_t path_idx = diffcmppath[from].df_path_idx;
-
- for (size_t k = 0; k < path_idx; k++) {
- diffcmppath[to].df_decision[k] = diffcmppath[from].df_decision[k];
- }
-
- diffcmppath[to].df_decision[path_idx] = choice;
- diffcmppath[to].df_lev_score = score;
- diffcmppath[to].df_path_idx = path_idx + 1;
-}
-
#define MATCH_CHAR_MAX_LEN 800
/// Return matching characters between "s1" and "s2" whilst respecting sequence order.
@@ -206,17 +192,14 @@ static void try_possible_paths(const int *df_iters, const size_t *paths, const i
int matched_chars = count_n_matched_chars(current_lines, ndiffs, iwhite);
int score = diffcmppath[unwrapped_idx_from].df_lev_score + matched_chars;
if (score > diffcmppath[unwrapped_idx_to].df_lev_score) {
- update_path_flat(diffcmppath, score, unwrapped_idx_to, unwrapped_idx_from, *choice);
- }
- } else {
- // initialize the 0, 0, 0 ... choice
- size_t i = 0;
- while (i < ndiffs && df_iters[i] == 0) {
- i++;
- if (i == ndiffs) {
- diffcmppath[0].df_lev_score = 0;
- diffcmppath[0].df_path_idx = 0;
- }
+ diffcmppath[unwrapped_idx_to].df_path_n = 1;
+ diffcmppath[unwrapped_idx_to].df_decision[0] = &diffcmppath[unwrapped_idx_from];
+ diffcmppath[unwrapped_idx_to].df_choice[0] = *choice;
+ diffcmppath[unwrapped_idx_to].df_lev_score = score;
+ } else if (score == diffcmppath[unwrapped_idx_to].df_lev_score) {
+ size_t k = diffcmppath[unwrapped_idx_to].df_path_n++;
+ diffcmppath[unwrapped_idx_to].df_decision[k] = &diffcmppath[unwrapped_idx_from];
+ diffcmppath[unwrapped_idx_to].df_choice[k] = *choice;
}
}
return;
@@ -245,8 +228,7 @@ static size_t unwrap_indexes(const int *values, const int *diff_len, const size_
for (size_t k = 0; k < ndiffs; k++) {
num_unwrap_scalar /= (size_t)diff_len[k] + 1;
- // (k == 0) space optimization
- int n = k == 0 ? values[k] % 2 : values[k];
+ int n = values[k];
path_idx += num_unwrap_scalar * (size_t)n;
}
return path_idx;
@@ -354,7 +336,7 @@ size_t linematch_nbuffers(const char **diff_blk, const int *diff_len, const size
size_t memsize_decisions = 0;
for (size_t i = 0; i < ndiffs; i++) {
assert(diff_len[i] >= 0);
- memsize *= i == 0 ? 2 : (size_t)(diff_len[i] + 1);
+ memsize *= (size_t)(diff_len[i] + 1);
memsize_decisions += (size_t)diff_len[i];
}
@@ -362,7 +344,11 @@ size_t linematch_nbuffers(const char **diff_blk, const int *diff_len, const size
diffcmppath_T *diffcmppath = xmalloc(sizeof(diffcmppath_T) * memsize);
// allocate memory here
for (size_t i = 0; i < memsize; i++) {
- diffcmppath[i].df_decision = xmalloc(memsize_decisions * sizeof(int));
+ diffcmppath[i].df_lev_score = 0;
+ diffcmppath[i].df_path_n = 0;
+ for (size_t j = 0; j < (size_t)pow(2, (double)ndiffs); j++) {
+ diffcmppath[i].df_choice_mem[j] = -1;
+ }
}
// memory for avoiding repetitive calculations of score
@@ -370,18 +356,49 @@ size_t linematch_nbuffers(const char **diff_blk, const int *diff_len, const size
populate_tensor(df_iters, 0, diffcmppath, diff_len, ndiffs, diff_blk, iwhite);
const size_t u = unwrap_indexes(diff_len, diff_len, ndiffs);
- const size_t best_path_idx = diffcmppath[u].df_path_idx;
- const int *best_path_decisions = diffcmppath[u].df_decision;
+ diffcmppath_T *startNode = &diffcmppath[u];
- *decisions = xmalloc(sizeof(int) * best_path_idx);
- for (size_t i = 0; i < best_path_idx; i++) {
- (*decisions)[i] = best_path_decisions[i];
+ *decisions = xmalloc(sizeof(int) * memsize_decisions);
+ size_t n_optimal = 0;
+ test_charmatch_paths(startNode, 0);
+ while (startNode->df_path_n > 0) {
+ size_t j = startNode->df_optimal_choice;
+ (*decisions)[n_optimal++] = startNode->df_choice[j];
+ startNode = startNode->df_decision[j];
}
-
- for (size_t i = 0; i < memsize; i++) {
- xfree(diffcmppath[i].df_decision);
+ // reverse array
+ for (size_t i = 0; i < (n_optimal / 2); i++) {
+ int tmp = (*decisions)[i];
+ (*decisions)[i] = (*decisions)[n_optimal - 1 - i];
+ (*decisions)[n_optimal - 1 - i] = tmp;
}
+
xfree(diffcmppath);
- return best_path_idx;
+ return n_optimal;
+}
+
+// returns the minimum amount of path changes from start to end
+static size_t test_charmatch_paths(diffcmppath_T *node, int lastdecision)
+{
+ // memoization
+ if (node->df_choice_mem[lastdecision] == -1) {
+ if (node->df_path_n == 0) {
+ // we have reached the end of the tree
+ node->df_choice_mem[lastdecision] = 0;
+ } else {
+ size_t minimum_turns = SIZE_MAX; // the minimum amount of turns required to reach the end
+ for (size_t i = 0; i < node->df_path_n; i++) {
+ // recurse
+ size_t t = test_charmatch_paths(node->df_decision[i], node->df_choice[i]) +
+ (lastdecision != node->df_choice[i] ? 1 : 0);
+ if (t < minimum_turns) {
+ node->df_optimal_choice = i;
+ minimum_turns = t;
+ }
+ }
+ node->df_choice_mem[lastdecision] = (int)minimum_turns;
+ }
+ }
+ return (size_t)node->df_choice_mem[lastdecision];
}