// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com #include #include #include #include #include "nvim/linematch.h" #include "nvim/macros.h" #include "nvim/memory.h" // struct for running the diff linematch algorithm typedef struct { int *df_decision; // to keep track of this path traveled int df_lev_score; // to keep track of the total score of this path size_t df_path_idx; // current index of this path } diffcmppath_T; #define LN_MAX_BUFS 8 #ifdef INCLUDE_GENERATED_DECLARATIONS # include "linematch.c.generated.h" #endif static size_t line_len(const char *s) { char *end = strchr(s, '\n'); if (end) { return (size_t)(end - s); } return strlen(s); } /// Same as matching_chars but ignore whitespace /// /// @param s1 /// @param s2 static int matching_chars_iwhite(const char *s1, const char *s2) { // the newly processed strings that will be compared // delete the white space characters, and/or replace all upper case with lower char *strsproc[2]; const char *strsorig[2] = { s1, s2 }; for (int k = 0; k < 2; k++) { size_t d = 0; size_t i = 0; size_t slen = line_len(strsorig[k]); strsproc[k] = xmalloc((slen + 1) * sizeof(char)); while (d + i < slen) { char e = strsorig[k][i + d]; if (e != ' ' && e != '\t') { strsproc[k][i] = e; i++; } else { d++; } } strsproc[k][i] = '\0'; } int matching = matching_chars(strsproc[0], strsproc[1]); xfree(strsproc[0]); xfree(strsproc[1]); return matching; } /// update the path of a point in the diff linematch algorithm /// @param diffcmppath /// @param score /// @param to /// @param from /// @param choice static void update_path_flat(diffcmppath_T *diffcmppath, int score, size_t to, size_t from, const int choice) { size_t path_idx = diffcmppath[from].df_path_idx; for (size_t k = 0; k < path_idx; k++) { diffcmppath[to].df_decision[k] = diffcmppath[from].df_decision[k]; } diffcmppath[to].df_decision[path_idx] = choice; diffcmppath[to].df_lev_score = score; diffcmppath[to].df_path_idx = path_idx + 1; } #define MATCH_CHAR_MAX_LEN 800 /// Return matching characters between "s1" and "s2" whilst respecting sequence order. /// Consider the case of two strings 'AAACCC' and 'CCCAAA', the /// return value from this function will be 3, either to match /// the 3 C's, or the 3 A's. /// /// Examples: /// matching_chars("aabc", "acba") -> 2 // 'a' and 'b' in common /// matching_chars("123hello567", "he123ll567o") -> 8 // '123', 'll' and '567' in common /// matching_chars("abcdefg", "gfedcba") -> 1 // all characters in common, /// // but only at most 1 in sequence /// /// @param s1 /// @param s2 static int matching_chars(const char *s1, const char *s2) { size_t s1len = MIN(MATCH_CHAR_MAX_LEN - 1, line_len(s1)); size_t s2len = MIN(MATCH_CHAR_MAX_LEN - 1, line_len(s2)); int matrix[2][MATCH_CHAR_MAX_LEN] = { 0 }; bool icur = 1; // save space by storing only two rows for i axis for (size_t i = 0; i < s1len; i++) { icur = !icur; int *e1 = matrix[icur]; int *e2 = matrix[!icur]; for (size_t j = 0; j < s2len; j++) { // skip char in s1 if (e2[j + 1] > e1[j + 1]) { e1[j + 1] = e2[j + 1]; } // skip char in s2 if (e1[j] > e1[j + 1]) { e1[j + 1] = e1[j]; } // compare char in s1 and s2 if ((s1[i] == s2[j]) && (e2[j] + 1) > e1[j + 1]) { e1[j + 1] = e2[j] + 1; } } } return matrix[icur][s2len]; } /// count the matching characters between a variable number of strings "sp" /// mark the strings that have already been compared to extract them later /// without re-running the character match counting. /// @param sp /// @param fomvals /// @param n static int count_n_matched_chars(const char **sp, const size_t n, bool iwhite) { int matched_chars = 0; int matched = 0; for (size_t i = 0; i < n; i++) { for (size_t j = i + 1; j < n; j++) { if (sp[i] != NULL && sp[j] != NULL) { matched++; // TODO(lewis6991): handle whitespace ignoring higher up in the stack matched_chars += iwhite ? matching_chars_iwhite(sp[i], sp[j]) : matching_chars(sp[i], sp[j]); } } } // prioritize a match of 3 (or more lines) equally to a match of 2 lines if (matched >= 2) { matched_chars *= 2; matched_chars /= matched; } return matched_chars; } void fastforward_buf_to_lnum(const char **s, long lnum) { for (long i = 0; i < lnum - 1; i++) { *s = strchr(*s, '\n'); (*s)++; } } /// try all the different ways to compare these lines and use the one that /// results in the most matching characters /// @param df_iters /// @param paths /// @param npaths /// @param path_idx /// @param choice /// @param diffcmppath /// @param diff_len /// @param ndiffs /// @param diff_blk static void try_possible_paths(const int *df_iters, const size_t *paths, const int npaths, const int path_idx, int *choice, diffcmppath_T *diffcmppath, const int *diff_len, const size_t ndiffs, const char **diff_blk, bool iwhite) { if (path_idx == npaths) { if ((*choice) > 0) { int from_vals[LN_MAX_BUFS]; const int *to_vals = df_iters; const char *current_lines[LN_MAX_BUFS]; for (size_t k = 0; k < ndiffs; k++) { from_vals[k] = df_iters[k]; // get the index at all of the places if ((*choice) & (1 << k)) { from_vals[k]--; const char *p = diff_blk[k]; fastforward_buf_to_lnum(&p, df_iters[k]); current_lines[k] = p; } else { current_lines[k] = NULL; } } size_t unwrapped_idx_from = unwrap_indexes(from_vals, diff_len, ndiffs); size_t unwrapped_idx_to = unwrap_indexes(to_vals, diff_len, ndiffs); int matched_chars = count_n_matched_chars(current_lines, ndiffs, iwhite); int score = diffcmppath[unwrapped_idx_from].df_lev_score + matched_chars; if (score > diffcmppath[unwrapped_idx_to].df_lev_score) { update_path_flat(diffcmppath, score, unwrapped_idx_to, unwrapped_idx_from, *choice); } } else { // initialize the 0, 0, 0 ... choice size_t i = 0; while (i < ndiffs && df_iters[i] == 0) { i++; if (i == ndiffs) { diffcmppath[0].df_lev_score = 0; diffcmppath[0].df_path_idx = 0; } } } return; } size_t bit_place = paths[path_idx]; *(choice) |= (1 << bit_place); // set it to 1 try_possible_paths(df_iters, paths, npaths, path_idx + 1, choice, diffcmppath, diff_len, ndiffs, diff_blk, iwhite); *(choice) &= ~(1 << bit_place); // set it to 0 try_possible_paths(df_iters, paths, npaths, path_idx + 1, choice, diffcmppath, diff_len, ndiffs, diff_blk, iwhite); } /// unwrap indexes to access n dimensional tensor /// @param values /// @param diff_len /// @param ndiffs static size_t unwrap_indexes(const int *values, const int *diff_len, const size_t ndiffs) { size_t num_unwrap_scalar = 1; for (size_t k = 0; k < ndiffs; k++) { num_unwrap_scalar *= (size_t)diff_len[k] + 1; } size_t path_idx = 0; for (size_t k = 0; k < ndiffs; k++) { num_unwrap_scalar /= (size_t)diff_len[k] + 1; // (k == 0) space optimization int n = k == 0 ? values[k] % 2 : values[k]; path_idx += num_unwrap_scalar * (size_t)n; } return path_idx; } /// populate the values of the linematch algorithm tensor, and find the best /// decision for how to compare the relevant lines from each of the buffers at /// each point in the tensor /// @param df_iters /// @param ch_dim /// @param diffcmppath /// @param diff_len /// @param ndiffs /// @param diff_blk static void populate_tensor(int *df_iters, const size_t ch_dim, diffcmppath_T *diffcmppath, const int *diff_len, const size_t ndiffs, const char **diff_blk, bool iwhite) { if (ch_dim == ndiffs) { int npaths = 0; size_t paths[LN_MAX_BUFS]; for (size_t j = 0; j < ndiffs; j++) { if (df_iters[j] > 0) { paths[npaths] = j; npaths++; } } int choice = 0; size_t unwrapper_idx_to = unwrap_indexes(df_iters, diff_len, ndiffs); diffcmppath[unwrapper_idx_to].df_lev_score = -1; try_possible_paths(df_iters, paths, npaths, 0, &choice, diffcmppath, diff_len, ndiffs, diff_blk, iwhite); return; } for (int i = 0; i <= diff_len[ch_dim]; i++) { df_iters[ch_dim] = i; populate_tensor(df_iters, ch_dim + 1, diffcmppath, diff_len, ndiffs, diff_blk, iwhite); } } /// algorithm to find an optimal alignment of lines of a diff block with 2 or /// more files. The algorithm is generalized to work for any number of files /// which corresponds to another dimension added to the tensor used in the /// algorithm /// /// for questions and information about the linematch algorithm please contact /// Jonathon White (jonathonwhite@protonmail.com) /// /// for explanation, a summary of the algorithm in 3 dimensions (3 files /// compared) follows /// /// The 3d case (for 3 buffers) of the algorithm implemented when diffopt /// 'linematch' is enabled. The algorithm constructs a 3d tensor to /// compare a diff between 3 buffers. The dimensions of the tensor are /// the length of the diff in each buffer plus 1 A path is constructed by /// moving from one edge of the cube/3d tensor to the opposite edge. /// Motions from one cell of the cube to the next represent decisions. In /// a 3d cube, there are a total of 7 decisions that can be made, /// represented by the enum df_path3_choice which is defined in /// buffer_defs.h a comparison of buffer 0 and 1 represents a motion /// toward the opposite edge of the cube with components along the 0 and /// 1 axes. a comparison of buffer 0, 1, and 2 represents a motion /// toward the opposite edge of the cube with components along the 0, 1, /// and 2 axes. A skip of buffer 0 represents a motion along only the 0 /// axis. For each action, a point value is awarded, and the path is /// saved for reference later, if it is found to have been the optimal /// path. The optimal path has the highest score. The score is /// calculated as the summation of the total characters matching between /// all of the lines which were compared. The structure of the algorithm /// is that of a dynamic programming problem. We can calculate a point /// i,j,k in the cube as a function of i-1, j-1, and k-1. To find the /// score and path at point i,j,k, we must determine which path we want /// to use, this is done by looking at the possibilities and choosing /// the one which results in the local highest score. The total highest /// scored path is, then in the end represented by the cell in the /// opposite corner from the start location. The entire algorithm /// consists of populating the 3d cube with the optimal paths from which /// it may have came. /// /// Optimizations: /// As the function to calculate the cell of a tensor at point i,j,k is a /// function of the cells at i-1, j-1, k-1, the whole tensor doesn't need /// to be stored in memory at once. In the case of the 3d cube, only two /// slices (along k and j axis) are stored in memory. For the 2d matrix /// (for 2 files), only two rows are stored at a time. The next/previous /// slice (or row) is always calculated from the other, and they alternate /// at each iteration. /// In the 3d case, 3 arrays are populated to memorize the score (matched /// characters) of the 3 buffers, so a redundant calculation of the /// scores does not occur /// @param diff_blk /// @param diff_len /// @param ndiffs /// @param [out] [allocated] decisions /// @return the length of decisions size_t linematch_nbuffers(const char **diff_blk, const int *diff_len, const size_t ndiffs, int **decisions, bool iwhite) { assert(ndiffs <= LN_MAX_BUFS); size_t memsize = 1; size_t memsize_decisions = 0; for (size_t i = 0; i < ndiffs; i++) { assert(diff_len[i] >= 0); memsize *= i == 0 ? 2 : (size_t)(diff_len[i] + 1); memsize_decisions += (size_t)diff_len[i]; } // create the flattened path matrix diffcmppath_T *diffcmppath = xmalloc(sizeof(diffcmppath_T) * memsize); // allocate memory here for (size_t i = 0; i < memsize; i++) { diffcmppath[i].df_decision = xmalloc(memsize_decisions * sizeof(int)); } // memory for avoiding repetitive calculations of score int df_iters[LN_MAX_BUFS]; populate_tensor(df_iters, 0, diffcmppath, diff_len, ndiffs, diff_blk, iwhite); const size_t u = unwrap_indexes(diff_len, diff_len, ndiffs); const size_t best_path_idx = diffcmppath[u].df_path_idx; const int *best_path_decisions = diffcmppath[u].df_decision; *decisions = xmalloc(sizeof(int) * best_path_idx); for (size_t i = 0; i < best_path_idx; i++) { (*decisions)[i] = best_path_decisions[i]; } for (size_t i = 0; i < memsize; i++) { xfree(diffcmppath[i].df_decision); } xfree(diffcmppath); return best_path_idx; }