/// @file hashtab.c /// /// Handling of a hashtable with Vim-specific properties. /// /// Each item in a hashtable has a NUL terminated string key. A key can appear /// only once in the table. /// /// A hash number is computed from the key for quick lookup. When the hashes /// of two different keys point to the same entry an algorithm is used to /// iterate over other entries in the table until the right one is found. /// To make the iteration work removed keys are different from entries where a /// key was never present. /// /// The mechanism has been partly based on how Python Dictionaries are /// implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4. /// /// The hashtable grows to accommodate more entries when needed. At least 1/3 /// of the entries is empty to keep the lookup efficient (at the cost of extra /// memory). #include #include "vim.h" #include "hashtab.h" #include "message.h" #include "memory.h" #include "misc2.h" // Magic value for algorithm that walks through the array. #define PERTURB_SHIFT 5 static int hash_may_resize(hashtab_T *ht, int minitems); /// Initialize an empty hash table. /// /// @param ht void hash_init(hashtab_T *ht) { // This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". memset(ht, 0, sizeof(hashtab_T)); ht->ht_array = ht->ht_smallarray; ht->ht_mask = HT_INIT_SIZE - 1; } /// Free the array of a hash table. Does not free the items it contains! /// If "ht" is not freed then you should call hash_init() next! /// /// @param ht void hash_clear(hashtab_T *ht) { if (ht->ht_array != ht->ht_smallarray) { vim_free(ht->ht_array); } } /// Free the array of a hash table and all the keys it contains. The keys must /// have been allocated. "off" is the offset from the start of the allocate /// memory to the location of the key (it's always positive). /// /// @param ht /// @param off void hash_clear_all(hashtab_T *ht, int off) { long todo; hashitem_T *hi; todo = (long)ht->ht_used; for (hi = ht->ht_array; todo > 0; ++hi) { if (!HASHITEM_EMPTY(hi)) { vim_free(hi->hi_key - off); todo--; } } hash_clear(ht); } /// Find "key" in hashtable "ht". "key" must not be NULL. /// Always returns a pointer to a hashitem. If the item was not found then /// HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key /// would be added. /// WARNING: The returned pointer becomes invalid when the hashtable is changed /// (adding, setting or removing an item)! /// /// @param ht /// @param key /// /// @return Pointer to the hashitem stored with the given key. hashitem_T* hash_find(hashtab_T *ht, char_u *key) { return hash_lookup(ht, key, hash_hash(key)); } /// Like hash_find(), but caller computes "hash". /// /// @param ht /// @param key /// @param hash /// /// @return Pointer to the hashitem stored with the given key. hashitem_T* hash_lookup(hashtab_T *ht, char_u *key, hash_T hash) { hash_T perturb; hashitem_T *freeitem; hashitem_T *hi; unsigned idx; #ifdef HT_DEBUG hash_count_lookup++; #endif // ifdef HT_DEBUG // Quickly handle the most common situations: // - return if there is no item at all // - skip over a removed item // - return if the item matches idx = (unsigned)(hash & ht->ht_mask); hi = &ht->ht_array[idx]; if (hi->hi_key == NULL) { return hi; } if (hi->hi_key == HI_KEY_REMOVED) { freeitem = hi; } else if ((hi->hi_hash == hash) && (STRCMP(hi->hi_key, key) == 0)) { return hi; } else { freeitem = NULL; } // Need to search through the table to find the key. The algorithm // to step through the table starts with large steps, gradually becoming // smaller down to (1/4 table size + 1). This means it goes through all // table entries in the end. // When we run into a NULL key it's clear that the key isn't there. // Return the first available slot found (can be a slot of a removed // item). for (perturb = hash;; perturb >>= PERTURB_SHIFT) { #ifdef HT_DEBUG // count a "miss" for hashtab lookup hash_count_perturb++; #endif // ifdef HT_DEBUG idx = (unsigned)((idx << 2U) + idx + perturb + 1U); hi = &ht->ht_array[idx & ht->ht_mask]; if (hi->hi_key == NULL) { return freeitem == NULL ? hi : freeitem; } if ((hi->hi_hash == hash) && (hi->hi_key != HI_KEY_REMOVED) && (STRCMP(hi->hi_key, key) == 0)) { return hi; } if ((hi->hi_key == HI_KEY_REMOVED) && (freeitem == NULL)) { freeitem = hi; } } } /// Print the efficiency of hashtable lookups. /// Useful when trying different hash algorithms. /// Called when exiting. void hash_debug_results(void) { #ifdef HT_DEBUG fprintf(stderr, "\r\n\r\n\r\n\r\n"); fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup); fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb); fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n", hash_count_perturb * 100 / hash_count_lookup); #endif // ifdef HT_DEBUG } /// Add item with key "key" to hashtable "ht". /// /// @param ht /// @param key /// /// @returns FAIL when out of memory or the key is already present. int hash_add(hashtab_T *ht, char_u *key) { hash_T hash = hash_hash(key); hashitem_T *hi = hash_lookup(ht, key, hash); if (!HASHITEM_EMPTY(hi)) { EMSG2(_(e_intern2), "hash_add()"); return FAIL; } return hash_add_item(ht, hi, key, hash); } /// Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and /// "hi" must have been obtained with hash_lookup() and point to an empty item. /// "hi" is invalid after this! /// /// @param ht /// @param hi /// @param key /// @param hash /// /// @returns OK or FAIL (out of memory). int hash_add_item(hashtab_T *ht, hashitem_T *hi, char_u *key, hash_T hash) { // If resizing failed before and it fails again we can't add an item. if (ht->ht_error && (hash_may_resize(ht, 0) == FAIL)) { return FAIL; } ht->ht_used++; if (hi->hi_key == NULL) { ht->ht_filled++; } hi->hi_key = key; hi->hi_hash = hash; // When the space gets low may resize the array. return hash_may_resize(ht, 0); } /// Remove item "hi" from hashtable "ht". "hi" must have been obtained with /// hash_lookup(). /// /// The caller must take care of freeing the item itself. /// /// @param ht /// @param hi void hash_remove(hashtab_T *ht, hashitem_T *hi) { ht->ht_used--; hi->hi_key = HI_KEY_REMOVED; hash_may_resize(ht, 0); } /// Lock a hashtable: prevent that ht_array changes. /// Don't use this when items are to be added! /// Must call hash_unlock() later. /// /// @param ht void hash_lock(hashtab_T *ht) { ht->ht_locked++; } /// Unlock a hashtable: allow ht_array changes again. /// Table will be resized (shrink) when necessary. /// This must balance a call to hash_lock(). void hash_unlock(hashtab_T *ht) { ht->ht_locked--; (void)hash_may_resize(ht, 0); } /// Shrink a hashtable when there is too much empty space. /// Grow a hashtable when there is not enough empty space. /// /// @param ht /// @param minitems minimal number of items /// /// @returns OK or FAIL (out of memory). static int hash_may_resize(hashtab_T *ht, int minitems) { hashitem_T temparray[HT_INIT_SIZE]; hashitem_T *oldarray, *newarray; hashitem_T *olditem, *newitem; unsigned newi; int todo; long_u oldsize, newsize; long_u minsize; long_u newmask; hash_T perturb; // Don't resize a locked table. if (ht->ht_locked > 0) { return OK; } #ifdef HT_DEBUG if (ht->ht_used > ht->ht_filled) { EMSG("hash_may_resize(): more used than filled"); } if (ht->ht_filled >= ht->ht_mask + 1) { EMSG("hash_may_resize(): table completely filled"); } #endif // ifdef HT_DEBUG if (minitems == 0) { // Return quickly for small tables with at least two NULL items. NULL // items are required for the lookup to decide a key isn't there. if ((ht->ht_filled < HT_INIT_SIZE - 1) && (ht->ht_array == ht->ht_smallarray)) { return OK; } // Grow or refill the array when it's more than 2/3 full (including // removed items, so that they get cleaned up). // Shrink the array when it's less than 1/5 full. When growing it is // at least 1/4 full (avoids repeated grow-shrink operations) oldsize = ht->ht_mask + 1; if ((ht->ht_filled * 3 < oldsize * 2) && (ht->ht_used > oldsize / 5)) { return OK; } if (ht->ht_used > 1000) { // it's big, don't make too much room minsize = ht->ht_used * 2; } else { // make plenty of room minsize = ht->ht_used * 4; } } else { // Use specified size. if ((long_u)minitems < ht->ht_used) { // just in case... minitems = (int)ht->ht_used; } // array is up to 2/3 full minsize = minitems * 3 / 2; } newsize = HT_INIT_SIZE; while (newsize < minsize) { // make sure it's always a power of 2 newsize <<= 1; if (newsize == 0) { // overflow return FAIL; } } if (newsize == HT_INIT_SIZE) { // Use the small array inside the hashdict structure. newarray = ht->ht_smallarray; if (ht->ht_array == newarray) { // Moving from ht_smallarray to ht_smallarray! Happens when there // are many removed items. Copy the items to be able to clean up // removed items. memmove(temparray, newarray, sizeof(temparray)); oldarray = temparray; } else { oldarray = ht->ht_array; } } else { // Allocate an array. newarray = (hashitem_T *)alloc((unsigned)(sizeof(hashitem_T) * newsize)); if (newarray == NULL) { // Out of memory. When there are NULL items still return OK. // Otherwise set ht_error, because lookup may result in a hang if // we add another item. if (ht->ht_filled < ht->ht_mask) { return OK; } ht->ht_error = TRUE; return FAIL; } oldarray = ht->ht_array; } memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize)); // Move all the items from the old array to the new one, placing them in // the right spot. The new array won't have any removed items, thus this // is also a cleanup action. newmask = newsize - 1; todo = (int)ht->ht_used; for (olditem = oldarray; todo > 0; ++olditem) { if (!HASHITEM_EMPTY(olditem)) { // The algorithm to find the spot to add the item is identical to // the algorithm to find an item in hash_lookup(). But we only // need to search for a NULL key, thus it's simpler. newi = (unsigned)(olditem->hi_hash & newmask); newitem = &newarray[newi]; if (newitem->hi_key != NULL) { for (perturb = olditem->hi_hash;; perturb >>= PERTURB_SHIFT) { newi = (unsigned)((newi << 2U) + newi + perturb + 1U); newitem = &newarray[newi & newmask]; if (newitem->hi_key == NULL) { break; } } } *newitem = *olditem; todo--; } } if (ht->ht_array != ht->ht_smallarray) { vim_free(ht->ht_array); } ht->ht_array = newarray; ht->ht_mask = newmask; ht->ht_filled = ht->ht_used; ht->ht_error = FALSE; return OK; } /// Get the hash number for a key. /// If you think you know a better hash function: Compile with HT_DEBUG set and /// run a script that uses hashtables a lot. Vim will then print statistics /// when exiting. Try that with the current hash algorithm and yours. The /// lower the percentage the better. /// /// @param key /// /// @return Hash number for the key. hash_T hash_hash(char_u *key) { hash_T hash; char_u *p; if ((hash = *key) == 0) { // Empty keys are not allowed, but we don't want to crash if we get one. return (hash_T) 0; } p = key + 1; // A simplistic algorithm that appears to do very well. // Suggested by George Reilly. while (*p != NUL) { hash = hash * 101 + *p++; } return hash; }