diff options
Diffstat (limited to 'src/nvim/hashtab.c')
-rw-r--r-- | src/nvim/hashtab.c | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/src/nvim/hashtab.c b/src/nvim/hashtab.c new file mode 100644 index 0000000000..f8ec7453be --- /dev/null +++ b/src/nvim/hashtab.c @@ -0,0 +1,431 @@ +/// @file hashtab.c +/// +/// Handling of a hashtable with Vim-specific properties. +/// +/// Each item in a hashtable has a NUL terminated string key. A key can appear +/// only once in the table. +/// +/// A hash number is computed from the key for quick lookup. When the hashes +/// of two different keys point to the same entry an algorithm is used to +/// iterate over other entries in the table until the right one is found. +/// To make the iteration work removed keys are different from entries where a +/// key was never present. +/// +/// The mechanism has been partly based on how Python Dictionaries are +/// implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4. +/// +/// The hashtable grows to accommodate more entries when needed. At least 1/3 +/// of the entries is empty to keep the lookup efficient (at the cost of extra +/// memory). + +#include <string.h> + +#include "vim.h" +#include "hashtab.h" +#include "message.h" +#include "memory.h" +#include "misc2.h" + +// Magic value for algorithm that walks through the array. +#define PERTURB_SHIFT 5 + +static int hash_may_resize(hashtab_T *ht, int minitems); + + +/// Initialize an empty hash table. +/// +/// @param ht +void hash_init(hashtab_T *ht) +{ + // This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". + memset(ht, 0, sizeof(hashtab_T)); + ht->ht_array = ht->ht_smallarray; + ht->ht_mask = HT_INIT_SIZE - 1; +} + +/// Free the array of a hash table. Does not free the items it contains! +/// If "ht" is not freed then you should call hash_init() next! +/// +/// @param ht +void hash_clear(hashtab_T *ht) +{ + if (ht->ht_array != ht->ht_smallarray) { + free(ht->ht_array); + } +} + +/// Free the array of a hash table and all the keys it contains. The keys must +/// have been allocated. "off" is the offset from the start of the allocate +/// memory to the location of the key (it's always positive). +/// +/// @param ht +/// @param off +void hash_clear_all(hashtab_T *ht, int off) +{ + long todo; + hashitem_T *hi; + + todo = (long)ht->ht_used; + + for (hi = ht->ht_array; todo > 0; ++hi) { + if (!HASHITEM_EMPTY(hi)) { + free(hi->hi_key - off); + todo--; + } + } + hash_clear(ht); +} + +/// Find "key" in hashtable "ht". "key" must not be NULL. +/// Always returns a pointer to a hashitem. If the item was not found then +/// HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key +/// would be added. +/// WARNING: The returned pointer becomes invalid when the hashtable is changed +/// (adding, setting or removing an item)! +/// +/// @param ht +/// @param key +/// +/// @return Pointer to the hashitem stored with the given key. +hashitem_T* hash_find(hashtab_T *ht, char_u *key) +{ + return hash_lookup(ht, key, hash_hash(key)); +} + +/// Like hash_find(), but caller computes "hash". +/// +/// @param ht +/// @param key +/// @param hash +/// +/// @return Pointer to the hashitem stored with the given key. +hashitem_T* hash_lookup(hashtab_T *ht, char_u *key, hash_T hash) +{ + hash_T perturb; + hashitem_T *freeitem; + hashitem_T *hi; + unsigned idx; + +#ifdef HT_DEBUG + hash_count_lookup++; +#endif // ifdef HT_DEBUG + + // Quickly handle the most common situations: + // - return if there is no item at all + // - skip over a removed item + // - return if the item matches + idx = (unsigned)(hash & ht->ht_mask); + hi = &ht->ht_array[idx]; + + if (hi->hi_key == NULL) { + return hi; + } + + if (hi->hi_key == HI_KEY_REMOVED) { + freeitem = hi; + } else if ((hi->hi_hash == hash) && (STRCMP(hi->hi_key, key) == 0)) { + return hi; + } else { + freeitem = NULL; + } + + // Need to search through the table to find the key. The algorithm + // to step through the table starts with large steps, gradually becoming + // smaller down to (1/4 table size + 1). This means it goes through all + // table entries in the end. + // When we run into a NULL key it's clear that the key isn't there. + // Return the first available slot found (can be a slot of a removed + // item). + for (perturb = hash;; perturb >>= PERTURB_SHIFT) { +#ifdef HT_DEBUG + // count a "miss" for hashtab lookup + hash_count_perturb++; +#endif // ifdef HT_DEBUG + idx = 5 * idx + perturb + 1; + hi = &ht->ht_array[idx & ht->ht_mask]; + + if (hi->hi_key == NULL) { + return freeitem == NULL ? hi : freeitem; + } + + if ((hi->hi_hash == hash) + && (hi->hi_key != HI_KEY_REMOVED) + && (STRCMP(hi->hi_key, key) == 0)) { + return hi; + } + + if ((hi->hi_key == HI_KEY_REMOVED) && (freeitem == NULL)) { + freeitem = hi; + } + } +} + +/// Print the efficiency of hashtable lookups. +/// Useful when trying different hash algorithms. +/// Called when exiting. +void hash_debug_results(void) +{ +#ifdef HT_DEBUG + fprintf(stderr, "\r\n\r\n\r\n\r\n"); + fprintf(stderr, "Number of hashtable lookups: %" PRId64 "\r\n", + (int64_t)hash_count_lookup); + fprintf(stderr, "Number of perturb loops: %" PRId64 "\r\n", + (int64_t)hash_count_perturb); + fprintf(stderr, "Percentage of perturb loops: %" PRId64 "%%\r\n", + (int64_t)(hash_count_perturb * 100 / hash_count_lookup)); +#endif // ifdef HT_DEBUG +} + +/// Add item with key "key" to hashtable "ht". +/// +/// @param ht +/// @param key +/// +/// @returns FAIL when out of memory or the key is already present. +int hash_add(hashtab_T *ht, char_u *key) +{ + hash_T hash = hash_hash(key); + hashitem_T *hi = hash_lookup(ht, key, hash); + if (!HASHITEM_EMPTY(hi)) { + EMSG2(_(e_intern2), "hash_add()"); + return FAIL; + } + return hash_add_item(ht, hi, key, hash); +} + +/// Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and +/// "hi" must have been obtained with hash_lookup() and point to an empty item. +/// "hi" is invalid after this! +/// +/// @param ht +/// @param hi +/// @param key +/// @param hash +/// +/// @returns OK or FAIL (out of memory). +int hash_add_item(hashtab_T *ht, hashitem_T *hi, char_u *key, hash_T hash) +{ + // If resizing failed before and it fails again we can't add an item. + if (ht->ht_error && (hash_may_resize(ht, 0) == FAIL)) { + return FAIL; + } + + ht->ht_used++; + if (hi->hi_key == NULL) { + ht->ht_filled++; + } + hi->hi_key = key; + hi->hi_hash = hash; + + // When the space gets low may resize the array. + return hash_may_resize(ht, 0); +} + +/// Remove item "hi" from hashtable "ht". "hi" must have been obtained with +/// hash_lookup(). +/// +/// The caller must take care of freeing the item itself. +/// +/// @param ht +/// @param hi +void hash_remove(hashtab_T *ht, hashitem_T *hi) +{ + ht->ht_used--; + hi->hi_key = HI_KEY_REMOVED; + hash_may_resize(ht, 0); +} + +/// Lock a hashtable: prevent that ht_array changes. +/// Don't use this when items are to be added! +/// Must call hash_unlock() later. +/// +/// @param ht +void hash_lock(hashtab_T *ht) +{ + ht->ht_locked++; +} + +/// Unlock a hashtable: allow ht_array changes again. +/// Table will be resized (shrink) when necessary. +/// This must balance a call to hash_lock(). +void hash_unlock(hashtab_T *ht) +{ + ht->ht_locked--; + (void)hash_may_resize(ht, 0); +} + +/// Shrink a hashtable when there is too much empty space. +/// Grow a hashtable when there is not enough empty space. +/// +/// @param ht +/// @param minitems minimal number of items +/// +/// @returns OK or FAIL (out of memory). +static int hash_may_resize(hashtab_T *ht, int minitems) +{ + hashitem_T temparray[HT_INIT_SIZE]; + hashitem_T *oldarray, *newarray; + hashitem_T *olditem, *newitem; + unsigned newi; + int todo; + long_u oldsize, newsize; + long_u minsize; + long_u newmask; + hash_T perturb; + + // Don't resize a locked table. + if (ht->ht_locked > 0) { + return OK; + } + +#ifdef HT_DEBUG + if (ht->ht_used > ht->ht_filled) { + EMSG("hash_may_resize(): more used than filled"); + } + + if (ht->ht_filled >= ht->ht_mask + 1) { + EMSG("hash_may_resize(): table completely filled"); + } +#endif // ifdef HT_DEBUG + + if (minitems == 0) { + // Return quickly for small tables with at least two NULL items. NULL + // items are required for the lookup to decide a key isn't there. + if ((ht->ht_filled < HT_INIT_SIZE - 1) + && (ht->ht_array == ht->ht_smallarray)) { + return OK; + } + + // Grow or refill the array when it's more than 2/3 full (including + // removed items, so that they get cleaned up). + // Shrink the array when it's less than 1/5 full. When growing it is + // at least 1/4 full (avoids repeated grow-shrink operations) + oldsize = ht->ht_mask + 1; + if ((ht->ht_filled * 3 < oldsize * 2) && (ht->ht_used > oldsize / 5)) { + return OK; + } + + if (ht->ht_used > 1000) { + // it's big, don't make too much room + minsize = ht->ht_used * 2; + } else { + // make plenty of room + minsize = ht->ht_used * 4; + } + } else { + // Use specified size. + if ((long_u)minitems < ht->ht_used) { + // just in case... + minitems = (int)ht->ht_used; + } + // array is up to 2/3 full + minsize = minitems * 3 / 2; + } + + newsize = HT_INIT_SIZE; + + while (newsize < minsize) { + // make sure it's always a power of 2 + newsize <<= 1; + if (newsize == 0) { + // overflow + return FAIL; + } + } + + if (newsize == HT_INIT_SIZE) { + // Use the small array inside the hashdict structure. + newarray = ht->ht_smallarray; + if (ht->ht_array == newarray) { + // Moving from ht_smallarray to ht_smallarray! Happens when there + // are many removed items. Copy the items to be able to clean up + // removed items. + memmove(temparray, newarray, sizeof(temparray)); + oldarray = temparray; + } else { + oldarray = ht->ht_array; + } + } else { + // Allocate an array. + newarray = (hashitem_T *)alloc((unsigned)(sizeof(hashitem_T) * newsize)); + + if (newarray == NULL) { + // Out of memory. When there are NULL items still return OK. + // Otherwise set ht_error, because lookup may result in a hang if + // we add another item. + if (ht->ht_filled < ht->ht_mask) { + return OK; + } + ht->ht_error = TRUE; + return FAIL; + } + oldarray = ht->ht_array; + } + memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize)); + + // Move all the items from the old array to the new one, placing them in + // the right spot. The new array won't have any removed items, thus this + // is also a cleanup action. + newmask = newsize - 1; + todo = (int)ht->ht_used; + + for (olditem = oldarray; todo > 0; ++olditem) { + if (!HASHITEM_EMPTY(olditem)) { + // The algorithm to find the spot to add the item is identical to + // the algorithm to find an item in hash_lookup(). But we only + // need to search for a NULL key, thus it's simpler. + newi = (unsigned)(olditem->hi_hash & newmask); + newitem = &newarray[newi]; + if (newitem->hi_key != NULL) { + for (perturb = olditem->hi_hash;; perturb >>= PERTURB_SHIFT) { + newi = 5 * newi + perturb + 1; + newitem = &newarray[newi & newmask]; + if (newitem->hi_key == NULL) { + break; + } + } + } + *newitem = *olditem; + todo--; + } + } + + if (ht->ht_array != ht->ht_smallarray) { + free(ht->ht_array); + } + ht->ht_array = newarray; + ht->ht_mask = newmask; + ht->ht_filled = ht->ht_used; + ht->ht_error = FALSE; + + return OK; +} + +/// Get the hash number for a key. +/// If you think you know a better hash function: Compile with HT_DEBUG set and +/// run a script that uses hashtables a lot. Vim will then print statistics +/// when exiting. Try that with the current hash algorithm and yours. The +/// lower the percentage the better. +/// +/// @param key +/// +/// @return Hash number for the key. +hash_T hash_hash(char_u *key) +{ + hash_T hash; + char_u *p; + + if ((hash = *key) == 0) { + // Empty keys are not allowed, but we don't want to crash if we get one. + return (hash_T) 0; + } + p = key + 1; + + // A simplistic algorithm that appears to do very well. + // Suggested by George Reilly. + while (*p != NUL) { + hash = hash * 101 + *p++; + } + + return hash; +} |