// Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub() // By default: do not create debugging logs or files related to regular // expressions, even when compiling with -DDEBUG. // Uncomment the second line to get the regexp debugging. // #undef REGEXP_DEBUG // #define REGEXP_DEBUG #include #include #include #include #include #include #include #include #include "nvim/ascii_defs.h" #include "nvim/buffer_defs.h" #include "nvim/charset.h" #include "nvim/errors.h" #include "nvim/eval.h" #include "nvim/eval/typval.h" #include "nvim/eval/userfunc.h" #include "nvim/garray.h" #include "nvim/garray_defs.h" #include "nvim/gettext_defs.h" #include "nvim/globals.h" #include "nvim/keycodes.h" #include "nvim/macros_defs.h" #include "nvim/mark.h" #include "nvim/mark_defs.h" #include "nvim/mbyte.h" #include "nvim/mbyte_defs.h" #include "nvim/memline.h" #include "nvim/memory.h" #include "nvim/message.h" #include "nvim/option_vars.h" #include "nvim/os/input.h" #include "nvim/plines.h" #include "nvim/pos_defs.h" #include "nvim/profile.h" #include "nvim/regexp.h" #include "nvim/regexp_defs.h" #include "nvim/strings.h" #include "nvim/types_defs.h" #include "nvim/vim_defs.h" typedef enum { RGLF_LINE = 0x01, RGLF_LENGTH = 0x02, RGLF_SUBMATCH = 0x04, } reg_getline_flags_T; enum { /// In the NFA engine: how many braces are allowed. /// TODO(RE): Use dynamic memory allocation instead of static, like here NFA_MAX_BRACES = 20, }; enum { /// In the NFA engine: how many states are allowed. NFA_MAX_STATES = 100000, NFA_TOO_EXPENSIVE = -1, }; /// Which regexp engine to use? Needed for vim_regcomp(). /// Must match with 'regexpengine'. enum { AUTOMATIC_ENGINE = 0, BACKTRACKING_ENGINE = 1, NFA_ENGINE = 2, }; /// Structure returned by vim_regcomp() to pass on to vim_regexec(). /// This is the general structure. For the actual matcher, two specific /// structures are used. See code below. struct regprog { regengine_T *engine; unsigned regflags; unsigned re_engine; ///< Automatic, backtracking or NFA engine. unsigned re_flags; ///< Second argument for vim_regcomp(). bool re_in_use; ///< prog is being executed }; /// Structure used by the back track matcher. /// These fields are only to be used in regexp.c! /// See regexp.c for an explanation. typedef struct { // These four members implement regprog_T. regengine_T *engine; unsigned regflags; unsigned re_engine; unsigned re_flags; bool re_in_use; int regstart; uint8_t reganch; uint8_t *regmust; int regmlen; uint8_t reghasz; uint8_t program[]; } bt_regprog_T; /// Structure representing a NFA state. /// An NFA state may have no outgoing edge, when it is a NFA_MATCH state. typedef struct nfa_state nfa_state_T; struct nfa_state { int c; nfa_state_T *out; nfa_state_T *out1; int id; int lastlist[2]; ///< 0: normal, 1: recursive int val; }; /// Structure used by the NFA matcher. typedef struct { // These four members implement regprog_T. regengine_T *engine; unsigned regflags; unsigned re_engine; unsigned re_flags; bool re_in_use; nfa_state_T *start; ///< points into state[] int reganch; ///< pattern starts with ^ int regstart; ///< char at start of pattern uint8_t *match_text; ///< plain text to match with int has_zend; ///< pattern contains \ze int has_backref; ///< pattern contains \1 .. \9 int reghasz; char *pattern; int nsubexp; ///< number of () int nstate; nfa_state_T state[]; } nfa_regprog_T; struct regengine { /// bt_regcomp or nfa_regcomp regprog_T *(*regcomp)(uint8_t *, int); /// bt_regfree or nfa_regfree void (*regfree)(regprog_T *); /// bt_regexec_nl or nfa_regexec_nl int (*regexec_nl)(regmatch_T *, uint8_t *, colnr_T, bool); /// bt_regexec_mult or nfa_regexec_mult int (*regexec_multi)(regmmatch_T *, win_T *, buf_T *, linenr_T, colnr_T, proftime_T *, int *); #ifdef REGEXP_DEBUG uint8_t *expr; #endif }; // Structure used to save the current input state, when it needs to be // restored after trying a match. Used by reg_save() and reg_restore(). // Also stores the length of "backpos". typedef struct { union { uint8_t *ptr; // rex.input pointer, for single-line regexp lpos_T pos; // rex.input pos, for multi-line regexp } rs_u; int rs_len; } regsave_T; // struct to save start/end pointer/position in for \(\) typedef struct { union { uint8_t *ptr; lpos_T pos; } se_u; } save_se_T; // Values for rs_state in regitem_T. typedef enum regstate_E { RS_NOPEN = 0, // NOPEN and NCLOSE RS_MOPEN, // MOPEN + [0-9] RS_MCLOSE, // MCLOSE + [0-9] RS_ZOPEN, // ZOPEN + [0-9] RS_ZCLOSE, // ZCLOSE + [0-9] RS_BRANCH, // BRANCH RS_BRCPLX_MORE, // BRACE_COMPLEX and trying one more match RS_BRCPLX_LONG, // BRACE_COMPLEX and trying longest match RS_BRCPLX_SHORT, // BRACE_COMPLEX and trying shortest match RS_NOMATCH, // NOMATCH RS_BEHIND1, // BEHIND / NOBEHIND matching rest RS_BEHIND2, // BEHIND / NOBEHIND matching behind part RS_STAR_LONG, // STAR/PLUS/BRACE_SIMPLE longest match RS_STAR_SHORT, // STAR/PLUS/BRACE_SIMPLE shortest match } regstate_T; // When there are alternatives a regstate_T is put on the regstack to remember // what we are doing. // Before it may be another type of item, depending on rs_state, to remember // more things. typedef struct regitem_S { regstate_T rs_state; // what we are doing, one of RS_ above int16_t rs_no; // submatch nr or BEHIND/NOBEHIND uint8_t *rs_scan; // current node in program union { save_se_T sesave; regsave_T regsave; } rs_un; // room for saving rex.input } regitem_T; // used for BEHIND and NOBEHIND matching typedef struct regbehind_S { regsave_T save_after; regsave_T save_behind; int save_need_clear_subexpr; save_se_T save_start[NSUBEXP]; save_se_T save_end[NSUBEXP]; } regbehind_T; // Since the out pointers in the list are always // uninitialized, we use the pointers themselves // as storage for the Ptrlists. typedef union Ptrlist Ptrlist; union Ptrlist { Ptrlist *next; nfa_state_T *s; }; struct Frag { nfa_state_T *start; Ptrlist *out; }; typedef struct Frag Frag_T; typedef struct { int in_use; ///< number of subexpr with useful info // When REG_MULTI is true list.multi is used, otherwise list.line. union { struct multipos { linenr_T start_lnum; linenr_T end_lnum; colnr_T start_col; colnr_T end_col; } multi[NSUBEXP]; struct linepos { uint8_t *start; uint8_t *end; } line[NSUBEXP]; } list; colnr_T orig_start_col; // list.multi[0].start_col without \zs } regsub_T; typedef struct { regsub_T norm; // \( .. \) matches regsub_T synt; // \z( .. \) matches } regsubs_T; // nfa_pim_T stores a Postponed Invisible Match. typedef struct nfa_pim_S nfa_pim_T; struct nfa_pim_S { int result; // NFA_PIM_*, see below nfa_state_T *state; // the invisible match start state regsubs_T subs; // submatch info, only party used union { lpos_T pos; uint8_t *ptr; } end; // where the match must end }; // nfa_thread_T contains execution information of a NFA state typedef struct { nfa_state_T *state; int count; nfa_pim_T pim; // if pim.result != NFA_PIM_UNUSED: postponed // invisible match regsubs_T subs; // submatch info, only party used } nfa_thread_T; // nfa_list_T contains the alternative NFA execution states. typedef struct { nfa_thread_T *t; ///< allocated array of states int n; ///< nr of states currently in "t" int len; ///< max nr of states in "t" int id; ///< ID of the list int has_pim; ///< true when any state has a PIM } nfa_list_T; #ifdef REGEXP_DEBUG // show/save debugging data when BT engine is used # define BT_REGEXP_DUMP // save the debugging data to a file instead of displaying it # define BT_REGEXP_LOG # define BT_REGEXP_DEBUG_LOG # define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log" #endif // Magic characters have a special meaning, they don't match literally. // Magic characters are negative. This separates them from literal characters // (possibly multi-byte). Only ASCII characters can be Magic. #define Magic(x) ((int)(x) - 256) #define un_Magic(x) ((x) + 256) #define is_Magic(x) ((x) < 0) typedef void (*fptr_T)(int *, int); static int no_Magic(int x) { if (is_Magic(x)) { return un_Magic(x); } return x; } static int toggle_Magic(int x) { if (is_Magic(x)) { return un_Magic(x); } return Magic(x); } // The first byte of the BT regexp internal "program" is actually this magic // number; the start node begins in the second byte. It's used to catch the // most severe mutilation of the program by the caller. #define REGMAGIC 0234 // Utility definitions. #define UCHARAT(p) ((int)(*(uint8_t *)(p))) // Used for an error (down from) vim_regcomp(): give the error message, set // rc_did_emsg and return NULL #define EMSG_RET_NULL(m) return (emsg(m), rc_did_emsg = true, (void *)NULL) #define IEMSG_RET_NULL(m) return (iemsg(m), rc_did_emsg = true, (void *)NULL) #define EMSG_RET_FAIL(m) return (emsg(m), rc_did_emsg = true, FAIL) #define EMSG2_RET_NULL(m, c) \ return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, (void *)NULL) #define EMSG3_RET_NULL(m, c, a) \ return (semsg((m), (c) ? "" : "\\", (a)), rc_did_emsg = true, (void *)NULL) #define EMSG2_RET_FAIL(m, c) \ return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, FAIL) #define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_(e_invalid_item_in_str_brackets), reg_magic == MAGIC_ALL) #define MAX_LIMIT (32767 << 16) static const char e_invalid_character_after_str_at[] = N_("E59: Invalid character after %s@"); static const char e_invalid_use_of_underscore[] = N_("E63: Invalid use of \\_"); static const char e_pattern_uses_more_memory_than_maxmempattern[] = N_("E363: Pattern uses more memory than 'maxmempattern'"); static const char e_invalid_item_in_str_brackets[] = N_("E369: Invalid item in %s%%[]"); static const char e_missing_delimiter_after_search_pattern_str[] = N_("E654: Missing delimiter after search pattern: %s"); static const char e_missingbracket[] = N_("E769: Missing ] after %s["); static const char e_reverse_range[] = N_("E944: Reverse range in character class"); static const char e_large_class[] = N_("E945: Range too large in character class"); static const char e_unmatchedpp[] = N_("E53: Unmatched %s%%("); static const char e_unmatchedp[] = N_("E54: Unmatched %s("); static const char e_unmatchedpar[] = N_("E55: Unmatched %s)"); static const char e_z_not_allowed[] = N_("E66: \\z( not allowed here"); static const char e_z1_not_allowed[] = N_("E67: \\z1 - \\z9 not allowed here"); static const char e_missing_sb[] = N_("E69: Missing ] after %s%%["); static const char e_empty_sb[] = N_("E70: Empty %s%%[]"); static const char e_recursive[] = N_("E956: Cannot use pattern recursively"); static const char e_regexp_number_after_dot_pos_search_chr[] = N_("E1204: No Number allowed after .: '\\%%%c'"); static const char e_nfa_regexp_missing_value_in_chr[] = N_("E1273: (NFA regexp) missing value in '\\%%%c'"); static const char e_atom_engine_must_be_at_start_of_pattern[] = N_("E1281: Atom '\\%%#=%c' must be at the start of the pattern"); static const char e_substitute_nesting_too_deep[] = N_("E1290: substitute nesting too deep"); #define NOT_MULTI 0 #define MULTI_ONE 1 #define MULTI_MULT 2 // return values for regmatch() #define RA_FAIL 1 // something failed, abort #define RA_CONT 2 // continue in inner loop #define RA_BREAK 3 // break inner loop #define RA_MATCH 4 // successful match #define RA_NOMATCH 5 // didn't match /// Return NOT_MULTI if c is not a "multi" operator. /// Return MULTI_ONE if c is a single "multi" operator. /// Return MULTI_MULT if c is a multi "multi" operator. static int re_multi_type(int c) { if (c == Magic('@') || c == Magic('=') || c == Magic('?')) { return MULTI_ONE; } if (c == Magic('*') || c == Magic('+') || c == Magic('{')) { return MULTI_MULT; } return NOT_MULTI; } static char *reg_prev_sub = NULL; static size_t reg_prev_sublen = 0; // REGEXP_INRANGE contains all characters which are always special in a [] // range after '\'. // REGEXP_ABBR contains all characters which act as abbreviations after '\'. // These are: // \n - New line (NL). // \r - Carriage Return (CR). // \t - Tab (TAB). // \e - Escape (ESC). // \b - Backspace (Ctrl_H). // \d - Character code in decimal, eg \d123 // \o - Character code in octal, eg \o80 // \x - Character code in hex, eg \x4a // \u - Multibyte character code, eg \u20ac // \U - Long multibyte character code, eg \U12345678 static char REGEXP_INRANGE[] = "]^-n\\"; static char REGEXP_ABBR[] = "nrtebdoxuU"; // Translate '\x' to its control character, except "\n", which is Magic. static int backslash_trans(int c) { switch (c) { case 'r': return CAR; case 't': return TAB; case 'e': return ESC; case 'b': return BS; } return c; } enum { CLASS_ALNUM = 0, CLASS_ALPHA, CLASS_BLANK, CLASS_CNTRL, CLASS_DIGIT, CLASS_GRAPH, CLASS_LOWER, CLASS_PRINT, CLASS_PUNCT, CLASS_SPACE, CLASS_UPPER, CLASS_XDIGIT, CLASS_TAB, CLASS_RETURN, CLASS_BACKSPACE, CLASS_ESCAPE, CLASS_IDENT, CLASS_KEYWORD, CLASS_FNAME, CLASS_NONE = 99, }; /// Check for a character class name "[:name:]". "pp" points to the '['. /// Returns one of the CLASS_ items. CLASS_NONE means that no item was /// recognized. Otherwise "pp" is advanced to after the item. static int get_char_class(char **pp) { // must be sorted by the 'value' field because it is used by bsearch()! static keyvalue_T char_class_tab[] = { KEYVALUE_ENTRY(CLASS_ALNUM, "alnum:]"), KEYVALUE_ENTRY(CLASS_ALPHA, "alpha:]"), KEYVALUE_ENTRY(CLASS_BACKSPACE, "backspace:]"), KEYVALUE_ENTRY(CLASS_BLANK, "blank:]"), KEYVALUE_ENTRY(CLASS_CNTRL, "cntrl:]"), KEYVALUE_ENTRY(CLASS_DIGIT, "digit:]"), KEYVALUE_ENTRY(CLASS_ESCAPE, "escape:]"), KEYVALUE_ENTRY(CLASS_FNAME, "fname:]"), KEYVALUE_ENTRY(CLASS_GRAPH, "graph:]"), KEYVALUE_ENTRY(CLASS_IDENT, "ident:]"), KEYVALUE_ENTRY(CLASS_KEYWORD, "keyword:]"), KEYVALUE_ENTRY(CLASS_LOWER, "lower:]"), KEYVALUE_ENTRY(CLASS_PRINT, "print:]"), KEYVALUE_ENTRY(CLASS_PUNCT, "punct:]"), KEYVALUE_ENTRY(CLASS_RETURN, "return:]"), KEYVALUE_ENTRY(CLASS_SPACE, "space:]"), KEYVALUE_ENTRY(CLASS_TAB, "tab:]"), KEYVALUE_ENTRY(CLASS_UPPER, "upper:]"), KEYVALUE_ENTRY(CLASS_XDIGIT, "xdigit:]") }; // check that the value of "pp" has a chance of matching if ((*pp)[1] == ':' && ASCII_ISLOWER((*pp)[2]) && ASCII_ISLOWER((*pp)[3]) && ASCII_ISLOWER((*pp)[4])) { // this function can be called repeatedly with the same value for "pp" // so we cache the last found entry. static keyvalue_T *last_entry = NULL; keyvalue_T target = { .key = 0, .value = *pp + 2, .length = 0, // not used, see cmp_keyvalue_value_n() }; keyvalue_T *entry; if (last_entry != NULL && cmp_keyvalue_value_n(&target, last_entry) == 0) { entry = last_entry; } else { entry = (keyvalue_T *)bsearch(&target, &char_class_tab, ARRAY_SIZE(char_class_tab), sizeof(char_class_tab[0]), cmp_keyvalue_value_n); } if (entry != NULL) { last_entry = entry; *pp += entry->length + 2; return entry->key; } } return CLASS_NONE; } // Specific version of character class functions. // Using a table to keep this fast. static int16_t class_tab[256]; #define RI_DIGIT 0x01 #define RI_HEX 0x02 #define RI_OCTAL 0x04 #define RI_WORD 0x08 #define RI_HEAD 0x10 #define RI_ALPHA 0x20 #define RI_LOWER 0x40 #define RI_UPPER 0x80 #define RI_WHITE 0x100 static void init_class_tab(void) { int i; static int done = false; if (done) { return; } for (i = 0; i < 256; i++) { if (i >= '0' && i <= '7') { class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD; } else if (i >= '8' && i <= '9') { class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD; } else if (i >= 'a' && i <= 'f') { class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; } else if (i >= 'g' && i <= 'z') { class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; } else if (i >= 'A' && i <= 'F') { class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; } else if (i >= 'G' && i <= 'Z') { class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; } else if (i == '_') { class_tab[i] = RI_WORD + RI_HEAD; } else { class_tab[i] = 0; } } class_tab[' '] |= RI_WHITE; class_tab['\t'] |= RI_WHITE; done = true; } #define ri_digit(c) ((c) < 0x100 && (class_tab[c] & RI_DIGIT)) #define ri_hex(c) ((c) < 0x100 && (class_tab[c] & RI_HEX)) #define ri_octal(c) ((c) < 0x100 && (class_tab[c] & RI_OCTAL)) #define ri_word(c) ((c) < 0x100 && (class_tab[c] & RI_WORD)) #define ri_head(c) ((c) < 0x100 && (class_tab[c] & RI_HEAD)) #define ri_alpha(c) ((c) < 0x100 && (class_tab[c] & RI_ALPHA)) #define ri_lower(c) ((c) < 0x100 && (class_tab[c] & RI_LOWER)) #define ri_upper(c) ((c) < 0x100 && (class_tab[c] & RI_UPPER)) #define ri_white(c) ((c) < 0x100 && (class_tab[c] & RI_WHITE)) // flags for regflags #define RF_ICASE 1 // ignore case #define RF_NOICASE 2 // don't ignore case #define RF_HASNL 4 // can match a NL #define RF_ICOMBINE 8 // ignore combining characters #define RF_LOOKBH 16 // uses "\@<=" or "\@ ? 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, // @ A C D F H I K L M O 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, // P S U V W X Z [ _ 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, // a c d f h i k l m n o 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, // p s u v w x z { | ~ 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1 }; // uncrustify:on static int curchr; // currently parsed character // Previous character. Note: prevchr is sometimes -1 when we are not at the // start, eg in /[ ^I]^ the pattern was never found even if it existed, // because ^ was taken to be magic -- webb static int prevchr; static int prevprevchr; // previous-previous character static int nextchr; // used for ungetchr() // arguments for reg() #define REG_NOPAREN 0 // toplevel reg() #define REG_PAREN 1 // \(\) #define REG_ZPAREN 2 // \z(\) #define REG_NPAREN 3 // \%(\) typedef struct { char *regparse; int prevchr_len; int curchr; int prevchr; int prevprevchr; int nextchr; int at_start; int prev_at_start; int regnpar; } parse_state_T; static regengine_T bt_regengine; static regengine_T nfa_regengine; #ifdef INCLUDE_GENERATED_DECLARATIONS # include "regexp.c.generated.h" #endif // Return true if compiled regular expression "prog" can match a line break. int re_multiline(const regprog_T *prog) FUNC_ATTR_NONNULL_ALL { return prog->regflags & RF_HASNL; } // Check for an equivalence class name "[=a=]". "pp" points to the '['. // Returns a character representing the class. Zero means that no item was // recognized. Otherwise "pp" is advanced to after the item. static int get_equi_class(char **pp) { int c; int l = 1; char *p = *pp; if (p[1] == '=' && p[2] != NUL) { l = utfc_ptr2len(p + 2); if (p[l + 2] == '=' && p[l + 3] == ']') { c = utf_ptr2char(p + 2); *pp += l + 4; return c; } } return 0; } // Check for a collating element "[.a.]". "pp" points to the '['. // Returns a character. Zero means that no item was recognized. Otherwise // "pp" is advanced to after the item. // Currently only single characters are recognized! static int get_coll_element(char **pp) { int c; int l = 1; char *p = *pp; if (p[0] != NUL && p[1] == '.' && p[2] != NUL) { l = utfc_ptr2len(p + 2); if (p[l + 2] == '.' && p[l + 3] == ']') { c = utf_ptr2char(p + 2); *pp += l + 4; return c; } } return 0; } static int reg_cpo_lit; // 'cpoptions' contains 'l' flag static void get_cpo_flags(void) { reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL; } /// Skip over a "[]" range. /// "p" must point to the character after the '['. /// The returned pointer is on the matching ']', or the terminating NUL. static char *skip_anyof(char *p) { int l; if (*p == '^') { // Complement of range. p++; } if (*p == ']' || *p == '-') { p++; } while (*p != NUL && *p != ']') { if ((l = utfc_ptr2len(p)) > 1) { p += l; } else if (*p == '-') { p++; if (*p != ']' && *p != NUL) { MB_PTR_ADV(p); } } else if (*p == '\\' && (vim_strchr(REGEXP_INRANGE, (uint8_t)p[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, (uint8_t)p[1]) != NULL))) { p += 2; } else if (*p == '[') { if (get_char_class(&p) == CLASS_NONE && get_equi_class(&p) == 0 && get_coll_element(&p) == 0 && *p != NUL) { p++; // It is not a class name and not NUL } } else { p++; } } return p; } /// Skip past regular expression. /// Stop at end of "startp" or where "delim" is found ('/', '?', etc). /// Take care of characters with a backslash in front of it. /// Skip strings inside [ and ]. char *skip_regexp(char *startp, int delim, int magic) { return skip_regexp_ex(startp, delim, magic, NULL, NULL, NULL); } /// Call skip_regexp() and when the delimiter does not match give an error and /// return NULL. char *skip_regexp_err(char *startp, int delim, int magic) { char *p = skip_regexp(startp, delim, magic); if (*p != delim) { semsg(_(e_missing_delimiter_after_search_pattern_str), startp); return NULL; } return p; } /// skip_regexp() with extra arguments: /// When "newp" is not NULL and "dirc" is '?', make an allocated copy of the /// expression and change "\?" to "?". If "*newp" is not NULL the expression /// is changed in-place. /// If a "\?" is changed to "?" then "dropped" is incremented, unless NULL. /// If "magic_val" is not NULL, returns the effective magicness of the pattern char *skip_regexp_ex(char *startp, int dirc, int magic, char **newp, int *dropped, magic_T *magic_val) { magic_T mymagic; char *p = startp; size_t startplen = 0; if (magic) { mymagic = MAGIC_ON; } else { mymagic = MAGIC_OFF; } get_cpo_flags(); for (; p[0] != NUL; MB_PTR_ADV(p)) { if (p[0] == dirc) { // found end of regexp break; } if ((p[0] == '[' && mymagic >= MAGIC_ON) || (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) { p = skip_anyof(p + 1); if (p[0] == NUL) { break; } } else if (p[0] == '\\' && p[1] != NUL) { if (dirc == '?' && newp != NULL && p[1] == '?') { // change "\?" to "?", make a copy first. if (startplen == 0) { startplen = strlen(startp); } if (*newp == NULL) { *newp = xstrnsave(startp, startplen); p = *newp + (p - startp); startp = *newp; } if (dropped != NULL) { (*dropped)++; } memmove(p, p + 1, startplen - (size_t)((p + 1) - startp) + 1); } else { p++; // skip next character } if (*p == 'v') { mymagic = MAGIC_ALL; } else if (*p == 'V') { mymagic = MAGIC_NONE; } } } if (magic_val != NULL) { *magic_val = mymagic; } return p; } // variables used for parsing static int prevchr_len; // byte length of previous char static int at_start; // True when on the first character static int prev_at_start; // True when on the second character // Start parsing at "str". static void initchr(char *str) { regparse = str; prevchr_len = 0; curchr = prevprevchr = prevchr = nextchr = -1; at_start = true; prev_at_start = false; } // Save the current parse state, so that it can be restored and parsing // starts in the same state again. static void save_parse_state(parse_state_T *ps) { ps->regparse = regparse; ps->prevchr_len = prevchr_len; ps->curchr = curchr; ps->prevchr = prevchr; ps->prevprevchr = prevprevchr; ps->nextchr = nextchr; ps->at_start = at_start; ps->prev_at_start = prev_at_start; ps->regnpar = regnpar; } // Restore a previously saved parse state. static void restore_parse_state(parse_state_T *ps) { regparse = ps->regparse; prevchr_len = ps->prevchr_len; curchr = ps->curchr; prevchr = ps->prevchr; prevprevchr = ps->prevprevchr; nextchr = ps->nextchr; at_start = ps->at_start; prev_at_start = ps->prev_at_start; regnpar = ps->regnpar; } // Get the next character without advancing. static int peekchr(void) { static int after_slash = false; if (curchr != -1) { return curchr; } switch (curchr = (uint8_t)regparse[0]) { case '.': case '[': case '~': // magic when 'magic' is on if (reg_magic >= MAGIC_ON) { curchr = Magic(curchr); } break; case '(': case ')': case '{': case '%': case '+': case '=': case '?': case '@': case '!': case '&': case '|': case '<': case '>': case '#': // future ext. case '"': // future ext. case '\'': // future ext. case ',': // future ext. case '-': // future ext. case ':': // future ext. case ';': // future ext. case '`': // future ext. case '/': // Can't be used in / command // magic only after "\v" if (reg_magic == MAGIC_ALL) { curchr = Magic(curchr); } break; case '*': // * is not magic as the very first character, eg "?*ptr", when // after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But // "\(\*" is not magic, thus must be magic if "after_slash" if (reg_magic >= MAGIC_ON && !at_start && !(prev_at_start && prevchr == Magic('^')) && (after_slash || (prevchr != Magic('(') && prevchr != Magic('&') && prevchr != Magic('|')))) { curchr = Magic('*'); } break; case '^': // '^' is only magic as the very first character and if it's after // "\(", "\|", "\&' or "\n" if (reg_magic >= MAGIC_OFF && (at_start || reg_magic == MAGIC_ALL || prevchr == Magic('(') || prevchr == Magic('|') || prevchr == Magic('&') || prevchr == Magic('n') || (no_Magic(prevchr) == '(' && prevprevchr == Magic('%')))) { curchr = Magic('^'); at_start = true; prev_at_start = false; } break; case '$': // '$' is only magic as the very last char and if it's in front of // either "\|", "\)", "\&", or "\n" if (reg_magic >= MAGIC_OFF) { uint8_t *p = (uint8_t *)regparse + 1; bool is_magic_all = (reg_magic == MAGIC_ALL); // ignore \c \C \m \M \v \V and \Z after '$' while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C' || p[1] == 'm' || p[1] == 'M' || p[1] == 'v' || p[1] == 'V' || p[1] == 'Z')) { if (p[1] == 'v') { is_magic_all = true; } else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') { is_magic_all = false; } p += 2; } if (p[0] == NUL || (p[0] == '\\' && (p[1] == '|' || p[1] == '&' || p[1] == ')' || p[1] == 'n')) || (is_magic_all && (p[0] == '|' || p[0] == '&' || p[0] == ')')) || reg_magic == MAGIC_ALL) { curchr = Magic('$'); } } break; case '\\': { int c = (uint8_t)regparse[1]; if (c == NUL) { curchr = '\\'; // trailing '\' } else if (c <= '~' && META_flags[c]) { // META contains everything that may be magic sometimes, // except ^ and $ ("\^" and "\$" are only magic after // "\V"). We now fetch the next character and toggle its // magicness. Therefore, \ is so meta-magic that it is // not in META. curchr = -1; prev_at_start = at_start; at_start = false; // be able to say "/\*ptr" regparse++; after_slash++; (void)peekchr(); regparse--; after_slash--; curchr = toggle_Magic(curchr); } else if (vim_strchr(REGEXP_ABBR, c)) { // Handle abbreviations, like "\t" for TAB -- webb curchr = backslash_trans(c); } else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) { curchr = toggle_Magic(c); } else { // Next character can never be (made) magic? // Then backslashing it won't do anything. curchr = utf_ptr2char(regparse + 1); } break; } default: curchr = utf_ptr2char(regparse); } return curchr; } // Eat one lexed character. Do this in a way that we can undo it. static void skipchr(void) { // peekchr() eats a backslash, do the same here if (*regparse == '\\') { prevchr_len = 1; } else { prevchr_len = 0; } if (regparse[prevchr_len] != NUL) { // Exclude composing chars that utfc_ptr2len does include. prevchr_len += utf_ptr2len(regparse + prevchr_len); } regparse += prevchr_len; prev_at_start = at_start; at_start = false; prevprevchr = prevchr; prevchr = curchr; curchr = nextchr; // use previously unget char, or -1 nextchr = -1; } // Skip a character while keeping the value of prev_at_start for at_start. // prevchr and prevprevchr are also kept. static void skipchr_keepstart(void) { int as = prev_at_start; int pr = prevchr; int prpr = prevprevchr; skipchr(); at_start = as; prevchr = pr; prevprevchr = prpr; } // Get the next character from the pattern. We know about magic and such, so // therefore we need a lexical analyzer. static int getchr(void) { int chr = peekchr(); skipchr(); return chr; } // put character back. Works only once! static void ungetchr(void) { nextchr = curchr; curchr = prevchr; prevchr = prevprevchr; at_start = prev_at_start; prev_at_start = false; // Backup regparse, so that it's at the same position as before the // getchr(). regparse -= prevchr_len; } // Get and return the value of the hex string at the current position. // Return -1 if there is no valid hex number. // The position is updated: // blahblah\%x20asdf // before-^ ^-after // The parameter controls the maximum number of input characters. This will be // 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence. static int64_t gethexchrs(int maxinputlen) { int64_t nr = 0; int c; int i; for (i = 0; i < maxinputlen; i++) { c = (uint8_t)regparse[0]; if (!ascii_isxdigit(c)) { break; } nr <<= 4; nr |= hex2nr(c); regparse++; } if (i == 0) { return -1; } return nr; } // Get and return the value of the decimal string immediately after the // current position. Return -1 for invalid. Consumes all digits. static int64_t getdecchrs(void) { int64_t nr = 0; int c; int i; for (i = 0;; i++) { c = (uint8_t)regparse[0]; if (c < '0' || c > '9') { break; } nr *= 10; nr += c - '0'; regparse++; curchr = -1; // no longer valid } if (i == 0) { return -1; } return nr; } // get and return the value of the octal string immediately after the current // position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle // numbers > 377 correctly (for example, 400 is treated as 40) and doesn't // treat 8 or 9 as recognised characters. Position is updated: // blahblah\%o210asdf // before-^ ^-after static int64_t getoctchrs(void) { int64_t nr = 0; int c; int i; for (i = 0; i < 3 && nr < 040; i++) { c = (uint8_t)regparse[0]; if (c < '0' || c > '7') { break; } nr <<= 3; nr |= hex2nr(c); regparse++; } if (i == 0) { return -1; } return nr; } // read_limits - Read two integers to be taken as a minimum and maximum. // If the first character is '-', then the range is reversed. // Should end with 'end'. If minval is missing, zero is default, if maxval is // missing, a very big number is the default. static int read_limits(int *minval, int *maxval) { int reverse = false; char *first_char; int tmp; if (*regparse == '-') { // Starts with '-', so reverse the range later. regparse++; reverse = true; } first_char = regparse; *minval = getdigits_int(®parse, false, 0); if (*regparse == ',') { // There is a comma. if (ascii_isdigit(*++regparse)) { *maxval = getdigits_int(®parse, false, MAX_LIMIT); } else { *maxval = MAX_LIMIT; } } else if (ascii_isdigit(*first_char)) { *maxval = *minval; // It was \{n} or \{-n} } else { *maxval = MAX_LIMIT; // It was \{} or \{-} } if (*regparse == '\\') { regparse++; // Allow either \{...} or \{...\} } if (*regparse != '}') { EMSG2_RET_FAIL(_("E554: Syntax error in %s{...}"), reg_magic == MAGIC_ALL); } // Reverse the range if there was a '-', or make sure it is in the right // order otherwise. if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) { tmp = *minval; *minval = *maxval; *maxval = tmp; } skipchr(); // let's be friends with the lexer again return OK; } // vim_regexec and friends // Global work variables for vim_regexec(). // Sometimes need to save a copy of a line. Since alloc()/free() is very // slow, we keep one allocated piece of memory and only re-allocate it when // it's too small. It's freed in bt_regexec_both() when finished. static uint8_t *reg_tofree = NULL; static unsigned reg_tofreelen; // Structure used to store the execution state of the regex engine. // Which ones are set depends on whether a single-line or multi-line match is // done: // single-line multi-line // reg_match ®match_T NULL // reg_mmatch NULL ®mmatch_T // reg_startp reg_match->startp // reg_endp reg_match->endp // reg_startpos reg_mmatch->startpos // reg_endpos reg_mmatch->endpos // reg_win NULL window in which to search // reg_buf curbuf buffer in which to search // reg_firstlnum first line in which to search // reg_maxline 0 last line nr // reg_line_lbr false or true false typedef struct { regmatch_T *reg_match; regmmatch_T *reg_mmatch; uint8_t **reg_startp; uint8_t **reg_endp; lpos_T *reg_startpos; lpos_T *reg_endpos; win_T *reg_win; buf_T *reg_buf; linenr_T reg_firstlnum; linenr_T reg_maxline; bool reg_line_lbr; // "\n" in string is line break // The current match-position is remembered with these variables: linenr_T lnum; ///< line number, relative to first line uint8_t *line; ///< start of current line uint8_t *input; ///< current input, points into "line" int need_clear_subexpr; ///< subexpressions still need to be cleared int need_clear_zsubexpr; ///< extmatch subexpressions still need to be ///< cleared // Internal copy of 'ignorecase'. It is set at each call to vim_regexec(). // Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern // contains '\c' or '\C' the value is overruled. bool reg_ic; // Similar to "reg_ic", but only for 'combining' characters. Set with \Z // flag in the regexp. Defaults to false, always. bool reg_icombine; bool reg_nobreak; // Copy of "rmm_maxcol": maximum column to search for a match. Zero when // there is no maximum. colnr_T reg_maxcol; // State for the NFA engine regexec. int nfa_has_zend; ///< NFA regexp \ze operator encountered. int nfa_has_backref; ///< NFA regexp \1 .. \9 encountered. int nfa_nsubexpr; ///< Number of sub expressions actually being used ///< during execution. 1 if only the whole match ///< (subexpr 0) is used. // listid is global, so that it increases on recursive calls to // nfa_regmatch(), which means we don't have to clear the lastlist field of // all the states. int nfa_listid; int nfa_alt_listid; int nfa_has_zsubexpr; ///< NFA regexp has \z( ), set zsubexpr. } regexec_T; static regexec_T rex; static bool rex_in_use = false; static void reg_breakcheck(void) { if (!rex.reg_nobreak) { fast_breakcheck(); } } // Return true if character 'c' is included in 'iskeyword' option for // "reg_buf" buffer. static bool reg_iswordc(int c) { return vim_iswordc_buf(c, rex.reg_buf); } static bool can_f_submatch = false; ///< true when submatch() can be used /// These pointers are used for reg_submatch(). Needed for when the /// substitution string is an expression that contains a call to substitute() /// and submatch(). typedef struct { regmatch_T *sm_match; regmmatch_T *sm_mmatch; linenr_T sm_firstlnum; linenr_T sm_maxline; int sm_line_lbr; } regsubmatch_T; static regsubmatch_T rsm; ///< can only be used when can_f_submatch is true /// Common code for reg_getline(), reg_getline_len(), reg_getline_submatch() and /// reg_getline_submatch_len(). /// /// @param flags a bitmask that controls what info is to be returned /// and whether or not submatch is in effect. static void reg_getline_common(linenr_T lnum, reg_getline_flags_T flags, char **line, colnr_T *length) { bool get_line = flags & RGLF_LINE; bool get_length = flags & RGLF_LENGTH; linenr_T firstlnum; linenr_T maxline; if (flags & RGLF_SUBMATCH) { firstlnum = rsm.sm_firstlnum + lnum; maxline = rsm.sm_maxline; } else { firstlnum = rex.reg_firstlnum + lnum; maxline = rex.reg_maxline; } // when looking behind for a match/no-match lnum is negative. but we // can't go before line 1. if (firstlnum < 1) { if (get_line) { *line = NULL; } if (get_length) { *length = 0; } return; } if (lnum > maxline) { // must have matched the "\n" in the last line. if (get_line) { *line = ""; } if (get_length) { *length = 0; } return; } if (get_line) { *line = ml_get_buf(rex.reg_buf, firstlnum); } if (get_length) { *length = ml_get_buf_len(rex.reg_buf, firstlnum); } } /// Get pointer to the line "lnum", which is relative to "reg_firstlnum". static char *reg_getline(linenr_T lnum) { char *line; reg_getline_common(lnum, RGLF_LINE, &line, NULL); return line; } /// Get length of line "lnum", which is relative to "reg_firstlnum". static colnr_T reg_getline_len(linenr_T lnum) { colnr_T length; reg_getline_common(lnum, RGLF_LENGTH, NULL, &length); return length; } static uint8_t *reg_startzp[NSUBEXP]; // Workspace to mark beginning static uint8_t *reg_endzp[NSUBEXP]; // and end of \z(...\) matches static lpos_T reg_startzpos[NSUBEXP]; // idem, beginning pos static lpos_T reg_endzpos[NSUBEXP]; // idem, end pos // true if using multi-line regexp. #define REG_MULTI (rex.reg_match == NULL) // Create a new extmatch and mark it as referenced once. static reg_extmatch_T *make_extmatch(void) FUNC_ATTR_NONNULL_RET { reg_extmatch_T *em = xcalloc(1, sizeof(reg_extmatch_T)); em->refcnt = 1; return em; } // Add a reference to an extmatch. reg_extmatch_T *ref_extmatch(reg_extmatch_T *em) { if (em != NULL) { em->refcnt++; } return em; } // Remove a reference to an extmatch. If there are no references left, free // the info. void unref_extmatch(reg_extmatch_T *em) { int i; if (em != NULL && --em->refcnt <= 0) { for (i = 0; i < NSUBEXP; i++) { xfree(em->matches[i]); } xfree(em); } } // Get class of previous character. static int reg_prev_class(void) { if (rex.input > rex.line) { return mb_get_class_tab((char *)rex.input - 1 - utf_head_off((char *)rex.line, (char *)rex.input - 1), rex.reg_buf->b_chartab); } return -1; } // Return true if the current rex.input position matches the Visual area. static bool reg_match_visual(void) { pos_T top, bot; linenr_T lnum; colnr_T col; win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; int mode; colnr_T start, end; colnr_T start2, end2; colnr_T curswant; // Check if the buffer is the current buffer and not using a string. if (rex.reg_buf != curbuf || VIsual.lnum == 0 || !REG_MULTI) { return false; } if (VIsual_active) { if (lt(VIsual, wp->w_cursor)) { top = VIsual; bot = wp->w_cursor; } else { top = wp->w_cursor; bot = VIsual; } mode = VIsual_mode; curswant = wp->w_curswant; } else { if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) { top = curbuf->b_visual.vi_start; bot = curbuf->b_visual.vi_end; } else { top = curbuf->b_visual.vi_end; bot = curbuf->b_visual.vi_start; } // a substitute command may have removed some lines if (bot.lnum > curbuf->b_ml.ml_line_count) { bot.lnum = curbuf->b_ml.ml_line_count; } mode = curbuf->b_visual.vi_mode; curswant = curbuf->b_visual.vi_curswant; } lnum = rex.lnum + rex.reg_firstlnum; if (lnum < top.lnum || lnum > bot.lnum) { return false; } col = (colnr_T)(rex.input - rex.line); if (mode == 'v') { if ((lnum == top.lnum && col < top.col) || (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) { return false; } } else if (mode == Ctrl_V) { getvvcol(wp, &top, &start, NULL, &end); getvvcol(wp, &bot, &start2, NULL, &end2); if (start2 < start) { start = start2; } if (end2 > end) { end = end2; } if (top.col == MAXCOL || bot.col == MAXCOL || curswant == MAXCOL) { end = MAXCOL; } // getvvcol() flushes rex.line, need to get it again rex.line = (uint8_t *)reg_getline(rex.lnum); rex.input = rex.line + col; colnr_T cols = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col); if (cols < start || cols > end - (*p_sel == 'e')) { return false; } } return true; } // Check the regexp program for its magic number. // Return true if it's wrong. static int prog_magic_wrong(void) { regprog_T *prog; prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog; if (prog->engine == &nfa_regengine) { // For NFA matcher we don't check the magic return false; } if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) { emsg(_(e_re_corr)); return true; } return false; } // Cleanup the subexpressions, if this wasn't done yet. // This construction is used to clear the subexpressions only when they are // used (to increase speed). static void cleanup_subexpr(void) { if (!rex.need_clear_subexpr) { return; } if (REG_MULTI) { // Use 0xff to set lnum to -1 memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP); memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP); } else { memset(rex.reg_startp, 0, sizeof(char *) * NSUBEXP); memset(rex.reg_endp, 0, sizeof(char *) * NSUBEXP); } rex.need_clear_subexpr = false; } static void cleanup_zsubexpr(void) { if (!rex.need_clear_zsubexpr) { return; } if (REG_MULTI) { // Use 0xff to set lnum to -1 memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP); memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP); } else { memset(reg_startzp, 0, sizeof(char *) * NSUBEXP); memset(reg_endzp, 0, sizeof(char *) * NSUBEXP); } rex.need_clear_zsubexpr = false; } // Advance rex.lnum, rex.line and rex.input to the next line. static void reg_nextline(void) { rex.line = (uint8_t *)reg_getline(++rex.lnum); rex.input = rex.line; reg_breakcheck(); } // Check whether a backreference matches. // Returns RA_FAIL, RA_NOMATCH or RA_MATCH. // If "bytelen" is not NULL, it is set to the byte length of the match in the // last line. static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum, colnr_T end_col, int *bytelen) { linenr_T clnum = start_lnum; colnr_T ccol = start_col; int len; char *p; if (bytelen != NULL) { *bytelen = 0; } while (true) { // Since getting one line may invalidate the other, need to make copy. // Slow! if (rex.line != reg_tofree) { len = (int)strlen((char *)rex.line); if (reg_tofree == NULL || len >= (int)reg_tofreelen) { len += 50; // get some extra xfree(reg_tofree); reg_tofree = xmalloc((size_t)len); reg_tofreelen = (unsigned)len; } STRCPY(reg_tofree, rex.line); rex.input = reg_tofree + (rex.input - rex.line); rex.line = reg_tofree; } // Get the line to compare with. p = reg_getline(clnum); assert(p); if (clnum == end_lnum) { len = end_col - ccol; } else { len = reg_getline_len(clnum) - ccol; } if (cstrncmp(p + ccol, (char *)rex.input, &len) != 0) { return RA_NOMATCH; // doesn't match } if (bytelen != NULL) { *bytelen += len; } if (clnum == end_lnum) { break; // match and at end! } if (rex.lnum >= rex.reg_maxline) { return RA_NOMATCH; // text too short } // Advance to next line. reg_nextline(); if (bytelen != NULL) { *bytelen = 0; } clnum++; ccol = 0; if (got_int) { return RA_FAIL; } } // found a match! Note that rex.line may now point to a copy of the line, // that should not matter. return RA_MATCH; } /// Used in a place where no * or \+ can follow. static bool re_mult_next(char *what) { if (re_multi_type(peekchr()) == MULTI_MULT) { semsg(_("E888: (NFA regexp) cannot repeat %s"), what); rc_did_emsg = true; return false; } return true; } typedef struct { int a, b, c; } decomp_T; // 0xfb20 - 0xfb4f static decomp_T decomp_table[0xfb4f - 0xfb20 + 1] = { { 0x5e2, 0, 0 }, // 0xfb20 alt ayin { 0x5d0, 0, 0 }, // 0xfb21 alt alef { 0x5d3, 0, 0 }, // 0xfb22 alt dalet { 0x5d4, 0, 0 }, // 0xfb23 alt he { 0x5db, 0, 0 }, // 0xfb24 alt kaf { 0x5dc, 0, 0 }, // 0xfb25 alt lamed { 0x5dd, 0, 0 }, // 0xfb26 alt mem-sofit { 0x5e8, 0, 0 }, // 0xfb27 alt resh { 0x5ea, 0, 0 }, // 0xfb28 alt tav { '+', 0, 0 }, // 0xfb29 alt plus { 0x5e9, 0x5c1, 0 }, // 0xfb2a shin+shin-dot { 0x5e9, 0x5c2, 0 }, // 0xfb2b shin+sin-dot { 0x5e9, 0x5c1, 0x5bc }, // 0xfb2c shin+shin-dot+dagesh { 0x5e9, 0x5c2, 0x5bc }, // 0xfb2d shin+sin-dot+dagesh { 0x5d0, 0x5b7, 0 }, // 0xfb2e alef+patah { 0x5d0, 0x5b8, 0 }, // 0xfb2f alef+qamats { 0x5d0, 0x5b4, 0 }, // 0xfb30 alef+hiriq { 0x5d1, 0x5bc, 0 }, // 0xfb31 bet+dagesh { 0x5d2, 0x5bc, 0 }, // 0xfb32 gimel+dagesh { 0x5d3, 0x5bc, 0 }, // 0xfb33 dalet+dagesh { 0x5d4, 0x5bc, 0 }, // 0xfb34 he+dagesh { 0x5d5, 0x5bc, 0 }, // 0xfb35 vav+dagesh { 0x5d6, 0x5bc, 0 }, // 0xfb36 zayin+dagesh { 0xfb37, 0, 0 }, // 0xfb37 -- UNUSED { 0x5d8, 0x5bc, 0 }, // 0xfb38 tet+dagesh { 0x5d9, 0x5bc, 0 }, // 0xfb39 yud+dagesh { 0x5da, 0x5bc, 0 }, // 0xfb3a kaf sofit+dagesh { 0x5db, 0x5bc, 0 }, // 0xfb3b kaf+dagesh { 0x5dc, 0x5bc, 0 }, // 0xfb3c lamed+dagesh { 0xfb3d, 0, 0 }, // 0xfb3d -- UNUSED { 0x5de, 0x5bc, 0 }, // 0xfb3e mem+dagesh { 0xfb3f, 0, 0 }, // 0xfb3f -- UNUSED { 0x5e0, 0x5bc, 0 }, // 0xfb40 nun+dagesh { 0x5e1, 0x5bc, 0 }, // 0xfb41 samech+dagesh { 0xfb42, 0, 0 }, // 0xfb42 -- UNUSED { 0x5e3, 0x5bc, 0 }, // 0xfb43 pe sofit+dagesh { 0x5e4, 0x5bc, 0 }, // 0xfb44 pe+dagesh { 0xfb45, 0, 0 }, // 0xfb45 -- UNUSED { 0x5e6, 0x5bc, 0 }, // 0xfb46 tsadi+dagesh { 0x5e7, 0x5bc, 0 }, // 0xfb47 qof+dagesh { 0x5e8, 0x5bc, 0 }, // 0xfb48 resh+dagesh { 0x5e9, 0x5bc, 0 }, // 0xfb49 shin+dagesh { 0x5ea, 0x5bc, 0 }, // 0xfb4a tav+dagesh { 0x5d5, 0x5b9, 0 }, // 0xfb4b vav+holam { 0x5d1, 0x5bf, 0 }, // 0xfb4c bet+rafe { 0x5db, 0x5bf, 0 }, // 0xfb4d kaf+rafe { 0x5e4, 0x5bf, 0 }, // 0xfb4e pe+rafe { 0x5d0, 0x5dc, 0 } // 0xfb4f alef-lamed }; static void mb_decompose(int c, int *c1, int *c2, int *c3) { decomp_T d; if (c >= 0xfb20 && c <= 0xfb4f) { d = decomp_table[c - 0xfb20]; *c1 = d.a; *c2 = d.b; *c3 = d.c; } else { *c1 = c; *c2 = *c3 = 0; } } /// Compare two strings, ignore case if rex.reg_ic set. /// Return 0 if strings match, non-zero otherwise. /// Correct the length "*n" when composing characters are ignored /// or when both utf codepoints are considered equal because of /// case-folding but have different length (e.g. 's' and 'ſ') static int cstrncmp(char *s1, char *s2, int *n) { int result; if (!rex.reg_ic) { result = strncmp(s1, s2, (size_t)(*n)); } else { char *p = s1; int n2 = 0; int n1 = *n; // count the number of characters for byte-length of s1 while (n1 > 0 && *p != NUL) { n1 -= utfc_ptr2len(s1); MB_PTR_ADV(p); n2++; } // count the number of bytes to advance the same number of chars for s2 p = s2; while (n2-- > 0 && *p != NUL) { MB_PTR_ADV(p); } n2 = (int)(p - s2); result = utf_strnicmp(s1, s2, (size_t)(*n), (size_t)n2); if (result == 0 && n2 < *n) { *n = n2; } } // if it failed and it's utf8 and we want to combineignore: if (result != 0 && rex.reg_icombine) { const char *str1, *str2; int c1, c2, c11, c12; int junk; // we have to handle the strcmp ourselves, since it is necessary to // deal with the composing characters by ignoring them: str1 = s1; str2 = s2; c1 = c2 = 0; while ((int)(str1 - s1) < *n) { c1 = mb_ptr2char_adv(&str1); c2 = mb_ptr2char_adv(&str2); // decompose the character if necessary, into 'base' characters // because I don't care about Arabic, I will hard-code the Hebrew // which I *do* care about! So sue me... if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) { // decomposition necessary? mb_decompose(c1, &c11, &junk, &junk); mb_decompose(c2, &c12, &junk, &junk); c1 = c11; c2 = c12; if (c11 != c12 && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) { break; } } } result = c2 - c1; if (result == 0) { *n = (int)(str2 - s2); } } return result; } /// Wrapper around strchr which accounts for case-insensitive searches and /// non-ASCII characters. /// /// This function is used a lot for simple searches, keep it fast! /// /// @param s string to search /// @param c character to find in @a s /// /// @return NULL if no match, otherwise pointer to the position in @a s static inline char *cstrchr(const char *const s, const int c) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL FUNC_ATTR_ALWAYS_INLINE { if (!rex.reg_ic) { return vim_strchr(s, c); } int cc, lc; if (c > 0x80) { cc = utf_fold(c); lc = cc; } else if (ASCII_ISUPPER(c)) { cc = TOLOWER_ASC(c); lc = cc; } else if (ASCII_ISLOWER(c)) { cc = TOUPPER_ASC(c); lc = c; } else { return vim_strchr(s, c); } for (const char *p = s; *p != NUL; p += utfc_ptr2len(p)) { const int uc = utf_ptr2char(p); if (c > 0x80 || uc > 0x80) { // Do not match an illegal byte. E.g. 0xff matches 0xc3 0xbf, not 0xff. // Compare with lower case of the character. if ((uc < 0x80 || uc != (uint8_t)(*p)) && utf_fold(uc) == lc) { return (char *)p; } } else if ((uint8_t)(*p) == c || (uint8_t)(*p) == cc) { return (char *)p; } } return NULL; } //////////////////////////////////////////////////////////////// // regsub stuff // //////////////////////////////////////////////////////////////// static void do_upper(int *d, int c) { *d = mb_toupper(c); } static void do_lower(int *d, int c) { *d = mb_tolower(c); } /// regtilde(): Replace tildes in the pattern by the old pattern. /// /// Short explanation of the tilde: It stands for the previous replacement /// pattern. If that previous pattern also contains a ~ we should go back a /// step further... But we insert the previous pattern into the current one /// and remember that. /// This still does not handle the case where "magic" changes. So require the /// user to keep his hands off of "magic". /// /// The tildes are parsed once before the first call to vim_regsub(). char *regtilde(char *source, int magic, bool preview) { char *newsub = source; size_t newsublen = 0; char tilde[3] = { '~', NUL, NUL }; size_t tildelen = 1; bool error = false; if (!magic) { tilde[0] = '\\'; tilde[1] = '~'; tilde[2] = NUL; tildelen = 2; } char *p; for (p = newsub; *p; p++) { if (strncmp(p, tilde, tildelen) == 0) { size_t prefixlen = (size_t)(p - newsub); // not including the tilde char *postfix = p + tildelen; size_t postfixlen; size_t tmpsublen; if (newsublen == 0) { newsublen = strlen(newsub); } newsublen -= tildelen; postfixlen = newsublen - prefixlen; tmpsublen = prefixlen + reg_prev_sublen + postfixlen; if (tmpsublen > 0 && reg_prev_sub != NULL) { // Avoid making the text longer than MAXCOL, it will cause // trouble at some point. if (tmpsublen > MAXCOL) { emsg(_(e_resulting_text_too_long)); error = true; break; } char *tmpsub = xmalloc(tmpsublen + 1); // copy prefix memmove(tmpsub, newsub, prefixlen); // interpret tilde memmove(tmpsub + prefixlen, reg_prev_sub, reg_prev_sublen); // copy postfix STRCPY(tmpsub + prefixlen + reg_prev_sublen, postfix); if (newsub != source) { // allocated newsub before xfree(newsub); } newsub = tmpsub; newsublen = tmpsublen; p = newsub + prefixlen + reg_prev_sublen; } else { memmove(p, postfix, postfixlen + 1); // remove the tilde (+1 for the NUL) } p--; } else { if (*p == '\\' && p[1]) { // skip escaped characters p++; } p += utfc_ptr2len(p) - 1; } } if (error) { if (newsub != source) { xfree(newsub); } return source; } // Only change reg_prev_sub when not previewing. if (!preview) { // Store a copy of newsub in reg_prev_sub. It is always allocated, // because recursive calls may make the returned string invalid. // Only store it if there something to store. newsublen = (size_t)(p - newsub); if (newsublen == 0) { XFREE_CLEAR(reg_prev_sub); } else { xfree(reg_prev_sub); reg_prev_sub = xstrnsave(newsub, newsublen); } reg_prev_sublen = newsublen; } return newsub; } /// Put the submatches in "argv[argskip]" which is a list passed into /// call_func() by vim_regsub_both(). static int fill_submatch_list(int argc FUNC_ATTR_UNUSED, typval_T *argv, int argskip, ufunc_T *fp) FUNC_ATTR_NONNULL_ALL { typval_T *listarg = argv + argskip; if (!fp->uf_varargs && fp->uf_args.ga_len <= argskip) { // called function doesn't take a submatches argument return argskip; } // Relies on sl_list to be the first item in staticList10_T. tv_list_init_static10((staticList10_T *)listarg->vval.v_list); // There are always 10 list items in staticList10_T. listitem_T *li = tv_list_first(listarg->vval.v_list); for (int i = 0; i < 10; i++) { char *s = rsm.sm_match->startp[i]; if (s == NULL || rsm.sm_match->endp[i] == NULL) { s = NULL; } else { s = xstrnsave(s, (size_t)(rsm.sm_match->endp[i] - s)); } TV_LIST_ITEM_TV(li)->v_type = VAR_STRING; TV_LIST_ITEM_TV(li)->vval.v_string = s; li = TV_LIST_ITEM_NEXT(argv->vval.v_list, li); } return argskip + 1; } static void clear_submatch_list(staticList10_T *sl) { TV_LIST_ITER(&sl->sl_list, li, { xfree(TV_LIST_ITEM_TV(li)->vval.v_string); }); } /// vim_regsub() - perform substitutions after a vim_regexec() or /// vim_regexec_multi() match. /// /// If "flags" has REGSUB_COPY really copy into "dest[destlen]". /// Otherwise nothing is copied, only compute the length of the result. /// /// If "flags" has REGSUB_MAGIC then behave like 'magic' is set. /// /// If "flags" has REGSUB_BACKSLASH a backslash will be removed later, need to /// double them to keep them, and insert a backslash before a CR to avoid it /// being replaced with a line break later. /// /// Note: The matched text must not change between the call of /// vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back /// references invalid! /// /// Returns the size of the replacement, including terminating NUL. int vim_regsub(regmatch_T *rmp, char *source, typval_T *expr, char *dest, int destlen, int flags) { regexec_T rex_save; bool rex_in_use_save = rex_in_use; if (rex_in_use) { // Being called recursively, save the state. rex_save = rex; } rex_in_use = true; rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_buf = curbuf; rex.reg_line_lbr = true; int result = vim_regsub_both(source, expr, dest, destlen, flags); rex_in_use = rex_in_use_save; if (rex_in_use) { rex = rex_save; } return result; } int vim_regsub_multi(regmmatch_T *rmp, linenr_T lnum, char *source, char *dest, int destlen, int flags) { regexec_T rex_save; bool rex_in_use_save = rex_in_use; if (rex_in_use) { // Being called recursively, save the state. rex_save = rex; } rex_in_use = true; rex.reg_match = NULL; rex.reg_mmatch = rmp; rex.reg_buf = curbuf; // always works on the current buffer! rex.reg_firstlnum = lnum; rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum; rex.reg_line_lbr = false; int result = vim_regsub_both(source, NULL, dest, destlen, flags); rex_in_use = rex_in_use_save; if (rex_in_use) { rex = rex_save; } return result; } // When nesting more than a couple levels it's probably a mistake. #define MAX_REGSUB_NESTING 4 static char *eval_result[MAX_REGSUB_NESTING] = { NULL, NULL, NULL, NULL }; #if defined(EXITFREE) void free_resub_eval_result(void) { for (int i = 0; i < MAX_REGSUB_NESTING; i++) { XFREE_CLEAR(eval_result[i]); } } #endif static int vim_regsub_both(char *source, typval_T *expr, char *dest, int destlen, int flags) { char *src; char *dst; char *s; int c; int cc; int no = -1; fptr_T func_all = (fptr_T)NULL; fptr_T func_one = (fptr_T)NULL; linenr_T clnum = 0; // init for GCC int len = 0; // init for GCC static int nesting = 0; bool copy = flags & REGSUB_COPY; // Be paranoid... if ((source == NULL && expr == NULL) || dest == NULL) { emsg(_(e_null)); return 0; } if (prog_magic_wrong()) { return 0; } if (nesting == MAX_REGSUB_NESTING) { emsg(_(e_substitute_nesting_too_deep)); return 0; } int nested = nesting; src = source; dst = dest; // When the substitute part starts with "\=" evaluate it as an expression. if (expr != NULL || (source[0] == '\\' && source[1] == '=')) { // To make sure that the length doesn't change between checking the // length and copying the string, and to speed up things, the // resulting string is saved from the call with // "flags & REGSUB_COPY" == 0 to the call with // "flags & REGSUB_COPY" != 0. if (copy) { if (eval_result[nested] != NULL) { size_t eval_len = strlen(eval_result[nested]); if (eval_len < (size_t)destlen) { STRCPY(dest, eval_result[nested]); dst += eval_len; XFREE_CLEAR(eval_result[nested]); } } } else { const bool prev_can_f_submatch = can_f_submatch; regsubmatch_T rsm_save; XFREE_CLEAR(eval_result[nested]); // The expression may contain substitute(), which calls us // recursively. Make sure submatch() gets the text from the first // level. if (can_f_submatch) { rsm_save = rsm; } can_f_submatch = true; rsm.sm_match = rex.reg_match; rsm.sm_mmatch = rex.reg_mmatch; rsm.sm_firstlnum = rex.reg_firstlnum; rsm.sm_maxline = rex.reg_maxline; rsm.sm_line_lbr = rex.reg_line_lbr; // Although unlikely, it is possible that the expression invokes a // substitute command (it might fail, but still). Therefore keep // an array of eval results. nesting++; if (expr != NULL) { typval_T argv[2]; typval_T rettv; staticList10_T matchList = TV_LIST_STATIC10_INIT; rettv.v_type = VAR_STRING; rettv.vval.v_string = NULL; argv[0].v_type = VAR_LIST; argv[0].vval.v_list = &matchList.sl_list; funcexe_T funcexe = FUNCEXE_INIT; funcexe.fe_argv_func = fill_submatch_list; funcexe.fe_evaluate = true; if (expr->v_type == VAR_FUNC) { s = expr->vval.v_string; call_func(s, -1, &rettv, 1, argv, &funcexe); } else if (expr->v_type == VAR_PARTIAL) { partial_T *partial = expr->vval.v_partial; s = partial_name(partial); funcexe.fe_partial = partial; call_func(s, -1, &rettv, 1, argv, &funcexe); } if (tv_list_len(&matchList.sl_list) > 0) { // fill_submatch_list() was called. clear_submatch_list(&matchList); } if (rettv.v_type == VAR_UNKNOWN) { // something failed, no need to report another error eval_result[nested] = NULL; } else { char buf[NUMBUFLEN]; eval_result[nested] = (char *)tv_get_string_buf_chk(&rettv, buf); if (eval_result[nested] != NULL) { eval_result[nested] = xstrdup(eval_result[nested]); } } tv_clear(&rettv); } else { eval_result[nested] = eval_to_string(source + 2, true, false); } nesting--; if (eval_result[nested] != NULL) { int had_backslash = false; for (s = eval_result[nested]; *s != NUL; MB_PTR_ADV(s)) { // Change NL to CR, so that it becomes a line break, // unless called from vim_regexec_nl(). // Skip over a backslashed character. if (*s == NL && !rsm.sm_line_lbr) { *s = CAR; } else if (*s == '\\' && s[1] != NUL) { s++; // Change NL to CR here too, so that this works: // :s/abc\\\ndef/\="aaa\\\nbbb"/ on text: // abc{backslash} // def // Not when called from vim_regexec_nl(). if (*s == NL && !rsm.sm_line_lbr) { *s = CAR; } had_backslash = true; } } if (had_backslash && (flags & REGSUB_BACKSLASH)) { // Backslashes will be consumed, need to double them. s = vim_strsave_escaped(eval_result[nested], "\\"); xfree(eval_result[nested]); eval_result[nested] = s; } dst += strlen(eval_result[nested]); } can_f_submatch = prev_can_f_submatch; if (can_f_submatch) { rsm = rsm_save; } } } else { while ((c = (uint8_t)(*src++)) != NUL) { if (c == '&' && (flags & REGSUB_MAGIC)) { no = 0; } else if (c == '\\' && *src != NUL) { if (*src == '&' && !(flags & REGSUB_MAGIC)) { src++; no = 0; } else if ('0' <= *src && *src <= '9') { no = *src++ - '0'; } else if (vim_strchr("uUlLeE", (uint8_t)(*src))) { switch (*src++) { case 'u': func_one = do_upper; continue; case 'U': func_all = do_upper; continue; case 'l': func_one = do_lower; continue; case 'L': func_all = do_lower; continue; case 'e': case 'E': func_one = func_all = (fptr_T)NULL; continue; } } } if (no < 0) { // Ordinary character. if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) { // Copy a special key as-is. if (copy) { if (dst + 3 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst++ = (char)c; *dst++ = *src++; *dst++ = *src++; } else { dst += 3; src += 2; } continue; } if (c == '\\' && *src != NUL) { // Check for abbreviations -- webb switch (*src) { case 'r': c = CAR; ++src; break; case 'n': c = NL; ++src; break; case 't': c = TAB; ++src; break; // Oh no! \e already has meaning in subst pat :-( // case 'e': c = ESC; ++src; break; case 'b': c = Ctrl_H; ++src; break; // If "backslash" is true the backslash will be removed // later. Used to insert a literal CR. default: if (flags & REGSUB_BACKSLASH) { if (copy) { if (dst + 1 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst = '\\'; } dst++; } c = (uint8_t)(*src++); } } else { c = utf_ptr2char(src - 1); } // Write to buffer, if copy is set. if (func_one != NULL) { func_one(&cc, c); func_one = NULL; } else if (func_all != NULL) { func_all(&cc, c); } else { // just copy cc = c; } int totlen = utfc_ptr2len(src - 1); int charlen = utf_char2len(cc); if (copy) { if (dst + charlen > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } utf_char2bytes(cc, dst); } dst += charlen - 1; int clen = utf_ptr2len(src - 1); // If the character length is shorter than "totlen", there // are composing characters; copy them as-is. if (clen < totlen) { if (copy) { if (dst + totlen - clen > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } memmove(dst + 1, src - 1 + clen, (size_t)(totlen - clen)); } dst += totlen - clen; } src += totlen - 1; dst++; } else { if (REG_MULTI) { clnum = rex.reg_mmatch->startpos[no].lnum; if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) { s = NULL; } else { s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col; if (rex.reg_mmatch->endpos[no].lnum == clnum) { len = rex.reg_mmatch->endpos[no].col - rex.reg_mmatch->startpos[no].col; } else { len = reg_getline_len(clnum) - rex.reg_mmatch->startpos[no].col; } } } else { s = rex.reg_match->startp[no]; if (rex.reg_match->endp[no] == NULL) { s = NULL; } else { len = (int)(rex.reg_match->endp[no] - s); } } if (s != NULL) { while (true) { if (len == 0) { if (REG_MULTI) { if (rex.reg_mmatch->endpos[no].lnum == clnum) { break; } if (copy) { if (dst + 1 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst = CAR; } dst++; s = reg_getline(++clnum); if (rex.reg_mmatch->endpos[no].lnum == clnum) { len = rex.reg_mmatch->endpos[no].col; } else { len = reg_getline_len(clnum); } } else { break; } } else if (*s == NUL) { // we hit NUL. if (copy) { iemsg(_(e_re_damg)); } goto exit; } else { if ((flags & REGSUB_BACKSLASH) && (*s == CAR || *s == '\\')) { // Insert a backslash in front of a CR, otherwise // it will be replaced by a line break. // Number of backslashes will be halved later, // double them here. if (copy) { if (dst + 2 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } dst[0] = '\\'; dst[1] = *s; } dst += 2; } else { c = utf_ptr2char(s); if (func_one != (fptr_T)NULL) { func_one(&cc, c); func_one = NULL; } else if (func_all != (fptr_T)NULL) { func_all(&cc, c); } else { // just copy cc = c; } { int l; int charlen; // Copy composing characters separately, one // at a time. l = utf_ptr2len(s) - 1; s += l; len -= l; charlen = utf_char2len(cc); if (copy) { if (dst + charlen > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } utf_char2bytes(cc, dst); } dst += charlen - 1; } dst++; } s++; len--; } } } no = -1; } } } if (copy) { *dst = NUL; } exit: return (int)((dst - dest) + 1); } static char *reg_getline_submatch(linenr_T lnum) { char *line; reg_getline_common(lnum, RGLF_LINE | RGLF_SUBMATCH, &line, NULL); return line; } static colnr_T reg_getline_submatch_len(linenr_T lnum) { colnr_T length; reg_getline_common(lnum, RGLF_LENGTH | RGLF_SUBMATCH, NULL, &length); return length; } /// Used for the submatch() function: get the string from the n'th submatch in /// allocated memory. /// /// @return NULL when not in a ":s" command and for a non-existing submatch. char *reg_submatch(int no) { char *retval = NULL; char *s; int round; linenr_T lnum; if (!can_f_submatch || no < 0) { return NULL; } if (rsm.sm_match == NULL) { ssize_t len; // First round: compute the length and allocate memory. // Second round: copy the text. for (round = 1; round <= 2; round++) { lnum = rsm.sm_mmatch->startpos[no].lnum; if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) { return NULL; } s = reg_getline_submatch(lnum); if (s == NULL) { // anti-crash check, cannot happen? break; } s += rsm.sm_mmatch->startpos[no].col; if (rsm.sm_mmatch->endpos[no].lnum == lnum) { // Within one line: take form start to end col. len = rsm.sm_mmatch->endpos[no].col - rsm.sm_mmatch->startpos[no].col; if (round == 2) { xmemcpyz(retval, s, (size_t)len); } len++; } else { // Multiple lines: take start line from start col, middle // lines completely and end line up to end col. len = reg_getline_submatch_len(lnum) - rsm.sm_mmatch->startpos[no].col; if (round == 2) { STRCPY(retval, s); retval[len] = '\n'; } len++; lnum++; while (lnum < rsm.sm_mmatch->endpos[no].lnum) { s = reg_getline_submatch(lnum); if (round == 2) { STRCPY(retval + len, s); } len += reg_getline_submatch_len(lnum); if (round == 2) { retval[len] = '\n'; } len++; lnum++; } if (round == 2) { strncpy(retval + len, // NOLINT(runtime/printf) reg_getline_submatch(lnum), (size_t)rsm.sm_mmatch->endpos[no].col); } len += rsm.sm_mmatch->endpos[no].col; if (round == 2) { retval[len] = NUL; } len++; } if (retval == NULL) { retval = xmalloc((size_t)len); } } } else { s = rsm.sm_match->startp[no]; if (s == NULL || rsm.sm_match->endp[no] == NULL) { retval = NULL; } else { retval = xstrnsave(s, (size_t)(rsm.sm_match->endp[no] - s)); } } return retval; } // Used for the submatch() function with the optional non-zero argument: get // the list of strings from the n'th submatch in allocated memory with NULs // represented in NLs. // Returns a list of allocated strings. Returns NULL when not in a ":s" // command, for a non-existing submatch and for any error. list_T *reg_submatch_list(int no) { if (!can_f_submatch || no < 0) { return NULL; } linenr_T slnum; linenr_T elnum; list_T *list; const char *s; if (rsm.sm_match == NULL) { slnum = rsm.sm_mmatch->startpos[no].lnum; elnum = rsm.sm_mmatch->endpos[no].lnum; if (slnum < 0 || elnum < 0) { return NULL; } colnr_T scol = rsm.sm_mmatch->startpos[no].col; colnr_T ecol = rsm.sm_mmatch->endpos[no].col; list = tv_list_alloc(elnum - slnum + 1); s = reg_getline_submatch(slnum) + scol; if (slnum == elnum) { tv_list_append_string(list, s, ecol - scol); } else { int max_lnum = elnum - slnum; tv_list_append_string(list, s, -1); for (int i = 1; i < max_lnum; i++) { s = reg_getline_submatch(slnum + i); tv_list_append_string(list, s, -1); } s = reg_getline_submatch(elnum); tv_list_append_string(list, s, ecol); } } else { s = rsm.sm_match->startp[no]; if (s == NULL || rsm.sm_match->endp[no] == NULL) { return NULL; } list = tv_list_alloc(1); tv_list_append_string(list, s, rsm.sm_match->endp[no] - s); } tv_list_ref(list); return list; } /// Initialize the values used for matching against multiple lines /// /// @param win window in which to search or NULL /// @param buf buffer in which to search /// @param lnum nr of line to start looking for match static void init_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum) { rex.reg_match = NULL; rex.reg_mmatch = rmp; rex.reg_buf = buf; rex.reg_win = win; rex.reg_firstlnum = lnum; rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum; rex.reg_line_lbr = false; rex.reg_ic = rmp->rmm_ic; rex.reg_icombine = false; rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK; rex.reg_maxcol = rmp->rmm_maxcol; } // regexp_bt.c {{{1 // Backtracking regular expression implementation. // // NOTICE: // // This is NOT the original regular expression code as written by Henry // Spencer. This code has been modified specifically for use with the VIM // editor, and should not be used separately from Vim. If you want a good // regular expression library, get the original code. The copyright notice // that follows is from the original. // // END NOTICE // // Copyright (c) 1986 by University of Toronto. // Written by Henry Spencer. Not derived from licensed software. // // Permission is granted to anyone to use this software for any // purpose on any computer system, and to redistribute it freely, // subject to the following restrictions: // // 1. The author is not responsible for the consequences of use of // this software, no matter how awful, even if they arise // from defects in it. // // 2. The origin of this software must not be misrepresented, either // by explicit claim or by omission. // // 3. Altered versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // Beware that some of this code is subtly aware of the way operator // precedence is structured in regular expressions. Serious changes in // regular-expression syntax might require a total rethink. // // Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert // Webb, Ciaran McCreesh and Bram Moolenaar. // Named character class support added by Walter Briscoe (1998 Jul 01) // The "internal use only" fields in regexp_defs.h are present to pass info from // compile to execute that permits the execute phase to run lots faster on // simple cases. They are: // // regstart char that must begin a match; NUL if none obvious; Can be a // multi-byte character. // reganch is the match anchored (at beginning-of-line only)? // regmust string (pointer into program) that match must include, or NULL // regmlen length of regmust string // regflags RF_ values or'ed together // // Regstart and reganch permit very fast decisions on suitable starting points // for a match, cutting down the work a lot. Regmust permits fast rejection // of lines that cannot possibly match. The regmust tests are costly enough // that vim_regcomp() supplies a regmust only if the r.e. contains something // potentially expensive (at present, the only such thing detected is * or + // at the start of the r.e., which can involve a lot of backup). Regmlen is // supplied because the test in vim_regexec() needs it and vim_regcomp() is // computing it anyway. // Structure for regexp "program". This is essentially a linear encoding // of a nondeterministic finite-state machine (aka syntax charts or // "railroad normal form" in parsing technology). Each node is an opcode // plus a "next" pointer, possibly plus an operand. "Next" pointers of // all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next" // pointer with a BRANCH on both ends of it is connecting two alternatives. // (Here we have one of the subtle syntax dependencies: an individual BRANCH // (as opposed to a collection of them) is never concatenated with anything // because of operator precedence). The "next" pointer of a BRACES_COMPLEX // node points to the node after the stuff to be repeated. // The operand of some types of node is a literal string; for others, it is a // node leading into a sub-FSM. In particular, the operand of a BRANCH node // is the first node of the branch. // (NB this is *not* a tree structure: the tail of the branch connects to the // thing following the set of BRANCHes.) // // pattern is coded like: // // +-----------------+ // | V // \| BRANCH BRANCH --> END // | ^ | ^ // +------+ +----------+ // // // +------------------+ // V | // * BRANCH BRANCH --> BACK BRANCH --> NOTHING --> END // | | ^ ^ // | +---------------+ | // +---------------------------------------------+ // // // +----------------------+ // V | // \+ BRANCH --> BRANCH --> BACK BRANCH --> NOTHING --> END // | | ^ ^ // | +-----------+ | // +--------------------------------------------------+ // // // +-------------------------+ // V | // \{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX --> BACK END // | | ^ // | +----------------+ // +-----------------------------------------------+ // // // \@! BRANCH NOMATCH --> END --> END // | | ^ ^ // | +----------------+ | // +--------------------------------+ // // +---------+ // | V // \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END // | | | | ^ ^ // | | | +-----+ | // | | +----------------+ | // | +---------------------------+ | // +------------------------------------------------------+ // // They all start with a BRANCH for "\|" alternatives, even when there is only // one alternative. // The opcodes are: // definition number opnd? meaning #define END 0 // End of program or NOMATCH operand. #define BOL 1 // Match "" at beginning of line. #define EOL 2 // Match "" at end of line. #define BRANCH 3 // node Match this alternative, or the // next... #define BACK 4 // Match "", "next" ptr points backward. #define EXACTLY 5 // str Match this string. #define NOTHING 6 // Match empty string. #define STAR 7 // node Match this (simple) thing 0 or more // times. #define PLUS 8 // node Match this (simple) thing 1 or more // times. #define MATCH 9 // node match the operand zero-width #define NOMATCH 10 // node check for no match with operand #define BEHIND 11 // node look behind for a match with operand #define NOBEHIND 12 // node look behind for no match with operand #define SUBPAT 13 // node match the operand here #define BRACE_SIMPLE 14 // node Match this (simple) thing between m and // n times (\{m,n\}). #define BOW 15 // Match "" after [^a-zA-Z0-9_] #define EOW 16 // Match "" at [^a-zA-Z0-9_] #define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE // and BRACE_COMPLEX. #define NEWL 18 // Match line-break #define BHPOS 19 // End position for BEHIND or NOBEHIND // character classes: 20-48 normal, 50-78 include a line-break #define ADD_NL 30 #define FIRST_NL ANY + ADD_NL #define ANY 20 // Match any one character. #define ANYOF 21 // str Match any character in this string. #define ANYBUT 22 // str Match any character not in this // string. #define IDENT 23 // Match identifier char #define SIDENT 24 // Match identifier char but no digit #define KWORD 25 // Match keyword char #define SKWORD 26 // Match word char but no digit #define FNAME 27 // Match file name char #define SFNAME 28 // Match file name char but no digit #define PRINT 29 // Match printable char #define SPRINT 30 // Match printable char but no digit #define WHITE 31 // Match whitespace char #define NWHITE 32 // Match non-whitespace char #define DIGIT 33 // Match digit char #define NDIGIT 34 // Match non-digit char #define HEX 35 // Match hex char #define NHEX 36 // Match non-hex char #define OCTAL 37 // Match octal char #define NOCTAL 38 // Match non-octal char #define WORD 39 // Match word char #define NWORD 40 // Match non-word char #define HEAD 41 // Match head char #define NHEAD 42 // Match non-head char #define ALPHA 43 // Match alpha char #define NALPHA 44 // Match non-alpha char #define LOWER 45 // Match lowercase char #define NLOWER 46 // Match non-lowercase char #define UPPER 47 // Match uppercase char #define NUPPER 48 // Match non-uppercase char #define LAST_NL NUPPER + ADD_NL #define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL) #define MOPEN 80 // -89 Mark this point in input as start of // \( … \) subexpr. MOPEN + 0 marks start of // match. #define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks // end of match. #define BACKREF 100 // -109 node Match same string again \1-\9. #define ZOPEN 110 // -119 Mark this point in input as start of // \z( … \) subexpr. #define ZCLOSE 120 // -129 Analogous to ZOPEN. #define ZREF 130 // -139 node Match external submatch \z1-\z9 #define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times #define NOPEN 150 // Mark this point in input as start of // \%( subexpr. #define NCLOSE 151 // Analogous to NOPEN. #define MULTIBYTECODE 200 // mbc Match one multi-byte character #define RE_BOF 201 // Match "" at beginning of file. #define RE_EOF 202 // Match "" at end of file. #define CURSOR 203 // Match location of cursor. #define RE_LNUM 204 // nr cmp Match line number #define RE_COL 205 // nr cmp Match column number #define RE_VCOL 206 // nr cmp Match virtual column number #define RE_MARK 207 // mark cmp Match mark position #define RE_VISUAL 208 // Match Visual area #define RE_COMPOSING 209 // any composing characters // Flags to be passed up and down. #define HASWIDTH 0x1 // Known never to match null string. #define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand. #define SPSTART 0x4 // Starts with * or +. #define HASNL 0x8 // Contains some \n. #define HASLOOKBH 0x10 // Contains "\@<=" or "\@ 1 && (re_multi_type(peekchr()) != NOT_MULTI || utf_iscomposing_legacy(c)); } // Emit (if appropriate) a byte of code static void regc(int b) { if (regcode == JUST_CALC_SIZE) { regsize++; } else { *regcode++ = (uint8_t)b; } } // Emit (if appropriate) a multi-byte character of code static void regmbc(int c) { if (regcode == JUST_CALC_SIZE) { regsize += utf_char2len(c); } else { regcode += utf_char2bytes(c, (char *)regcode); } } // Produce the bytes for equivalence class "c". // Currently only handles latin1, latin9 and utf-8. // NOTE: When changing this function, also change nfa_emit_equi_class() static void reg_equi_class(int c) { { switch (c) { // Do not use '\300' style, it results in a negative number. case 'A': case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: case 0x100: case 0x102: case 0x104: case 0x1cd: case 0x1de: case 0x1e0: case 0x1fa: case 0x202: case 0x226: case 0x23a: case 0x1e00: case 0x1ea0: case 0x1ea2: case 0x1ea4: case 0x1ea6: case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae: case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6: regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2); regmbc(0xc3); regmbc(0xc4); regmbc(0xc5); regmbc(0x100); regmbc(0x102); regmbc(0x104); regmbc(0x1cd); regmbc(0x1de); regmbc(0x1e0); regmbc(0x1fa); regmbc(0x202); regmbc(0x226); regmbc(0x23a); regmbc(0x1e00); regmbc(0x1ea0); regmbc(0x1ea2); regmbc(0x1ea4); regmbc(0x1ea6); regmbc(0x1ea8); regmbc(0x1eaa); regmbc(0x1eac); regmbc(0x1eae); regmbc(0x1eb0); regmbc(0x1eb2); regmbc(0x1eb4); regmbc(0x1eb6); return; case 'B': case 0x181: case 0x243: case 0x1e02: case 0x1e04: case 0x1e06: regmbc('B'); regmbc(0x181); regmbc(0x243); regmbc(0x1e02); regmbc(0x1e04); regmbc(0x1e06); return; case 'C': case 0xc7: case 0x106: case 0x108: case 0x10a: case 0x10c: case 0x187: case 0x23b: case 0x1e08: case 0xa792: regmbc('C'); regmbc(0xc7); regmbc(0x106); regmbc(0x108); regmbc(0x10a); regmbc(0x10c); regmbc(0x187); regmbc(0x23b); regmbc(0x1e08); regmbc(0xa792); return; case 'D': case 0x10e: case 0x110: case 0x18a: case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10: case 0x1e12: regmbc('D'); regmbc(0x10e); regmbc(0x110); regmbc(0x18a); regmbc(0x1e0a); regmbc(0x1e0c); regmbc(0x1e0e); regmbc(0x1e10); regmbc(0x1e12); return; case 'E': case 0xc8: case 0xc9: case 0xca: case 0xcb: case 0x112: case 0x114: case 0x116: case 0x118: case 0x11a: case 0x204: case 0x206: case 0x228: case 0x246: case 0x1e14: case 0x1e16: case 0x1e18: case 0x1e1a: case 0x1e1c: case 0x1eb8: case 0x1eba: case 0x1ebc: case 0x1ebe: case 0x1ec0: case 0x1ec2: case 0x1ec4: case 0x1ec6: regmbc('E'); regmbc(0xc8); regmbc(0xc9); regmbc(0xca); regmbc(0xcb); regmbc(0x112); regmbc(0x114); regmbc(0x116); regmbc(0x118); regmbc(0x11a); regmbc(0x204); regmbc(0x206); regmbc(0x228); regmbc(0x246); regmbc(0x1e14); regmbc(0x1e16); regmbc(0x1e18); regmbc(0x1e1a); regmbc(0x1e1c); regmbc(0x1eb8); regmbc(0x1eba); regmbc(0x1ebc); regmbc(0x1ebe); regmbc(0x1ec0); regmbc(0x1ec2); regmbc(0x1ec4); regmbc(0x1ec6); return; case 'F': case 0x191: case 0x1e1e: case 0xa798: regmbc('F'); regmbc(0x191); regmbc(0x1e1e); regmbc(0xa798); return; case 'G': case 0x11c: case 0x11e: case 0x120: case 0x122: case 0x193: case 0x1e4: case 0x1e6: case 0x1f4: case 0x1e20: case 0xa7a0: regmbc('G'); regmbc(0x11c); regmbc(0x11e); regmbc(0x120); regmbc(0x122); regmbc(0x193); regmbc(0x1e4); regmbc(0x1e6); regmbc(0x1f4); regmbc(0x1e20); regmbc(0xa7a0); return; case 'H': case 0x124: case 0x126: case 0x21e: case 0x1e22: case 0x1e24: case 0x1e26: case 0x1e28: case 0x1e2a: case 0x2c67: regmbc('H'); regmbc(0x124); regmbc(0x126); regmbc(0x21e); regmbc(0x1e22); regmbc(0x1e24); regmbc(0x1e26); regmbc(0x1e28); regmbc(0x1e2a); regmbc(0x2c67); return; case 'I': case 0xcc: case 0xcd: case 0xce: case 0xcf: case 0x128: case 0x12a: case 0x12c: case 0x12e: case 0x130: case 0x197: case 0x1cf: case 0x208: case 0x20a: case 0x1e2c: case 0x1e2e: case 0x1ec8: case 0x1eca: regmbc('I'); regmbc(0xcc); regmbc(0xcd); regmbc(0xce); regmbc(0xcf); regmbc(0x128); regmbc(0x12a); regmbc(0x12c); regmbc(0x12e); regmbc(0x130); regmbc(0x197); regmbc(0x1cf); regmbc(0x208); regmbc(0x20a); regmbc(0x1e2c); regmbc(0x1e2e); regmbc(0x1ec8); regmbc(0x1eca); return; case 'J': case 0x134: case 0x248: regmbc('J'); regmbc(0x134); regmbc(0x248); return; case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30: case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740: regmbc('K'); regmbc(0x136); regmbc(0x198); regmbc(0x1e8); regmbc(0x1e30); regmbc(0x1e32); regmbc(0x1e34); regmbc(0x2c69); regmbc(0xa740); return; case 'L': case 0x139: case 0x13b: case 0x13d: case 0x13f: case 0x141: case 0x23d: case 0x1e36: case 0x1e38: case 0x1e3a: case 0x1e3c: case 0x2c60: regmbc('L'); regmbc(0x139); regmbc(0x13b); regmbc(0x13d); regmbc(0x13f); regmbc(0x141); regmbc(0x23d); regmbc(0x1e36); regmbc(0x1e38); regmbc(0x1e3a); regmbc(0x1e3c); regmbc(0x2c60); return; case 'M': case 0x1e3e: case 0x1e40: case 0x1e42: regmbc('M'); regmbc(0x1e3e); regmbc(0x1e40); regmbc(0x1e42); return; case 'N': case 0xd1: case 0x143: case 0x145: case 0x147: case 0x1f8: case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a: case 0xa7a4: regmbc('N'); regmbc(0xd1); regmbc(0x143); regmbc(0x145); regmbc(0x147); regmbc(0x1f8); regmbc(0x1e44); regmbc(0x1e46); regmbc(0x1e48); regmbc(0x1e4a); regmbc(0xa7a4); return; case 'O': case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6: case 0xd8: case 0x14c: case 0x14e: case 0x150: case 0x19f: case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec: case 0x1fe: case 0x20c: case 0x20e: case 0x22a: case 0x22c: case 0x22e: case 0x230: case 0x1e4c: case 0x1e4e: case 0x1e50: case 0x1e52: case 0x1ecc: case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4: case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc: case 0x1ede: case 0x1ee0: case 0x1ee2: regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4); regmbc(0xd5); regmbc(0xd6); regmbc(0xd8); regmbc(0x14c); regmbc(0x14e); regmbc(0x150); regmbc(0x19f); regmbc(0x1a0); regmbc(0x1d1); regmbc(0x1ea); regmbc(0x1ec); regmbc(0x1fe); regmbc(0x20c); regmbc(0x20e); regmbc(0x22a); regmbc(0x22c); regmbc(0x22e); regmbc(0x230); regmbc(0x1e4c); regmbc(0x1e4e); regmbc(0x1e50); regmbc(0x1e52); regmbc(0x1ecc); regmbc(0x1ece); regmbc(0x1ed0); regmbc(0x1ed2); regmbc(0x1ed4); regmbc(0x1ed6); regmbc(0x1ed8); regmbc(0x1eda); regmbc(0x1edc); regmbc(0x1ede); regmbc(0x1ee0); regmbc(0x1ee2); return; case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63: regmbc('P'); regmbc(0x1a4); regmbc(0x1e54); regmbc(0x1e56); regmbc(0x2c63); return; case 'Q': case 0x24a: regmbc('Q'); regmbc(0x24a); return; case 'R': case 0x154: case 0x156: case 0x158: case 0x210: case 0x212: case 0x24c: case 0x1e58: case 0x1e5a: case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6: regmbc('R'); regmbc(0x154); regmbc(0x156); regmbc(0x210); regmbc(0x212); regmbc(0x158); regmbc(0x24c); regmbc(0x1e58); regmbc(0x1e5a); regmbc(0x1e5c); regmbc(0x1e5e); regmbc(0x2c64); regmbc(0xa7a6); return; case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160: case 0x218: case 0x1e60: case 0x1e62: case 0x1e64: case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8: regmbc('S'); regmbc(0x15a); regmbc(0x15c); regmbc(0x15e); regmbc(0x160); regmbc(0x218); regmbc(0x1e60); regmbc(0x1e62); regmbc(0x1e64); regmbc(0x1e66); regmbc(0x1e68); regmbc(0x2c7e); regmbc(0xa7a8); return; case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac: case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c: case 0x1e6e: case 0x1e70: regmbc('T'); regmbc(0x162); regmbc(0x164); regmbc(0x166); regmbc(0x1ac); regmbc(0x23e); regmbc(0x1ae); regmbc(0x21a); regmbc(0x1e6a); regmbc(0x1e6c); regmbc(0x1e6e); regmbc(0x1e70); return; case 'U': case 0xd9: case 0xda: case 0xdb: case 0xdc: case 0x168: case 0x16a: case 0x16c: case 0x16e: case 0x170: case 0x172: case 0x1af: case 0x1d3: case 0x1d5: case 0x1d7: case 0x1d9: case 0x1db: case 0x214: case 0x216: case 0x244: case 0x1e72: case 0x1e74: case 0x1e76: case 0x1e78: case 0x1e7a: case 0x1ee4: case 0x1ee6: case 0x1ee8: case 0x1eea: case 0x1eec: case 0x1eee: case 0x1ef0: regmbc('U'); regmbc(0xd9); regmbc(0xda); regmbc(0xdb); regmbc(0xdc); regmbc(0x168); regmbc(0x16a); regmbc(0x16c); regmbc(0x16e); regmbc(0x170); regmbc(0x172); regmbc(0x1af); regmbc(0x1d3); regmbc(0x1d5); regmbc(0x1d7); regmbc(0x1d9); regmbc(0x1db); regmbc(0x214); regmbc(0x216); regmbc(0x244); regmbc(0x1e72); regmbc(0x1e74); regmbc(0x1e76); regmbc(0x1e78); regmbc(0x1e7a); regmbc(0x1ee4); regmbc(0x1ee6); regmbc(0x1ee8); regmbc(0x1eea); regmbc(0x1eec); regmbc(0x1eee); regmbc(0x1ef0); return; case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e: regmbc('V'); regmbc(0x1b2); regmbc(0x1e7c); regmbc(0x1e7e); return; case 'W': case 0x174: case 0x1e80: case 0x1e82: case 0x1e84: case 0x1e86: case 0x1e88: regmbc('W'); regmbc(0x174); regmbc(0x1e80); regmbc(0x1e82); regmbc(0x1e84); regmbc(0x1e86); regmbc(0x1e88); return; case 'X': case 0x1e8a: case 0x1e8c: regmbc('X'); regmbc(0x1e8a); regmbc(0x1e8c); return; case 'Y': case 0xdd: case 0x176: case 0x178: case 0x1b3: case 0x232: case 0x24e: case 0x1e8e: case 0x1ef2: case 0x1ef6: case 0x1ef4: case 0x1ef8: regmbc('Y'); regmbc(0xdd); regmbc(0x176); regmbc(0x178); regmbc(0x1b3); regmbc(0x232); regmbc(0x24e); regmbc(0x1e8e); regmbc(0x1ef2); regmbc(0x1ef4); regmbc(0x1ef6); regmbc(0x1ef8); return; case 'Z': case 0x179: case 0x17b: case 0x17d: case 0x1b5: case 0x1e90: case 0x1e92: case 0x1e94: case 0x2c6b: regmbc('Z'); regmbc(0x179); regmbc(0x17b); regmbc(0x17d); regmbc(0x1b5); regmbc(0x1e90); regmbc(0x1e92); regmbc(0x1e94); regmbc(0x2c6b); return; case 'a': case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0x101: case 0x103: case 0x105: case 0x1ce: case 0x1df: case 0x1e1: case 0x1fb: case 0x201: case 0x203: case 0x227: case 0x1d8f: case 0x1e01: case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5: case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead: case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5: case 0x1eb7: case 0x2c65: regmbc('a'); regmbc(0xe0); regmbc(0xe1); regmbc(0xe2); regmbc(0xe3); regmbc(0xe4); regmbc(0xe5); regmbc(0x101); regmbc(0x103); regmbc(0x105); regmbc(0x1ce); regmbc(0x1df); regmbc(0x1e1); regmbc(0x1fb); regmbc(0x201); regmbc(0x203); regmbc(0x227); regmbc(0x1d8f); regmbc(0x1e01); regmbc(0x1e9a); regmbc(0x1ea1); regmbc(0x1ea3); regmbc(0x1ea5); regmbc(0x1ea7); regmbc(0x1ea9); regmbc(0x1eab); regmbc(0x1ead); regmbc(0x1eaf); regmbc(0x1eb1); regmbc(0x1eb3); regmbc(0x1eb5); regmbc(0x1eb7); regmbc(0x2c65); return; case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80: case 0x1e03: case 0x1e05: case 0x1e07: regmbc('b'); regmbc(0x180); regmbc(0x253); regmbc(0x1d6c); regmbc(0x1d80); regmbc(0x1e03); regmbc(0x1e05); regmbc(0x1e07); return; case 'c': case 0xe7: case 0x107: case 0x109: case 0x10b: case 0x10d: case 0x188: case 0x23c: case 0x1e09: case 0xa793: case 0xa794: regmbc('c'); regmbc(0xe7); regmbc(0x107); regmbc(0x109); regmbc(0x10b); regmbc(0x10d); regmbc(0x188); regmbc(0x23c); regmbc(0x1e09); regmbc(0xa793); regmbc(0xa794); return; case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d: case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d: case 0x1e0f: case 0x1e11: case 0x1e13: regmbc('d'); regmbc(0x10f); regmbc(0x111); regmbc(0x257); regmbc(0x1d6d); regmbc(0x1d81); regmbc(0x1d91); regmbc(0x1e0b); regmbc(0x1e0d); regmbc(0x1e0f); regmbc(0x1e11); regmbc(0x1e13); return; case 'e': case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0x113: case 0x115: case 0x117: case 0x119: case 0x11b: case 0x205: case 0x207: case 0x229: case 0x247: case 0x1d92: case 0x1e15: case 0x1e17: case 0x1e19: case 0x1e1b: case 0x1eb9: case 0x1ebb: case 0x1e1d: case 0x1ebd: case 0x1ebf: case 0x1ec1: case 0x1ec3: case 0x1ec5: case 0x1ec7: regmbc('e'); regmbc(0xe8); regmbc(0xe9); regmbc(0xea); regmbc(0xeb); regmbc(0x113); regmbc(0x115); regmbc(0x117); regmbc(0x119); regmbc(0x11b); regmbc(0x205); regmbc(0x207); regmbc(0x229); regmbc(0x247); regmbc(0x1d92); regmbc(0x1e15); regmbc(0x1e17); regmbc(0x1e19); regmbc(0x1e1b); regmbc(0x1e1d); regmbc(0x1eb9); regmbc(0x1ebb); regmbc(0x1ebd); regmbc(0x1ebf); regmbc(0x1ec1); regmbc(0x1ec3); regmbc(0x1ec5); regmbc(0x1ec7); return; case 'f': case 0x192: case 0x1d6e: case 0x1d82: case 0x1e1f: case 0xa799: regmbc('f'); regmbc(0x192); regmbc(0x1d6e); regmbc(0x1d82); regmbc(0x1e1f); regmbc(0xa799); return; case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123: case 0x1e5: case 0x1e7: case 0x260: case 0x1f5: case 0x1d83: case 0x1e21: case 0xa7a1: regmbc('g'); regmbc(0x11d); regmbc(0x11f); regmbc(0x121); regmbc(0x123); regmbc(0x1e5); regmbc(0x1e7); regmbc(0x1f5); regmbc(0x260); regmbc(0x1d83); regmbc(0x1e21); regmbc(0xa7a1); return; case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23: case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b: case 0x1e96: case 0x2c68: case 0xa795: regmbc('h'); regmbc(0x125); regmbc(0x127); regmbc(0x21f); regmbc(0x1e23); regmbc(0x1e25); regmbc(0x1e27); regmbc(0x1e29); regmbc(0x1e2b); regmbc(0x1e96); regmbc(0x2c68); regmbc(0xa795); return; case 'i': case 0xec: case 0xed: case 0xee: case 0xef: case 0x129: case 0x12b: case 0x12d: case 0x12f: case 0x1d0: case 0x209: case 0x20b: case 0x268: case 0x1d96: case 0x1e2d: case 0x1e2f: case 0x1ec9: case 0x1ecb: regmbc('i'); regmbc(0xec); regmbc(0xed); regmbc(0xee); regmbc(0xef); regmbc(0x129); regmbc(0x12b); regmbc(0x12d); regmbc(0x12f); regmbc(0x1d0); regmbc(0x209); regmbc(0x20b); regmbc(0x268); regmbc(0x1d96); regmbc(0x1e2d); regmbc(0x1e2f); regmbc(0x1ec9); regmbc(0x1ecb); return; case 'j': case 0x135: case 0x1f0: case 0x249: regmbc('j'); regmbc(0x135); regmbc(0x1f0); regmbc(0x249); return; case 'k': case 0x137: case 0x199: case 0x1e9: case 0x1d84: case 0x1e31: case 0x1e33: case 0x1e35: case 0x2c6a: case 0xa741: regmbc('k'); regmbc(0x137); regmbc(0x199); regmbc(0x1e9); regmbc(0x1d84); regmbc(0x1e31); regmbc(0x1e33); regmbc(0x1e35); regmbc(0x2c6a); regmbc(0xa741); return; case 'l': case 0x13a: case 0x13c: case 0x13e: case 0x140: case 0x142: case 0x19a: case 0x1e37: case 0x1e39: case 0x1e3b: case 0x1e3d: case 0x2c61: regmbc('l'); regmbc(0x13a); regmbc(0x13c); regmbc(0x13e); regmbc(0x140); regmbc(0x142); regmbc(0x19a); regmbc(0x1e37); regmbc(0x1e39); regmbc(0x1e3b); regmbc(0x1e3d); regmbc(0x2c61); return; case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43: regmbc('m'); regmbc(0x1d6f); regmbc(0x1e3f); regmbc(0x1e41); regmbc(0x1e43); return; case 'n': case 0xf1: case 0x144: case 0x146: case 0x148: case 0x149: case 0x1f9: case 0x1d70: case 0x1d87: case 0x1e45: case 0x1e47: case 0x1e49: case 0x1e4b: case 0xa7a5: regmbc('n'); regmbc(0xf1); regmbc(0x144); regmbc(0x146); regmbc(0x148); regmbc(0x149); regmbc(0x1f9); regmbc(0x1d70); regmbc(0x1d87); regmbc(0x1e45); regmbc(0x1e47); regmbc(0x1e49); regmbc(0x1e4b); regmbc(0xa7a5); return; case 'o': case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf8: case 0x14d: case 0x14f: case 0x151: case 0x1a1: case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff: case 0x20d: case 0x20f: case 0x22b: case 0x22d: case 0x22f: case 0x231: case 0x275: case 0x1e4d: case 0x1e4f: case 0x1e51: case 0x1e53: case 0x1ecd: case 0x1ecf: case 0x1ed1: case 0x1ed3: case 0x1ed5: case 0x1ed7: case 0x1ed9: case 0x1edb: case 0x1edd: case 0x1edf: case 0x1ee1: case 0x1ee3: regmbc('o'); regmbc(0xf2); regmbc(0xf3); regmbc(0xf4); regmbc(0xf5); regmbc(0xf6); regmbc(0xf8); regmbc(0x14d); regmbc(0x14f); regmbc(0x151); regmbc(0x1a1); regmbc(0x1d2); regmbc(0x1eb); regmbc(0x1ed); regmbc(0x1ff); regmbc(0x20d); regmbc(0x20f); regmbc(0x22b); regmbc(0x22d); regmbc(0x22f); regmbc(0x231); regmbc(0x275); regmbc(0x1e4d); regmbc(0x1e4f); regmbc(0x1e51); regmbc(0x1e53); regmbc(0x1ecd); regmbc(0x1ecf); regmbc(0x1ed1); regmbc(0x1ed3); regmbc(0x1ed5); regmbc(0x1ed7); regmbc(0x1ed9); regmbc(0x1edb); regmbc(0x1edd); regmbc(0x1edf); regmbc(0x1ee1); regmbc(0x1ee3); return; case 'p': case 0x1a5: case 0x1d71: case 0x1d88: case 0x1d7d: case 0x1e55: case 0x1e57: regmbc('p'); regmbc(0x1a5); regmbc(0x1d71); regmbc(0x1d7d); regmbc(0x1d88); regmbc(0x1e55); regmbc(0x1e57); return; case 'q': case 0x24b: case 0x2a0: regmbc('q'); regmbc(0x24b); regmbc(0x2a0); return; case 'r': case 0x155: case 0x157: case 0x159: case 0x211: case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73: case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f: case 0xa7a7: regmbc('r'); regmbc(0x155); regmbc(0x157); regmbc(0x159); regmbc(0x211); regmbc(0x213); regmbc(0x24d); regmbc(0x1d72); regmbc(0x1d73); regmbc(0x1d89); regmbc(0x1e59); regmbc(0x27d); regmbc(0x1e5b); regmbc(0x1e5d); regmbc(0x1e5f); regmbc(0xa7a7); return; case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161: case 0x1e61: case 0x219: case 0x23f: case 0x1d74: case 0x1d8a: case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9: regmbc('s'); regmbc(0x15b); regmbc(0x15d); regmbc(0x15f); regmbc(0x161); regmbc(0x23f); regmbc(0x219); regmbc(0x1d74); regmbc(0x1d8a); regmbc(0x1e61); regmbc(0x1e63); regmbc(0x1e65); regmbc(0x1e67); regmbc(0x1e69); regmbc(0xa7a9); return; case 't': case 0x163: case 0x165: case 0x167: case 0x1ab: case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b: case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66: regmbc('t'); regmbc(0x163); regmbc(0x165); regmbc(0x167); regmbc(0x1ab); regmbc(0x21b); regmbc(0x1ad); regmbc(0x288); regmbc(0x1d75); regmbc(0x1e6b); regmbc(0x1e6d); regmbc(0x1e6f); regmbc(0x1e71); regmbc(0x1e97); regmbc(0x2c66); return; case 'u': case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0x169: case 0x16b: case 0x16d: case 0x16f: case 0x171: case 0x173: case 0x1b0: case 0x1d4: case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc: case 0x215: case 0x217: case 0x289: case 0x1e73: case 0x1d7e: case 0x1d99: case 0x1e75: case 0x1e77: case 0x1e79: case 0x1e7b: case 0x1ee5: case 0x1ee7: case 0x1ee9: case 0x1eeb: case 0x1eed: case 0x1eef: case 0x1ef1: regmbc('u'); regmbc(0xf9); regmbc(0xfa); regmbc(0xfb); regmbc(0xfc); regmbc(0x169); regmbc(0x16b); regmbc(0x16d); regmbc(0x16f); regmbc(0x171); regmbc(0x173); regmbc(0x1d6); regmbc(0x1d8); regmbc(0x1da); regmbc(0x1dc); regmbc(0x215); regmbc(0x217); regmbc(0x1b0); regmbc(0x1d4); regmbc(0x289); regmbc(0x1d7e); regmbc(0x1d99); regmbc(0x1e73); regmbc(0x1e75); regmbc(0x1e77); regmbc(0x1e79); regmbc(0x1e7b); regmbc(0x1ee5); regmbc(0x1ee7); regmbc(0x1ee9); regmbc(0x1eeb); regmbc(0x1eed); regmbc(0x1eef); regmbc(0x1ef1); return; case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f: regmbc('v'); regmbc(0x28b); regmbc(0x1d8c); regmbc(0x1e7d); regmbc(0x1e7f); return; case 'w': case 0x175: case 0x1e81: case 0x1e83: case 0x1e85: case 0x1e87: case 0x1e89: case 0x1e98: regmbc('w'); regmbc(0x175); regmbc(0x1e81); regmbc(0x1e83); regmbc(0x1e85); regmbc(0x1e87); regmbc(0x1e89); regmbc(0x1e98); return; case 'x': case 0x1e8b: case 0x1e8d: regmbc('x'); regmbc(0x1e8b); regmbc(0x1e8d); return; case 'y': case 0xfd: case 0xff: case 0x177: case 0x1b4: case 0x233: case 0x24f: case 0x1e8f: case 0x1e99: case 0x1ef3: case 0x1ef5: case 0x1ef7: case 0x1ef9: regmbc('y'); regmbc(0xfd); regmbc(0xff); regmbc(0x177); regmbc(0x1b4); regmbc(0x233); regmbc(0x24f); regmbc(0x1e8f); regmbc(0x1e99); regmbc(0x1ef3); regmbc(0x1ef5); regmbc(0x1ef7); regmbc(0x1ef9); return; case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6: case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93: case 0x1e95: case 0x2c6c: regmbc('z'); regmbc(0x17a); regmbc(0x17c); regmbc(0x17e); regmbc(0x1b6); regmbc(0x1d76); regmbc(0x1d8e); regmbc(0x1e91); regmbc(0x1e93); regmbc(0x1e95); regmbc(0x2c6c); return; } } regmbc(c); } // Emit a node. // Return pointer to generated code. static uint8_t *regnode(int op) { uint8_t *ret; ret = regcode; if (ret == JUST_CALC_SIZE) { regsize += 3; } else { *regcode++ = (uint8_t)op; *regcode++ = NUL; // Null "next" pointer. *regcode++ = NUL; } return ret; } // Write a four bytes number at "p" and return pointer to the next char. static uint8_t *re_put_uint32(uint8_t *p, uint32_t val) { *p++ = (uint8_t)((val >> 24) & 0377); *p++ = (uint8_t)((val >> 16) & 0377); *p++ = (uint8_t)((val >> 8) & 0377); *p++ = (uint8_t)(val & 0377); return p; } // regnext - dig the "next" pointer out of a node // Returns NULL when calculating size, when there is no next item and when // there is an error. static uint8_t *regnext(uint8_t *p) FUNC_ATTR_NONNULL_ALL { int offset; if (p == JUST_CALC_SIZE || reg_toolong) { return NULL; } offset = NEXT(p); if (offset == 0) { return NULL; } if (OP(p) == BACK) { return p - offset; } else { return p + offset; } } // Set the next-pointer at the end of a node chain. static void regtail(uint8_t *p, const uint8_t *val) { int offset; if (p == JUST_CALC_SIZE) { return; } // Find last node. uint8_t *scan = p; while (true) { uint8_t *temp = regnext(scan); if (temp == NULL) { break; } scan = temp; } if (OP(scan) == BACK) { offset = (int)(scan - val); } else { offset = (int)(val - scan); } // When the offset uses more than 16 bits it can no longer fit in the two // bytes available. Use a global flag to avoid having to check return // values in too many places. if (offset > 0xffff) { reg_toolong = true; } else { *(scan + 1) = (uint8_t)(((unsigned)offset >> 8) & 0377); *(scan + 2) = (uint8_t)(offset & 0377); } } // Like regtail, on item after a BRANCH; nop if none. static void regoptail(uint8_t *p, uint8_t *val) { // When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" if (p == NULL || p == JUST_CALC_SIZE || (OP(p) != BRANCH && (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) { return; } regtail(OPERAND(p), val); } // Insert an operator in front of already-emitted operand // // Means relocating the operand. static void reginsert(int op, uint8_t *opnd) { uint8_t *src; uint8_t *dst; uint8_t *place; if (regcode == JUST_CALC_SIZE) { regsize += 3; return; } src = regcode; regcode += 3; dst = regcode; while (src > opnd) { *--dst = *--src; } place = opnd; // Op node, where operand used to be. *place++ = (uint8_t)op; *place++ = NUL; *place = NUL; } // Insert an operator in front of already-emitted operand. // Add a number to the operator. static void reginsert_nr(int op, int64_t val, uint8_t *opnd) { uint8_t *src; uint8_t *dst; uint8_t *place; if (regcode == JUST_CALC_SIZE) { regsize += 7; return; } src = regcode; regcode += 7; dst = regcode; while (src > opnd) { *--dst = *--src; } place = opnd; // Op node, where operand used to be. *place++ = (uint8_t)op; *place++ = NUL; *place++ = NUL; assert(val >= 0 && (uintmax_t)val <= UINT32_MAX); re_put_uint32(place, (uint32_t)val); } // Insert an operator in front of already-emitted operand. // The operator has the given limit values as operands. Also set next pointer. // // Means relocating the operand. static void reginsert_limits(int op, int64_t minval, int64_t maxval, uint8_t *opnd) { uint8_t *src; uint8_t *dst; uint8_t *place; if (regcode == JUST_CALC_SIZE) { regsize += 11; return; } src = regcode; regcode += 11; dst = regcode; while (src > opnd) { *--dst = *--src; } place = opnd; // Op node, where operand used to be. *place++ = (uint8_t)op; *place++ = NUL; *place++ = NUL; assert(minval >= 0 && (uintmax_t)minval <= UINT32_MAX); place = re_put_uint32(place, (uint32_t)minval); assert(maxval >= 0 && (uintmax_t)maxval <= UINT32_MAX); place = re_put_uint32(place, (uint32_t)maxval); regtail(opnd, place); } /// Return true if the back reference is legal. We must have seen the close /// brace. /// TODO(vim): Should also check that we don't refer to something repeated /// (+*=): what instance of the repetition should we match? static int seen_endbrace(int refnum) { if (!had_endbrace[refnum]) { uint8_t *p; // Trick: check if "@<=" or "@'): ret = regnode(EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == '^') { // "\_^" is start-of-line ret = regnode(BOL); break; } if (c == '$') { // "\_$" is end-of-line ret = regnode(EOL); had_eol = true; break; } extra = ADD_NL; *flagp |= HASNL; // "\_[" is character range plus newline if (c == '[') { goto collection; } // "\_x" is character class plus newline FALLTHROUGH; // Character classes. case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c)); if (p == NULL) { EMSG_RET_NULL(_(e_invalid_use_of_underscore)); } // When '.' is followed by a composing char ignore the dot, so that // the composing char is matched here. if (c == Magic('.') && utf_iscomposing_legacy(peekchr())) { c = getchr(); goto do_multibyte; } ret = regnode(classcodes[p - classchars] + extra); *flagp |= HASWIDTH | SIMPLE; break; case Magic('n'): if (reg_string) { // In a string "\n" matches a newline character. ret = regnode(EXACTLY); regc(NL); regc(NUL); *flagp |= HASWIDTH | SIMPLE; } else { // In buffer text "\n" matches the end of a line. ret = regnode(NEWL); *flagp |= HASWIDTH | HASNL; } break; case Magic('('): if (one_exactly) { EMSG_ONE_RET_NULL; } ret = reg(REG_PAREN, &flags); if (ret == NULL) { return NULL; } *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; case NUL: case Magic('|'): case Magic('&'): case Magic(')'): if (one_exactly) { EMSG_ONE_RET_NULL; } IEMSG_RET_NULL(_(e_internal)); // Supposed to be caught earlier. // NOTREACHED case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('{'): case Magic('*'): c = no_Magic(c); EMSG3_RET_NULL(_("E64: %s%c follows nothing"), (c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c); // NOTREACHED case Magic('~'): // previous substitute pattern if (reg_prev_sub != NULL) { uint8_t *lp; ret = regnode(EXACTLY); lp = (uint8_t *)reg_prev_sub; while (*lp != NUL) { regc(*lp++); } regc(NUL); if (*reg_prev_sub != NUL) { *flagp |= HASWIDTH; if ((lp - (uint8_t *)reg_prev_sub) == 1) { *flagp |= SIMPLE; } } } else { EMSG_RET_NULL(_(e_nopresub)); } break; case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): { int refnum; refnum = c - Magic('0'); if (!seen_endbrace(refnum)) { return NULL; } ret = regnode(BACKREF + refnum); } break; case Magic('z'): c = no_Magic(getchr()); switch (c) { case '(': if ((reg_do_extmatch & REX_SET) == 0) { EMSG_RET_NULL(_(e_z_not_allowed)); } if (one_exactly) { EMSG_ONE_RET_NULL; } ret = reg(REG_ZPAREN, &flags); if (ret == NULL) { return NULL; } *flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH); re_has_z = REX_SET; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if ((reg_do_extmatch & REX_USE) == 0) { EMSG_RET_NULL(_(e_z1_not_allowed)); } ret = regnode(ZREF + c - '0'); re_has_z = REX_USE; break; case 's': ret = regnode(MOPEN + 0); if (!re_mult_next("\\zs")) { return NULL; } break; case 'e': ret = regnode(MCLOSE + 0); if (!re_mult_next("\\ze")) { return NULL; } break; default: EMSG_RET_NULL(_("E68: Invalid character after \\z")); } break; case Magic('%'): c = no_Magic(getchr()); switch (c) { // () without a back reference case '(': if (one_exactly) { EMSG_ONE_RET_NULL; } ret = reg(REG_NPAREN, &flags); if (ret == NULL) { return NULL; } *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; // Catch \%^ and \%$ regardless of where they appear in the // pattern -- regardless of whether or not it makes sense. case '^': ret = regnode(RE_BOF); break; case '$': ret = regnode(RE_EOF); break; case '#': if (regparse[0] == '=' && regparse[1] >= 48 && regparse[1] <= 50) { // misplaced \%#=1 semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]); return FAIL; } ret = regnode(CURSOR); break; case 'V': ret = regnode(RE_VISUAL); break; case 'C': ret = regnode(RE_COMPOSING); break; // \%[abc]: Emit as a list of branches, all ending at the last // branch which matches nothing. case '[': if (one_exactly) { // doesn't nest EMSG_ONE_RET_NULL; } { uint8_t *lastbranch; uint8_t *lastnode = NULL; uint8_t *br; ret = NULL; while ((c = getchr()) != ']') { if (c == NUL) { EMSG2_RET_NULL(_(e_missing_sb), reg_magic == MAGIC_ALL); } br = regnode(BRANCH); if (ret == NULL) { ret = br; } else { regtail(lastnode, br); if (reg_toolong) { return NULL; } } ungetchr(); one_exactly = true; lastnode = regatom(flagp); one_exactly = false; if (lastnode == NULL) { return NULL; } } if (ret == NULL) { EMSG2_RET_NULL(_(e_empty_sb), reg_magic == MAGIC_ALL); } lastbranch = regnode(BRANCH); br = regnode(NOTHING); if (ret != JUST_CALC_SIZE) { regtail(lastnode, br); regtail(lastbranch, br); // connect all branches to the NOTHING // branch at the end for (br = ret; br != lastnode;) { if (OP(br) == BRANCH) { regtail(br, lastbranch); if (reg_toolong) { return NULL; } br = OPERAND(br); } else { br = regnext(br); } } } *flagp &= ~(HASWIDTH | SIMPLE); break; } case 'd': // %d123 decimal case 'o': // %o123 octal case 'x': // %xab hex 2 case 'u': // %uabcd hex 4 case 'U': // %U1234abcd hex 8 { int64_t i; switch (c) { case 'd': i = getdecchrs(); break; case 'o': i = getoctchrs(); break; case 'x': i = gethexchrs(2); break; case 'u': i = gethexchrs(4); break; case 'U': i = gethexchrs(8); break; default: i = -1; break; } if (i < 0 || i > INT_MAX) { EMSG2_RET_NULL(_("E678: Invalid character after %s%%[dxouU]"), reg_magic == MAGIC_ALL); } if (use_multibytecode((int)i)) { ret = regnode(MULTIBYTECODE); } else { ret = regnode(EXACTLY); } if (i == 0) { regc(0x0a); } else { regmbc((int)i); } regc(NUL); *flagp |= HASWIDTH; break; } default: if (ascii_isdigit(c) || c == '<' || c == '>' || c == '\'' || c == '.') { uint32_t n = 0; int cmp; bool cur = false; bool got_digit = false; cmp = c; if (cmp == '<' || cmp == '>') { c = getchr(); } if (no_Magic(c) == '.') { cur = true; c = getchr(); } while (ascii_isdigit(c)) { got_digit = true; n = n * 10 + (uint32_t)(c - '0'); c = getchr(); } if (no_Magic(c) == '\'' && n == 0) { // "\%'m", "\%<'m" and "\%>'m": Mark c = getchr(); ret = regnode(RE_MARK); if (ret == JUST_CALC_SIZE) { regsize += 2; } else { *regcode++ = (uint8_t)c; *regcode++ = (uint8_t)cmp; } break; } else if ((c == 'l' || c == 'c' || c == 'v') && (cur || got_digit)) { if (cur && n) { semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c)); rc_did_emsg = true; return NULL; } if (c == 'l') { if (cur) { n = (uint32_t)curwin->w_cursor.lnum; } ret = regnode(RE_LNUM); if (save_prev_at_start) { at_start = true; } } else if (c == 'c') { if (cur) { n = (uint32_t)curwin->w_cursor.col; n++; } ret = regnode(RE_COL); } else { if (cur) { colnr_T vcol = 0; getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol); n = (uint32_t)(++vcol); } ret = regnode(RE_VCOL); } if (ret == JUST_CALC_SIZE) { regsize += 5; } else { // put the number and the optional // comparator after the opcode regcode = re_put_uint32(regcode, n); *regcode++ = (uint8_t)cmp; } break; } } EMSG2_RET_NULL(_("E71: Invalid character after %s%%"), reg_magic == MAGIC_ALL); } break; case Magic('['): collection: { uint8_t *lp; // If there is no matching ']', we assume the '[' is a normal // character. This makes 'incsearch' and ":help [" work. lp = (uint8_t *)skip_anyof(regparse); if (*lp == ']') { // there is a matching ']' int startc = -1; // > 0 when next '-' is a range int endc; // In a character class, different parsing rules apply. // Not even \ is special anymore, nothing is. if (*regparse == '^') { // Complement of range. ret = regnode(ANYBUT + extra); regparse++; } else { ret = regnode(ANYOF + extra); } // At the start ']' and '-' mean the literal character. if (*regparse == ']' || *regparse == '-') { startc = (uint8_t)(*regparse); regc(*regparse++); } while (*regparse != NUL && *regparse != ']') { if (*regparse == '-') { regparse++; // The '-' is not used for a range at the end and // after or before a '\n'. if (*regparse == ']' || *regparse == NUL || startc == -1 || (regparse[0] == '\\' && regparse[1] == 'n')) { regc('-'); startc = '-'; // [--x] is a range } else { // Also accept "a-[.z.]" endc = 0; if (*regparse == '[') { endc = get_coll_element(®parse); } if (endc == 0) { endc = mb_ptr2char_adv((const char **)®parse); } // Handle \o40, \x20 and \u20AC style sequences if (endc == '\\' && !reg_cpo_lit) { endc = coll_get_char(); } if (startc > endc) { EMSG_RET_NULL(_(e_reverse_range)); } if (utf_char2len(startc) > 1 || utf_char2len(endc) > 1) { // Limit to a range of 256 chars if (endc > startc + 256) { EMSG_RET_NULL(_(e_large_class)); } while (++startc <= endc) { regmbc(startc); } } else { while (++startc <= endc) { regc(startc); } } startc = -1; } } // Only "\]", "\^", "\]" and "\\" are special in Vi. Vim // accepts "\t", "\e", etc., but only when the 'l' flag in // 'cpoptions' is not included. else if (*regparse == '\\' && (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, (uint8_t)regparse[1]) != NULL))) { regparse++; if (*regparse == 'n') { // '\n' in range: also match NL if (ret != JUST_CALC_SIZE) { // Using \n inside [^] does not change what // matches. "[^\n]" is the same as ".". if (*ret == ANYOF) { *ret = ANYOF + ADD_NL; *flagp |= HASNL; } // else: must have had a \n already } regparse++; startc = -1; } else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U') { startc = coll_get_char(); if (startc == 0) { regc(0x0a); } else { regmbc(startc); } } else { startc = backslash_trans(*regparse++); regc(startc); } } else if (*regparse == '[') { int c_class; int cu; c_class = get_char_class(®parse); startc = -1; // Characters assumed to be 8 bits! switch (c_class) { case CLASS_NONE: c_class = get_equi_class(®parse); if (c_class != 0) { // produce equivalence class reg_equi_class(c_class); } else if ((c_class = get_coll_element(®parse)) != 0) { // produce a collating element regmbc(c_class); } else { // literal '[', allow [[-x] as a range startc = (uint8_t)(*regparse++); regc(startc); } break; case CLASS_ALNUM: for (cu = 1; cu < 128; cu++) { if (isalnum(cu)) { regmbc(cu); } } break; case CLASS_ALPHA: for (cu = 1; cu < 128; cu++) { if (isalpha(cu)) { regmbc(cu); } } break; case CLASS_BLANK: regc(' '); regc('\t'); break; case CLASS_CNTRL: for (cu = 1; cu <= 127; cu++) { if (iscntrl(cu)) { regmbc(cu); } } break; case CLASS_DIGIT: for (cu = 1; cu <= 127; cu++) { if (ascii_isdigit(cu)) { regmbc(cu); } } break; case CLASS_GRAPH: for (cu = 1; cu <= 127; cu++) { if (isgraph(cu)) { regmbc(cu); } } break; case CLASS_LOWER: for (cu = 1; cu <= 255; cu++) { if (mb_islower(cu) && cu != 170 && cu != 186) { regmbc(cu); } } break; case CLASS_PRINT: for (cu = 1; cu <= 255; cu++) { if (vim_isprintc(cu)) { regmbc(cu); } } break; case CLASS_PUNCT: for (cu = 1; cu < 128; cu++) { if (ispunct(cu)) { regmbc(cu); } } break; case CLASS_SPACE: for (cu = 9; cu <= 13; cu++) { regc(cu); } regc(' '); break; case CLASS_UPPER: for (cu = 1; cu <= 255; cu++) { if (mb_isupper(cu)) { regmbc(cu); } } break; case CLASS_XDIGIT: for (cu = 1; cu <= 255; cu++) { if (ascii_isxdigit(cu)) { regmbc(cu); } } break; case CLASS_TAB: regc('\t'); break; case CLASS_RETURN: regc('\r'); break; case CLASS_BACKSPACE: regc('\b'); break; case CLASS_ESCAPE: regc(ESC); break; case CLASS_IDENT: for (cu = 1; cu <= 255; cu++) { if (vim_isIDc(cu)) { regmbc(cu); } } break; case CLASS_KEYWORD: for (cu = 1; cu <= 255; cu++) { if (reg_iswordc(cu)) { regmbc(cu); } } break; case CLASS_FNAME: for (cu = 1; cu <= 255; cu++) { if (vim_isfilec(cu)) { regmbc(cu); } } break; } } else { // produce a multibyte character, including any // following composing characters. startc = utf_ptr2char(regparse); int len = utfc_ptr2len(regparse); if (utf_char2len(startc) != len) { // composing chars startc = -1; } while (--len >= 0) { regc(*regparse++); } } } regc(NUL); prevchr_len = 1; // last char was the ']' if (*regparse != ']') { EMSG_RET_NULL(_(e_toomsbra)); // Cannot happen? } skipchr(); // let's be friends with the lexer again *flagp |= HASWIDTH | SIMPLE; break; } else if (reg_strict) { EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF); } } FALLTHROUGH; default: { int len; // A multi-byte character is handled as a separate atom if it's // before a multi and when it's a composing char. if (use_multibytecode(c)) { do_multibyte: ret = regnode(MULTIBYTECODE); regmbc(c); *flagp |= HASWIDTH | SIMPLE; break; } ret = regnode(EXACTLY); // Append characters as long as: // - there is no following multi, we then need the character in // front of it as a single character operand // - not running into a Magic character // - "one_exactly" is not set // But always emit at least one character. Might be a Multi, // e.g., a "[" without matching "]". for (len = 0; c != NUL && (len == 0 || (re_multi_type(peekchr()) == NOT_MULTI && !one_exactly && !is_Magic(c))); len++) { c = no_Magic(c); { regmbc(c); { int l; // Need to get composing character too. GraphemeState state = GRAPHEME_STATE_INIT; while (true) { l = utf_ptr2len(regparse); if (!utf_composinglike(regparse, regparse + l, &state)) { break; } regmbc(utf_ptr2char(regparse)); skipchr(); } } } c = getchr(); } ungetchr(); regc(NUL); *flagp |= HASWIDTH; if (len == 1) { *flagp |= SIMPLE; } } break; } return ret; } // Parse something followed by possible [*+=]. // // Note that the branching code sequences used for = and the general cases // of * and + are somewhat optimized: they use the same NOTHING node as // both the endmarker for their branch list and the body of the last branch. // It might seem that this node could be dispensed with entirely, but the // endmarker role is not redundant. static uint8_t *regpiece(int *flagp) { uint8_t *ret; int op; uint8_t *next; int flags; int minval; int maxval; ret = regatom(&flags); if (ret == NULL) { return NULL; } op = peekchr(); if (re_multi_type(op) == NOT_MULTI) { *flagp = flags; return ret; } // default flags *flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH))); skipchr(); switch (op) { case Magic('*'): if (flags & SIMPLE) { reginsert(STAR, ret); } else { // Emit x* as (x&|), where & means "self". reginsert(BRANCH, ret); // Either x regoptail(ret, regnode(BACK)); // and loop regoptail(ret, ret); // back regtail(ret, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } break; case Magic('+'): if (flags & SIMPLE) { reginsert(PLUS, ret); } else { // Emit x+ as x(&|), where & means "self". next = regnode(BRANCH); // Either regtail(ret, next); regtail(regnode(BACK), ret); // loop back regtail(next, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } *flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; case Magic('@'): { int lop = END; int64_t nr = getdecchrs(); switch (no_Magic(getchr())) { case '=': lop = MATCH; break; // \@= case '!': lop = NOMATCH; break; // \@! case '>': lop = SUBPAT; break; // \@> case '<': switch (no_Magic(getchr())) { case '=': lop = BEHIND; break; // \@<= case '!': lop = NOBEHIND; break; // \@= 10) { EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"), reg_magic == MAGIC_ALL); } reginsert(BRACE_COMPLEX + num_complex_braces, ret); regoptail(ret, regnode(BACK)); regoptail(ret, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); num_complex_braces++; } if (minval > 0 && maxval > 0) { *flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH))); } break; } if (re_multi_type(peekchr()) != NOT_MULTI) { // Can't have a multi follow a multi. if (peekchr() == Magic('*')) { EMSG2_RET_NULL(_("E61: Nested %s*"), reg_magic >= MAGIC_ON); } EMSG3_RET_NULL(_("E62: Nested %s%c"), reg_magic == MAGIC_ALL, no_Magic(peekchr())); } return ret; } // Parse one alternative of an | or & operator. // Implements the concatenation operator. static uint8_t *regconcat(int *flagp) { uint8_t *first = NULL; uint8_t *chain = NULL; uint8_t *latest; int flags; int cont = true; *flagp = WORST; // Tentatively. while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = false; break; case Magic('Z'): regflags |= RF_ICOMBINE; skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: latest = regpiece(&flags); if (latest == NULL || reg_toolong) { return NULL; } *flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH); if (chain == NULL) { // First piece. *flagp |= flags & SPSTART; } else { regtail(chain, latest); } chain = latest; if (first == NULL) { first = latest; } break; } } if (first == NULL) { // Loop ran zero times. first = regnode(NOTHING); } return first; } // Parse one alternative of an | operator. // Implements the & operator. static uint8_t *regbranch(int *flagp) { uint8_t *ret; uint8_t *chain = NULL; uint8_t *latest; int flags; *flagp = WORST | HASNL; // Tentatively. ret = regnode(BRANCH); while (true) { latest = regconcat(&flags); if (latest == NULL) { return NULL; } // If one of the branches has width, the whole thing has. If one of // the branches anchors at start-of-line, the whole thing does. // If one of the branches uses look-behind, the whole thing does. *flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH); // If one of the branches doesn't match a line-break, the whole thing // doesn't. *flagp &= ~HASNL | (flags & HASNL); if (chain != NULL) { regtail(chain, latest); } if (peekchr() != Magic('&')) { break; } skipchr(); regtail(latest, regnode(END)); // operand ends if (reg_toolong) { break; } reginsert(MATCH, latest); chain = latest; } return ret; } /// Parse regular expression, i.e. main body or parenthesized thing. /// /// Caller must absorb opening parenthesis. /// /// Combining parenthesis handling with the base level of regular expression /// is a trifle forced, but the need to tie the tails of the branches to what /// follows makes it hard to avoid. /// /// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN static uint8_t *reg(int paren, int *flagp) { uint8_t *ret; uint8_t *br; uint8_t *ender; int parno = 0; int flags; *flagp = HASWIDTH; // Tentatively. if (paren == REG_ZPAREN) { // Make a ZOPEN node. if (regnzpar >= NSUBEXP) { EMSG_RET_NULL(_("E50: Too many \\z(")); } parno = regnzpar; regnzpar++; ret = regnode(ZOPEN + parno); } else if (paren == REG_PAREN) { // Make a MOPEN node. if (regnpar >= NSUBEXP) { EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL); } parno = regnpar; regnpar++; ret = regnode(MOPEN + parno); } else if (paren == REG_NPAREN) { // Make a NOPEN node. ret = regnode(NOPEN); } else { ret = NULL; } // Pick up the branches, linking them together. br = regbranch(&flags); if (br == NULL) { return NULL; } if (ret != NULL) { regtail(ret, br); // [MZ]OPEN -> first. } else { ret = br; } // If one of the branches can be zero-width, the whole thing can. // If one of the branches has * at start or matches a line-break, the // whole thing can. if (!(flags & HASWIDTH)) { *flagp &= ~HASWIDTH; } *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); while (peekchr() == Magic('|')) { skipchr(); br = regbranch(&flags); if (br == NULL || reg_toolong) { return NULL; } regtail(ret, br); // BRANCH -> BRANCH. if (!(flags & HASWIDTH)) { *flagp &= ~HASWIDTH; } *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); } // Make a closing node, and hook it on the end. ender = regnode(paren == REG_ZPAREN ? ZCLOSE + parno : paren == REG_PAREN ? MCLOSE + parno : paren == REG_NPAREN ? NCLOSE : END); regtail(ret, ender); // Hook the tails of the branches to the closing node. for (br = ret; br != NULL; br = regnext(br)) { regoptail(br, ender); } // Check for proper termination. if (paren != REG_NOPAREN && getchr() != Magic(')')) { if (paren == REG_ZPAREN) { EMSG_RET_NULL(_("E52: Unmatched \\z(")); } else if (paren == REG_NPAREN) { EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL); } else { EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL); } } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (curchr == Magic(')')) { EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL); } else { EMSG_RET_NULL(_(e_trailing)); // "Can't happen". } // NOTREACHED } // Here we set the flag allowing back references to this set of // parentheses. if (paren == REG_PAREN) { had_endbrace[parno] = true; // have seen the close paren } return ret; } // bt_regcomp() - compile a regular expression into internal code for the // traditional back track matcher. // Returns the program in allocated space. Returns NULL for an error. // // We can't allocate space until we know how big the compiled form will be, // but we can't compile it (and thus know how big it is) until we've got a // place to put the code. So we cheat: we compile it twice, once with code // generation turned off and size counting turned on, and once "for real". // This also means that we don't allocate space until we are sure that the // thing really will compile successfully, and we never have to move the // code and thus invalidate pointers into it. (Note that it has to be in // one piece because free() must be able to free it all.) // // Whether upper/lower case is to be ignored is decided when executing the // program, it does not matter here. // // Beware that the optimization-preparation code in here knows about some // of the structure of the compiled regexp. // "re_flags": RE_MAGIC and/or RE_STRING. static regprog_T *bt_regcomp(uint8_t *expr, int re_flags) { uint8_t *scan; uint8_t *longest; int len; int flags; if (expr == NULL) { IEMSG_RET_NULL(_(e_null)); } init_class_tab(); // First pass: determine size, legality. regcomp_start(expr, re_flags); regcode = JUST_CALC_SIZE; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL) { return NULL; } // Allocate space. bt_regprog_T *r = xmalloc(offsetof(bt_regprog_T, program) + (size_t)regsize); r->re_in_use = false; // Second pass: emit code. regcomp_start(expr, re_flags); regcode = r->program; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) { xfree(r); if (reg_toolong) { EMSG_RET_NULL(_("E339: Pattern too long")); } return NULL; } // Dig out information for optimizations. r->regstart = NUL; // Worst-case defaults. r->reganch = 0; r->regmust = NULL; r->regmlen = 0; r->regflags = regflags; if (flags & HASNL) { r->regflags |= RF_HASNL; } if (flags & HASLOOKBH) { r->regflags |= RF_LOOKBH; } // Remember whether this pattern has any \z specials in it. r->reghasz = (uint8_t)re_has_z; scan = &r->program[1]; // First BRANCH. if (OP(regnext(scan)) == END) { // Only one top-level choice. scan = OPERAND(scan); // Starting-point info. if (OP(scan) == BOL || OP(scan) == RE_BOF) { r->reganch++; scan = regnext(scan); } if (OP(scan) == EXACTLY) { r->regstart = utf_ptr2char((char *)OPERAND(scan)); } else if (OP(scan) == BOW || OP(scan) == EOW || OP(scan) == NOTHING || OP(scan) == MOPEN + 0 || OP(scan) == NOPEN || OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) { uint8_t *regnext_scan = regnext(scan); if (OP(regnext_scan) == EXACTLY) { r->regstart = utf_ptr2char((char *)OPERAND(regnext_scan)); } } // If there's something expensive in the r.e., find the longest // literal string that must appear and make it the regmust. Resolve // ties in favor of later strings, since the regstart check works // with the beginning of the r.e. and avoiding duplication // strengthens checking. Not a strong reason, but sufficient in the // absence of others. // When the r.e. starts with BOW, it is faster to look for a regmust // first. Used a lot for "#" and "*" commands. (Added by mool). if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW) && !(flags & HASNL)) { longest = NULL; len = 0; for (; scan != NULL; scan = regnext(scan)) { if (OP(scan) == EXACTLY) { size_t scanlen = strlen((char *)OPERAND(scan)); if (scanlen >= (size_t)len) { longest = OPERAND(scan); len = (int)scanlen; } } } r->regmust = longest; r->regmlen = len; } } #ifdef BT_REGEXP_DUMP regdump(expr, r); #endif r->engine = &bt_regengine; return (regprog_T *)r; } // Check if during the previous call to vim_regcomp the EOL item "$" has been // found. This is messy, but it works fine. int vim_regcomp_had_eol(void) { return had_eol; } // Get a number after a backslash that is inside []. // When nothing is recognized return a backslash. static int coll_get_char(void) { int64_t nr = -1; switch (*regparse++) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; } if (nr < 0 || nr > INT_MAX) { // If getting the number fails be backwards compatible: the character // is a backslash. regparse--; nr = '\\'; } return (int)nr; } // Free a compiled regexp program, returned by bt_regcomp(). static void bt_regfree(regprog_T *prog) { xfree(prog); } #define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input) // The arguments from BRACE_LIMITS are stored here. They are actually local // to regmatch(), but they are here to reduce the amount of stack space used // (it can be called recursively many times). static int64_t bl_minval; static int64_t bl_maxval; // Save the input line and position in a regsave_T. static void reg_save(regsave_T *save, garray_T *gap) FUNC_ATTR_NONNULL_ALL { if (REG_MULTI) { save->rs_u.pos.col = (colnr_T)(rex.input - rex.line); save->rs_u.pos.lnum = rex.lnum; } else { save->rs_u.ptr = rex.input; } save->rs_len = gap->ga_len; } // Restore the input line and position from a regsave_T. static void reg_restore(regsave_T *save, garray_T *gap) FUNC_ATTR_NONNULL_ALL { if (REG_MULTI) { if (rex.lnum != save->rs_u.pos.lnum) { // only call reg_getline() when the line number changed to save // a bit of time rex.lnum = save->rs_u.pos.lnum; rex.line = (uint8_t *)reg_getline(rex.lnum); } rex.input = rex.line + save->rs_u.pos.col; } else { rex.input = save->rs_u.ptr; } gap->ga_len = save->rs_len; } // Return true if current position is equal to saved position. static bool reg_save_equal(const regsave_T *save) FUNC_ATTR_NONNULL_ALL { if (REG_MULTI) { return rex.lnum == save->rs_u.pos.lnum && rex.input == rex.line + save->rs_u.pos.col; } return rex.input == save->rs_u.ptr; } // Save the sub-expressions before attempting a match. #define save_se(savep, posp, pp) \ REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp)) // After a failed match restore the sub-expressions. #define restore_se(savep, posp, pp) { \ if (REG_MULTI) \ *(posp) = (savep)->se_u.pos; \ else \ *(pp) = (savep)->se_u.ptr; } // Tentatively set the sub-expression start to the current position (after // calling regmatch() they will have changed). Need to save the existing // values for when there is no match. // Use se_save() to use pointer (save_se_multi()) or position (save_se_one()), // depending on REG_MULTI. static void save_se_multi(save_se_T *savep, lpos_T *posp) { savep->se_u.pos = *posp; posp->lnum = rex.lnum; posp->col = (colnr_T)(rex.input - rex.line); } static void save_se_one(save_se_T *savep, uint8_t **pp) { savep->se_u.ptr = *pp; *pp = rex.input; } /// regrepeat - repeatedly match something simple, return how many. /// Advances rex.input (and rex.lnum) to just after the matched chars. /// /// @param maxcount maximum number of matches allowed static int regrepeat(uint8_t *p, int64_t maxcount) { int64_t count = 0; uint8_t *opnd; int mask; int testval = 0; uint8_t *scan = rex.input; // Make local copy of rex.input for speed. opnd = OPERAND(p); switch (OP(p)) { case ANY: case ANY + ADD_NL: while (count < maxcount) { // Matching anything means we continue until end-of-line (or // end-of-file for ANY + ADD_NL), only limited by maxcount. while (*scan != NUL && count < maxcount) { count++; MB_PTR_ADV(scan); } if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr || count == maxcount) { break; } count++; // count the line-break reg_nextline(); scan = rex.input; if (got_int) { break; } } break; case IDENT: case IDENT + ADD_NL: testval = 1; FALLTHROUGH; case SIDENT: case SIDENT + ADD_NL: while (count < maxcount) { if (vim_isIDc(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case KWORD: case KWORD + ADD_NL: testval = 1; FALLTHROUGH; case SKWORD: case SKWORD + ADD_NL: while (count < maxcount) { if (vim_iswordp_buf((char *)scan, rex.reg_buf) && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case FNAME: case FNAME + ADD_NL: testval = 1; FALLTHROUGH; case SFNAME: case SFNAME + ADD_NL: while (count < maxcount) { if (vim_isfilec(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case PRINT: case PRINT + ADD_NL: testval = 1; FALLTHROUGH; case SPRINT: case SPRINT + ADD_NL: while (count < maxcount) { if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (vim_isprintc(utf_ptr2char((char *)scan)) == 1 && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case WHITE: case WHITE + ADD_NL: testval = mask = RI_WHITE; do_class: while (count < maxcount) { int l; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if ((l = utfc_ptr2len((char *)scan)) > 1) { if (testval != 0) { break; } scan += l; } else if ((class_tab[*scan] & mask) == testval) { scan++; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case NWHITE: case NWHITE + ADD_NL: mask = RI_WHITE; goto do_class; case DIGIT: case DIGIT + ADD_NL: testval = mask = RI_DIGIT; goto do_class; case NDIGIT: case NDIGIT + ADD_NL: mask = RI_DIGIT; goto do_class; case HEX: case HEX + ADD_NL: testval = mask = RI_HEX; goto do_class; case NHEX: case NHEX + ADD_NL: mask = RI_HEX; goto do_class; case OCTAL: case OCTAL + ADD_NL: testval = mask = RI_OCTAL; goto do_class; case NOCTAL: case NOCTAL + ADD_NL: mask = RI_OCTAL; goto do_class; case WORD: case WORD + ADD_NL: testval = mask = RI_WORD; goto do_class; case NWORD: case NWORD + ADD_NL: mask = RI_WORD; goto do_class; case HEAD: case HEAD + ADD_NL: testval = mask = RI_HEAD; goto do_class; case NHEAD: case NHEAD + ADD_NL: mask = RI_HEAD; goto do_class; case ALPHA: case ALPHA + ADD_NL: testval = mask = RI_ALPHA; goto do_class; case NALPHA: case NALPHA + ADD_NL: mask = RI_ALPHA; goto do_class; case LOWER: case LOWER + ADD_NL: testval = mask = RI_LOWER; goto do_class; case NLOWER: case NLOWER + ADD_NL: mask = RI_LOWER; goto do_class; case UPPER: case UPPER + ADD_NL: testval = mask = RI_UPPER; goto do_class; case NUPPER: case NUPPER + ADD_NL: mask = RI_UPPER; goto do_class; case EXACTLY: { int cu, cl; // This doesn't do a multi-byte character, because a MULTIBYTECODE // would have been used for it. It does handle single-byte // characters, such as latin1. if (rex.reg_ic) { cu = mb_toupper(*opnd); cl = mb_tolower(*opnd); while (count < maxcount && (*scan == cu || *scan == cl)) { count++; scan++; } } else { cu = *opnd; while (count < maxcount && *scan == cu) { count++; scan++; } } break; } case MULTIBYTECODE: { int i, len, cf = 0; // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = utfc_ptr2len((char *)opnd)) > 1) { if (rex.reg_ic) { cf = utf_fold(utf_ptr2char((char *)opnd)); } while (count < maxcount && utfc_ptr2len((char *)scan) >= len) { for (i = 0; i < len; i++) { if (opnd[i] != scan[i]) { break; } } if (i < len && (!rex.reg_ic || utf_fold(utf_ptr2char((char *)scan)) != cf)) { break; } scan += len; count++; } } } break; case ANYOF: case ANYOF + ADD_NL: testval = 1; FALLTHROUGH; case ANYBUT: case ANYBUT + ADD_NL: while (count < maxcount) { int len; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else if ((len = utfc_ptr2len((char *)scan)) > 1) { if ((cstrchr((char *)opnd, utf_ptr2char((char *)scan)) == NULL) == testval) { break; } scan += len; } else { if ((cstrchr((char *)opnd, *scan) == NULL) == testval) { break; } scan++; } count++; } break; case NEWL: while (count < maxcount && ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr && REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) { count++; if (rex.reg_line_lbr) { ADVANCE_REGINPUT(); } else { reg_nextline(); } scan = rex.input; if (got_int) { break; } } break; default: // Oh dear. Called inappropriately. iemsg(_(e_re_corr)); #ifdef REGEXP_DEBUG printf("Called regrepeat with op code %d\n", OP(p)); #endif break; } rex.input = scan; return (int)count; } // Push an item onto the regstack. // Returns pointer to new item. Returns NULL when out of memory. static regitem_T *regstack_push(regstate_T state, uint8_t *scan) { regitem_T *rp; if ((int64_t)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); return NULL; } ga_grow(®stack, sizeof(regitem_T)); rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len); rp->rs_state = state; rp->rs_scan = scan; regstack.ga_len += (int)sizeof(regitem_T); return rp; } // Pop an item from the regstack. static void regstack_pop(uint8_t **scan) { regitem_T *rp; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; *scan = rp->rs_scan; regstack.ga_len -= (int)sizeof(regitem_T); } // Save the current subexpr to "bp", so that they can be restored // later by restore_subexpr(). static void save_subexpr(regbehind_T *bp) FUNC_ATTR_NONNULL_ALL { // When "rex.need_clear_subexpr" is set we don't need to save the values, only // remember that this flag needs to be set again when restoring. bp->save_need_clear_subexpr = rex.need_clear_subexpr; if (rex.need_clear_subexpr) { return; } for (int i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { bp->save_start[i].se_u.pos = rex.reg_startpos[i]; bp->save_end[i].se_u.pos = rex.reg_endpos[i]; } else { bp->save_start[i].se_u.ptr = rex.reg_startp[i]; bp->save_end[i].se_u.ptr = rex.reg_endp[i]; } } } // Restore the subexpr from "bp". static void restore_subexpr(regbehind_T *bp) FUNC_ATTR_NONNULL_ALL { // Only need to restore saved values when they are not to be cleared. rex.need_clear_subexpr = bp->save_need_clear_subexpr; if (rex.need_clear_subexpr) { return; } for (int i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { rex.reg_startpos[i] = bp->save_start[i].se_u.pos; rex.reg_endpos[i] = bp->save_end[i].se_u.pos; } else { rex.reg_startp[i] = bp->save_start[i].se_u.ptr; rex.reg_endp[i] = bp->save_end[i].se_u.ptr; } } } /// Main matching routine /// /// Conceptually the strategy is simple: Check to see whether the current node /// matches, push an item onto the regstack and loop to see whether the rest /// matches, and then act accordingly. In practice we make some effort to /// avoid using the regstack, in particular by going through "ordinary" nodes /// (that don't need to know whether the rest of the match failed) by a nested /// loop. /// /// @param scan Current node. /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return - true when there is a match. Leaves rex.input and rex.lnum /// just after the last matched character. /// - false when there is no match. Leaves rex.input and rex.lnum in an /// undefined state! static bool regmatch(uint8_t *scan, const proftime_T *tm, int *timed_out) { uint8_t *next; // Next node. int op; int c; regitem_T *rp; int no; int status; // one of the RA_ values: int tm_count = 0; // Make "regstack" and "backpos" empty. They are allocated and freed in // bt_regexec_both() to reduce malloc()/free() calls. regstack.ga_len = 0; backpos.ga_len = 0; // Repeat until "regstack" is empty. while (true) { // Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q". // Allow interrupting them with CTRL-C. reg_breakcheck(); #ifdef REGEXP_DEBUG if (scan != NULL && regnarrate) { fprintf(stderr, "%s", (char *)regprop(scan)); fprintf(stderr, "%s", "(\n"); } #endif // Repeat for items that can be matched sequentially, without using the // regstack. while (true) { if (got_int || scan == NULL) { status = RA_FAIL; break; } // Check for timeout once in a 100 times to avoid overhead. if (tm != NULL && ++tm_count == 100) { tm_count = 0; if (profile_passed_limit(*tm)) { if (timed_out != NULL) { *timed_out = true; } status = RA_FAIL; break; } } status = RA_CONT; #ifdef REGEXP_DEBUG if (regnarrate) { fprintf(stderr, "%s", (char *)regprop(scan)); fprintf(stderr, "%s", "...\n"); if (re_extmatch_in != NULL) { int i; fprintf(stderr, _("External submatches:\n")); for (i = 0; i < NSUBEXP; i++) { fprintf(stderr, "%s", " \""); if (re_extmatch_in->matches[i] != NULL) { fprintf(stderr, "%s", (char *)re_extmatch_in->matches[i]); } fprintf(stderr, "%s", "\"\n"); } } } #endif next = regnext(scan); op = OP(scan); // Check for character class with NL added. if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI && *rex.input == NUL && rex.lnum <= rex.reg_maxline) { reg_nextline(); } else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') { ADVANCE_REGINPUT(); } else { if (WITH_NL(op)) { op -= ADD_NL; } c = utf_ptr2char((char *)rex.input); switch (op) { case BOL: if (rex.input != rex.line) { status = RA_NOMATCH; } break; case EOL: if (c != NUL) { status = RA_NOMATCH; } break; case RE_BOF: // We're not at the beginning of the file when below the first // line where we started, not at the start of the line or we // didn't start at the first line of the buffer. if (rex.lnum != 0 || rex.input != rex.line || (REG_MULTI && rex.reg_firstlnum > 1)) { status = RA_NOMATCH; } break; case RE_EOF: if (rex.lnum != rex.reg_maxline || c != NUL) { status = RA_NOMATCH; } break; case CURSOR: // Check if the buffer is in a window and compare the // rex.reg_win->w_cursor position to the match position. if (rex.reg_win == NULL || (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum) || ((colnr_T)(rex.input - rex.line) != rex.reg_win->w_cursor.col)) { status = RA_NOMATCH; } break; case RE_MARK: // Compare the mark position to the match position. { int mark = OPERAND(scan)[0]; int cmp = OPERAND(scan)[1]; pos_T *pos; size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0; fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, mark); // Line may have been freed, get it again. if (REG_MULTI) { rex.line = (uint8_t *)reg_getline(rex.lnum); rex.input = rex.line + col; } if (fm == NULL // mark doesn't exist || fm->mark.lnum <= 0) { // mark isn't set in reg_buf status = RA_NOMATCH; } else { pos = &fm->mark; const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum && pos->col == MAXCOL ? reg_getline_len(pos->lnum - rex.reg_firstlnum) : pos->col; if (pos->lnum == rex.lnum + rex.reg_firstlnum ? (pos_col == (colnr_T)(rex.input - rex.line) ? (cmp == '<' || cmp == '>') : (pos_col < (colnr_T)(rex.input - rex.line) ? cmp != '>' : cmp != '<')) : (pos->lnum < rex.lnum + rex.reg_firstlnum ? cmp != '>' : cmp != '<')) { status = RA_NOMATCH; } } } break; case RE_VISUAL: if (!reg_match_visual()) { status = RA_NOMATCH; } break; case RE_LNUM: assert(rex.lnum + rex.reg_firstlnum >= 0 && (uintmax_t)(rex.lnum + rex.reg_firstlnum) <= UINT32_MAX); if (!REG_MULTI || !re_num_cmp((uint32_t)(rex.lnum + rex.reg_firstlnum), scan)) { status = RA_NOMATCH; } break; case RE_COL: assert(rex.input - rex.line + 1 >= 0 && (uintmax_t)(rex.input - rex.line + 1) <= UINT32_MAX); if (!re_num_cmp((uint32_t)(rex.input - rex.line + 1), scan)) { status = RA_NOMATCH; } break; case RE_VCOL: { win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; linenr_T lnum = REG_MULTI ? rex.reg_firstlnum + rex.lnum : 1; if (REG_MULTI && (lnum <= 0 || lnum > wp->w_buffer->b_ml.ml_line_count)) { lnum = 1; } int vcol = win_linetabsize(wp, lnum, (char *)rex.line, (colnr_T)(rex.input - rex.line)); if (!re_num_cmp((uint32_t)vcol + 1, scan)) { status = RA_NOMATCH; } break; } break; case BOW: // \b_chartab); if (this_class <= 1) { status = RA_NOMATCH; // Not on a word at all. } else if (reg_prev_class() == this_class) { status = RA_NOMATCH; // Previous char is in same word. } } break; case EOW: // word\>; rex.input points after d if (rex.input == rex.line) { // Can't match at start of line status = RA_NOMATCH; } else { int this_class, prev_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) { status = RA_NOMATCH; } } break; // Matched with EOW case ANY: // ANY does not match new lines. if (c == NUL) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case IDENT: if (!vim_isIDc(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SIDENT: if (ascii_isdigit(*rex.input) || !vim_isIDc(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case KWORD: if (!vim_iswordp_buf((char *)rex.input, rex.reg_buf)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SKWORD: if (ascii_isdigit(*rex.input) || !vim_iswordp_buf((char *)rex.input, rex.reg_buf)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case FNAME: if (!vim_isfilec(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SFNAME: if (ascii_isdigit(*rex.input) || !vim_isfilec(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case PRINT: if (!vim_isprintc(utf_ptr2char((char *)rex.input))) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SPRINT: if (ascii_isdigit(*rex.input) || !vim_isprintc(utf_ptr2char((char *)rex.input))) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case WHITE: if (!ascii_iswhite(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NWHITE: if (c == NUL || ascii_iswhite(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case DIGIT: if (!ri_digit(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NDIGIT: if (c == NUL || ri_digit(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case HEX: if (!ri_hex(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NHEX: if (c == NUL || ri_hex(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case OCTAL: if (!ri_octal(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NOCTAL: if (c == NUL || ri_octal(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case WORD: if (!ri_word(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NWORD: if (c == NUL || ri_word(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case HEAD: if (!ri_head(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NHEAD: if (c == NUL || ri_head(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case ALPHA: if (!ri_alpha(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NALPHA: if (c == NUL || ri_alpha(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case LOWER: if (!ri_lower(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NLOWER: if (c == NUL || ri_lower(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case UPPER: if (!ri_upper(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NUPPER: if (c == NUL || ri_upper(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case EXACTLY: { int len; uint8_t *opnd; opnd = OPERAND(scan); // Inline the first byte, for speed. if (*opnd != *rex.input && (!rex.reg_ic)) { status = RA_NOMATCH; } else if (*opnd == NUL) { // match empty string always works; happens when "~" is // empty. } else { if (opnd[1] == NUL && !rex.reg_ic) { len = 1; // matched a single byte above } else { // Need to match first byte again for multi-byte. len = (int)strlen((char *)opnd); if (cstrncmp((char *)opnd, (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } } // Check for following composing character, unless %C // follows (skips over all composing chars). if (status != RA_NOMATCH && utf_composinglike((char *)rex.input, (char *)rex.input + len, NULL) && !rex.reg_icombine && OP(next) != RE_COMPOSING) { // raaron: This code makes a composing character get // ignored, which is the correct behavior (sometimes) // for voweled Hebrew texts. status = RA_NOMATCH; } if (status != RA_NOMATCH) { rex.input += len; } } } break; case ANYOF: case ANYBUT: { uint8_t *q = OPERAND(scan); if (c == NUL) { status = RA_NOMATCH; } else if ((cstrchr((char *)q, c) == NULL) == (op == ANYOF)) { status = RA_NOMATCH; } else { // Check following combining characters int len = utfc_ptr2len((char *)q) - utf_ptr2len((char *)q); rex.input += utf_ptr2len((char *)rex.input); q += utf_ptr2len((char *)q); if (len == 0) { break; } for (int i = 0; i < len; i++) { if (q[i] != rex.input[i]) { status = RA_NOMATCH; break; } } rex.input += len; } break; } case MULTIBYTECODE: { int i, len; const uint8_t *opnd = OPERAND(scan); // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = utfc_ptr2len((char *)opnd)) < 2) { status = RA_NOMATCH; break; } const int opndc = utf_ptr2char((char *)opnd); if (utf_iscomposing_legacy(opndc)) { // When only a composing char is given match at any // position where that composing char appears. status = RA_NOMATCH; for (i = 0; rex.input[i] != NUL; i += utf_ptr2len((char *)rex.input + i)) { const int inpc = utf_ptr2char((char *)rex.input + i); if (!utf_iscomposing_legacy(inpc)) { if (i > 0) { break; } } else if (opndc == inpc) { // Include all following composing chars. len = i + utfc_ptr2len((char *)rex.input + i); status = RA_MATCH; break; } } } else { if (cstrncmp((char *)opnd, (char *)rex.input, &len) != 0) { status = RA_NOMATCH; break; } } rex.input += len; } break; case RE_COMPOSING: // Skip composing characters. while (utf_iscomposing_legacy(utf_ptr2char((char *)rex.input))) { rex.input += utf_ptr2len((char *)rex.input); } break; case NOTHING: break; case BACK: { int i; // When we run into BACK we need to check if we don't keep // looping without matching any input. The second and later // times a BACK is encountered it fails if the input is still // at the same position as the previous time. // The positions are stored in "backpos" and found by the // current value of "scan", the position in the RE program. backpos_T *bp = (backpos_T *)backpos.ga_data; for (i = 0; i < backpos.ga_len; i++) { if (bp[i].bp_scan == scan) { break; } } if (i == backpos.ga_len) { backpos_T *p = GA_APPEND_VIA_PTR(backpos_T, &backpos); p->bp_scan = scan; } else if (reg_save_equal(&bp[i].bp_pos)) { // Still at same position as last time, fail. status = RA_NOMATCH; } assert(status != RA_FAIL); if (status != RA_NOMATCH) { reg_save(&bp[i].bp_pos, &backpos); } } break; case MOPEN + 0: // Match start: \zs case MOPEN + 1: // \( case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: no = op - MOPEN; cleanup_subexpr(); rp = regstack_push(RS_MOPEN, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, &rex.reg_startpos[no], &rex.reg_startp[no]); // We simply continue and handle the result when done. } break; case NOPEN: // \%( case NCLOSE: // \) after \%( if (regstack_push(RS_NOPEN, scan) == NULL) { status = RA_FAIL; } // We simply continue and handle the result when done. break; case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: no = op - ZOPEN; cleanup_zsubexpr(); rp = regstack_push(RS_ZOPEN, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, ®_startzpos[no], ®_startzp[no]); // We simply continue and handle the result when done. } break; case MCLOSE + 0: // Match end: \ze case MCLOSE + 1: // \) case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: no = op - MCLOSE; cleanup_subexpr(); rp = regstack_push(RS_MCLOSE, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]); // We simply continue and handle the result when done. } break; case ZCLOSE + 1: // \) after \z( case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: no = op - ZCLOSE; cleanup_zsubexpr(); rp = regstack_push(RS_ZCLOSE, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, ®_endzpos[no], ®_endzp[no]); // We simply continue and handle the result when done. } break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: { int len; no = op - BACKREF; cleanup_subexpr(); if (!REG_MULTI) { // Single-line regexp if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) { // Backref was not set: Match an empty string. len = 0; } else { // Compare current input with back-ref in the same line. len = (int)(rex.reg_endp[no] - rex.reg_startp[no]); if (cstrncmp((char *)rex.reg_startp[no], (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } } } else { // Multi-line regexp if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) { // Backref was not set: Match an empty string. len = 0; } else { if (rex.reg_startpos[no].lnum == rex.lnum && rex.reg_endpos[no].lnum == rex.lnum) { // Compare back-ref within the current line. len = rex.reg_endpos[no].col - rex.reg_startpos[no].col; if (cstrncmp((char *)rex.line + rex.reg_startpos[no].col, (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } } else { // Messy situation: Need to compare between two lines. int r = match_with_backref(rex.reg_startpos[no].lnum, rex.reg_startpos[no].col, rex.reg_endpos[no].lnum, rex.reg_endpos[no].col, &len); if (r != RA_MATCH) { status = r; } } } } // Matched the backref, skip over it. rex.input += len; } break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: cleanup_zsubexpr(); no = op - ZREF; if (re_extmatch_in != NULL && re_extmatch_in->matches[no] != NULL) { int len = (int)strlen((char *)re_extmatch_in->matches[no]); if (cstrncmp((char *)re_extmatch_in->matches[no], (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } else { rex.input += len; } } else { // Backref was not set: Match an empty string. } break; case BRANCH: if (OP(next) != BRANCH) { // No choice. next = OPERAND(scan); // Avoid recursion. } else { rp = regstack_push(RS_BRANCH, scan); if (rp == NULL) { status = RA_FAIL; } else { status = RA_BREAK; // rest is below } } break; case BRACE_LIMITS: if (OP(next) == BRACE_SIMPLE) { bl_minval = OPERAND_MIN(scan); bl_maxval = OPERAND_MAX(scan); } else if (OP(next) >= BRACE_COMPLEX && OP(next) < BRACE_COMPLEX + 10) { no = OP(next) - BRACE_COMPLEX; brace_min[no] = OPERAND_MIN(scan); brace_max[no] = OPERAND_MAX(scan); brace_count[no] = 0; } else { internal_error("BRACE_LIMITS"); status = RA_FAIL; } break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: no = op - BRACE_COMPLEX; brace_count[no]++; // If not matched enough times yet, try one more if (brace_count[no] <= (brace_min[no] <= brace_max[no] ? brace_min[no] : brace_max[no])) { rp = regstack_push(RS_BRCPLX_MORE, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; } // If matched enough times, may try matching some more if (brace_min[no] <= brace_max[no]) { // Range is the normal way around, use longest match if (brace_count[no] <= brace_max[no]) { rp = regstack_push(RS_BRCPLX_LONG, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } } } else { // Range is backwards, use shortest match first if (brace_count[no] <= brace_min[no]) { rp = regstack_push(RS_BRCPLX_SHORT, scan); if (rp == NULL) { status = RA_FAIL; } else { reg_save(&rp->rs_un.regsave, &backpos); // We continue and handle the result when done. } } } break; case BRACE_SIMPLE: case STAR: case PLUS: { regstar_T rst; // Lookahead to avoid useless match attempts when we know // what character comes next. if (OP(next) == EXACTLY) { rst.nextb = *OPERAND(next); if (rex.reg_ic) { if (mb_isupper(rst.nextb)) { rst.nextb_ic = mb_tolower(rst.nextb); } else { rst.nextb_ic = mb_toupper(rst.nextb); } } else { rst.nextb_ic = rst.nextb; } } else { rst.nextb = NUL; rst.nextb_ic = NUL; } if (op != BRACE_SIMPLE) { rst.minval = (op == STAR) ? 0 : 1; rst.maxval = MAX_LIMIT; } else { rst.minval = bl_minval; rst.maxval = bl_maxval; } // When maxval > minval, try matching as much as possible, up // to maxval. When maxval < minval, try matching at least the // minimal number (since the range is backwards, that's also // maxval!). rst.count = regrepeat(OPERAND(scan), rst.maxval); if (got_int) { status = RA_FAIL; break; } if (rst.minval <= rst.maxval ? rst.count >= rst.minval : rst.count >= rst.maxval) { // It could match. Prepare for trying to match what // follows. The code is below. Parameters are stored in // a regstar_T on the regstack. if ((int64_t)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); status = RA_FAIL; } else { ga_grow(®stack, sizeof(regstar_T)); regstack.ga_len += (int)sizeof(regstar_T); rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan); if (rp == NULL) { status = RA_FAIL; } else { *(((regstar_T *)rp) - 1) = rst; status = RA_BREAK; // skip the restore bits } } } else { status = RA_NOMATCH; } } break; case NOMATCH: case MATCH: case SUBPAT: rp = regstack_push(RS_NOMATCH, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)op; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; case BEHIND: case NOBEHIND: // Need a bit of room to store extra positions. if ((int64_t)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); status = RA_FAIL; } else { ga_grow(®stack, sizeof(regbehind_T)); regstack.ga_len += (int)sizeof(regbehind_T); rp = regstack_push(RS_BEHIND1, scan); if (rp == NULL) { status = RA_FAIL; } else { // Need to save the subexpr to be able to restore them // when there is a match but we don't use it. save_subexpr(((regbehind_T *)rp) - 1); rp->rs_no = (int16_t)op; reg_save(&rp->rs_un.regsave, &backpos); // First try if what follows matches. If it does then we // check the behind match by looping. } } break; case BHPOS: if (REG_MULTI) { if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line) || behind_pos.rs_u.pos.lnum != rex.lnum) { status = RA_NOMATCH; } } else if (behind_pos.rs_u.ptr != rex.input) { status = RA_NOMATCH; } break; case NEWL: if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) { status = RA_NOMATCH; } else if (rex.reg_line_lbr) { ADVANCE_REGINPUT(); } else { reg_nextline(); } break; case END: status = RA_MATCH; // Success! break; default: iemsg(_(e_re_corr)); #ifdef REGEXP_DEBUG printf("Illegal op code %d\n", op); #endif status = RA_FAIL; break; } } // If we can't continue sequentially, break the inner loop. if (status != RA_CONT) { break; } // Continue in inner loop, advance to next item. scan = next; } // end of inner loop // If there is something on the regstack execute the code for the state. // If the state is popped then loop and use the older state. while (!GA_EMPTY(®stack) && status != RA_FAIL) { rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; switch (rp->rs_state) { case RS_NOPEN: // Result is passed on as-is, simply pop the state. regstack_pop(&scan); break; case RS_MOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no], &rex.reg_startp[rp->rs_no]); } regstack_pop(&scan); break; case RS_ZOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, ®_startzpos[rp->rs_no], ®_startzp[rp->rs_no]); } regstack_pop(&scan); break; case RS_MCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no], &rex.reg_endp[rp->rs_no]); } regstack_pop(&scan); break; case RS_ZCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, ®_endzpos[rp->rs_no], ®_endzp[rp->rs_no]); } regstack_pop(&scan); break; case RS_BRANCH: if (status == RA_MATCH) { // this branch matched, use it regstack_pop(&scan); } else { if (status != RA_BREAK) { // After a non-matching branch: try next one. reg_restore(&rp->rs_un.regsave, &backpos); scan = rp->rs_scan; } if (scan == NULL || OP(scan) != BRANCH) { // no more branches, didn't find a match status = RA_NOMATCH; regstack_pop(&scan); } else { // Prepare to try a branch. rp->rs_scan = regnext(scan); reg_save(&rp->rs_un.regsave, &backpos); scan = OPERAND(scan); } } break; case RS_BRCPLX_MORE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { reg_restore(&rp->rs_un.regsave, &backpos); brace_count[rp->rs_no]--; // decrement match count } regstack_pop(&scan); break; case RS_BRCPLX_LONG: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { // There was no match, but we did find enough matches. reg_restore(&rp->rs_un.regsave, &backpos); brace_count[rp->rs_no]--; // continue with the items after "\{}" status = RA_CONT; } regstack_pop(&scan); if (status == RA_CONT) { scan = regnext(scan); } break; case RS_BRCPLX_SHORT: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { // There was no match, try to match one more item. reg_restore(&rp->rs_un.regsave, &backpos); } regstack_pop(&scan); if (status == RA_NOMATCH) { scan = OPERAND(scan); status = RA_CONT; } break; case RS_NOMATCH: // Pop the state. If the operand matches for NOMATCH or // doesn't match for MATCH/SUBPAT, we fail. Otherwise backup, // except for SUBPAT, and continue with the next item. if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) { status = RA_NOMATCH; } else { status = RA_CONT; if (rp->rs_no != SUBPAT) { // zero-width reg_restore(&rp->rs_un.regsave, &backpos); } } regstack_pop(&scan); if (status == RA_CONT) { scan = regnext(scan); } break; case RS_BEHIND1: if (status == RA_NOMATCH) { regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regbehind_T); } else { // The stuff after BEHIND/NOBEHIND matches. Now try if // the behind part does (not) match before the current // position in the input. This must be done at every // position in the input and checking if the match ends at // the current position. // save the position after the found match for next reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos); // Start looking for a match with operand at the current // position. Go back one character until we find the // result, hitting the start of the line or the previous // line (for multi-line matching). // Set behind_pos to where the match should end, BHPOS // will match it. Save the current value. (((regbehind_T *)rp) - 1)->save_behind = behind_pos; behind_pos = rp->rs_un.regsave; rp->rs_state = RS_BEHIND2; reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; } break; case RS_BEHIND2: // Looping for BEHIND / NOBEHIND match. if (status == RA_MATCH && reg_save_equal(&behind_pos)) { // found a match that ends where "next" started behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == BEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); } else { // But we didn't want a match. Need to restore the // subexpr, because what follows matched, so they have // been set. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regbehind_T); } else { int64_t limit; // No match or a match that doesn't end where we want it: Go // back one character. May go to previous line once. no = OK; limit = OPERAND_MIN(rp->rs_scan); if (REG_MULTI) { if (limit > 0 && ((rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum ? (colnr_T)strlen((char *)rex.line) : behind_pos.rs_u.pos.col) - rp->rs_un.regsave.rs_u.pos.col >= limit)) { no = FAIL; } else if (rp->rs_un.regsave.rs_u.pos.col == 0) { if (rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum || reg_getline(--rp->rs_un.regsave.rs_u.pos.lnum) == NULL) { no = FAIL; } else { reg_restore(&rp->rs_un.regsave, &backpos); rp->rs_un.regsave.rs_u.pos.col = (colnr_T)strlen((char *)rex.line); } } else { const uint8_t *const line = (uint8_t *)reg_getline(rp->rs_un.regsave.rs_u.pos.lnum); rp->rs_un.regsave.rs_u.pos.col -= utf_head_off((char *)line, (char *)line + rp->rs_un.regsave.rs_u.pos.col - 1) + 1; } } else { if (rp->rs_un.regsave.rs_u.ptr == rex.line) { no = FAIL; } else { MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr); if (limit > 0 && (behind_pos.rs_u.ptr - rp->rs_un.regsave.rs_u.ptr) > (ptrdiff_t)limit) { no = FAIL; } } } if (no == OK) { // Advanced, prepare for finding match again. reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; if (status == RA_MATCH) { // We did match, so subexpr may have been changed, // need to restore them for the next try. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } else { // Can't advance. For NOBEHIND that's a match. behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == NOBEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); status = RA_MATCH; } else { // We do want a proper match. Need to restore the // subexpr if we had a match, because they may have // been set. if (status == RA_MATCH) { status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regbehind_T); } } break; case RS_STAR_LONG: case RS_STAR_SHORT: { regstar_T *rst = ((regstar_T *)rp) - 1; if (status == RA_MATCH) { regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regstar_T); break; } // Tried once already, restore input pointers. if (status != RA_BREAK) { reg_restore(&rp->rs_un.regsave, &backpos); } // Repeat until we found a position where it could match. while (true) { if (status != RA_BREAK) { // Tried first position already, advance. if (rp->rs_state == RS_STAR_LONG) { // Trying for longest match, but couldn't or // didn't match -- back up one char. if (--rst->count < rst->minval) { break; } if (rex.input == rex.line) { // backup to last char of previous line if (rex.lnum == 0) { status = RA_NOMATCH; break; } rex.lnum--; rex.line = (uint8_t *)reg_getline(rex.lnum); // Just in case regrepeat() didn't count right. if (rex.line == NULL) { break; } rex.input = rex.line + reg_getline_len(rex.lnum); reg_breakcheck(); } else { MB_PTR_BACK(rex.line, rex.input); } } else { // Range is backwards, use shortest match first. // Careful: maxval and minval are exchanged! // Couldn't or didn't match: try advancing one // char. if (rst->count == rst->minval || regrepeat(OPERAND(rp->rs_scan), 1L) == 0) { break; } rst->count++; } if (got_int) { break; } } else { status = RA_NOMATCH; } // If it could match, try it. if (rst->nextb == NUL || *rex.input == rst->nextb || *rex.input == rst->nextb_ic) { reg_save(&rp->rs_un.regsave, &backpos); scan = regnext(rp->rs_scan); status = RA_CONT; break; } } if (status != RA_CONT) { // Failed. regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regstar_T); status = RA_NOMATCH; } } break; } // If we want to continue the inner loop or didn't pop a state // continue matching loop if (status == RA_CONT || rp == (regitem_T *) ((char *)regstack.ga_data + regstack.ga_len) - 1) { break; } } // May need to continue with the inner loop, starting at "scan". if (status == RA_CONT) { continue; } // If the regstack is empty or something failed we are done. if (GA_EMPTY(®stack) || status == RA_FAIL) { if (scan == NULL) { // We get here only if there's trouble -- normally "case END" is // the terminating point. iemsg(_(e_re_corr)); #ifdef REGEXP_DEBUG printf("Premature EOL\n"); #endif } return status == RA_MATCH; } } // End of loop until the regstack is empty. // NOTREACHED } /// Try match of "prog" with at rex.line["col"]. /// /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return 0 for failure, or number of lines contained in the match. static int regtry(bt_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out) { rex.input = rex.line + col; rex.need_clear_subexpr = true; // Clear the external match subpointers if necessaey. rex.need_clear_zsubexpr = (prog->reghasz == REX_SET); if (regmatch(&prog->program[1], tm, timed_out) == 0) { return 0; } cleanup_subexpr(); if (REG_MULTI) { if (rex.reg_startpos[0].lnum < 0) { rex.reg_startpos[0].lnum = 0; rex.reg_startpos[0].col = col; } if (rex.reg_endpos[0].lnum < 0) { rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = (int)(rex.input - rex.line); } else { // Use line number of "\ze". rex.lnum = rex.reg_endpos[0].lnum; } } else { if (rex.reg_startp[0] == NULL) { rex.reg_startp[0] = rex.line + col; } if (rex.reg_endp[0] == NULL) { rex.reg_endp[0] = rex.input; } } // Package any found \z(...\) matches for export. Default is none. unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { int i; cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); for (i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { // Only accept single line matches. if (reg_startzpos[i].lnum >= 0 && reg_endzpos[i].lnum == reg_startzpos[i].lnum && reg_endzpos[i].col >= reg_startzpos[i].col) { re_extmatch_out->matches[i] = (uint8_t *)xstrnsave(reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col, (size_t)(reg_endzpos[i].col - reg_startzpos[i].col)); } } else { if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) { re_extmatch_out->matches[i] = (uint8_t *)xstrnsave((char *)reg_startzp[i], (size_t)(reg_endzp[i] - reg_startzp[i])); } } } } return 1 + rex.lnum; } /// Match a regexp against a string ("line" points to the string) or multiple /// lines (if "line" is NULL, use reg_getline()). /// /// @param startcol column to start looking for match /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return 0 for failure, or number of lines contained in the match. static int bt_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out) { bt_regprog_T *prog; uint8_t *s; colnr_T col = startcol; int retval = 0; // Create "regstack" and "backpos" if they are not allocated yet. // We allocate *_INITIAL amount of bytes first and then set the grow size // to much bigger value to avoid many malloc calls in case of deep regular // expressions. if (regstack.ga_data == NULL) { // Use an item size of 1 byte, since we push different things // onto the regstack. ga_init(®stack, 1, REGSTACK_INITIAL); ga_grow(®stack, REGSTACK_INITIAL); ga_set_growsize(®stack, REGSTACK_INITIAL * 8); } if (backpos.ga_data == NULL) { ga_init(&backpos, sizeof(backpos_T), BACKPOS_INITIAL); ga_grow(&backpos, BACKPOS_INITIAL); ga_set_growsize(&backpos, BACKPOS_INITIAL * 8); } if (REG_MULTI) { prog = (bt_regprog_T *)rex.reg_mmatch->regprog; line = (uint8_t *)reg_getline(0); rex.reg_startpos = rex.reg_mmatch->startpos; rex.reg_endpos = rex.reg_mmatch->endpos; } else { prog = (bt_regprog_T *)rex.reg_match->regprog; rex.reg_startp = (uint8_t **)rex.reg_match->startp; rex.reg_endp = (uint8_t **)rex.reg_match->endp; } // Be paranoid... if (prog == NULL || line == NULL) { iemsg(_(e_null)); goto theend; } // Check validity of program. if (prog_magic_wrong()) { goto theend; } // If the start column is past the maximum column: no need to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { goto theend; } // If pattern contains "\c" or "\C": overrule value of rex.reg_ic if (prog->regflags & RF_ICASE) { rex.reg_ic = true; } else if (prog->regflags & RF_NOICASE) { rex.reg_ic = false; } // If pattern contains "\Z" overrule value of rex.reg_icombine if (prog->regflags & RF_ICOMBINE) { rex.reg_icombine = true; } // If there is a "must appear" string, look for it. if (prog->regmust != NULL) { int c = utf_ptr2char((char *)prog->regmust); s = line + col; // This is used very often, esp. for ":global". Use two versions of // the loop to avoid overhead of conditions. if (!rex.reg_ic) { while ((s = (uint8_t *)vim_strchr((char *)s, c)) != NULL) { if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) { break; // Found it. } MB_PTR_ADV(s); } } else { while ((s = (uint8_t *)cstrchr((char *)s, c)) != NULL) { if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) { break; // Found it. } MB_PTR_ADV(s); } } if (s == NULL) { // Not present. goto theend; } } rex.line = line; rex.lnum = 0; reg_toolong = false; // Simplest case: Anchored match need be tried only once. if (prog->reganch) { int c = utf_ptr2char((char *)rex.line + col); if (prog->regstart == NUL || prog->regstart == c || (rex.reg_ic && (utf_fold(prog->regstart) == utf_fold(c) || (c < 255 && prog->regstart < 255 && mb_tolower(prog->regstart) == mb_tolower(c))))) { retval = regtry(prog, col, tm, timed_out); } else { retval = 0; } } else { int tm_count = 0; // Messy cases: unanchored match. while (!got_int) { if (prog->regstart != NUL) { // Skip until the char we know it must start with. s = (uint8_t *)cstrchr((char *)rex.line + col, prog->regstart); if (s == NULL) { retval = 0; break; } col = (int)(s - rex.line); } // Check for maximum column to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { retval = 0; break; } retval = regtry(prog, col, tm, timed_out); if (retval > 0) { break; } // if not currently on the first line, get it again if (rex.lnum != 0) { rex.lnum = 0; rex.line = (uint8_t *)reg_getline(0); } if (rex.line[col] == NUL) { break; } col += utfc_ptr2len((char *)rex.line + col); // Check for timeout once in a twenty times to avoid overhead. if (tm != NULL && ++tm_count == 20) { tm_count = 0; if (profile_passed_limit(*tm)) { if (timed_out != NULL) { *timed_out = true; } break; } } } } theend: // Free "reg_tofree" when it's a bit big. // Free regstack and backpos if they are bigger than their initial size. if (reg_tofreelen > 400) { XFREE_CLEAR(reg_tofree); } if (regstack.ga_maxlen > REGSTACK_INITIAL) { ga_clear(®stack); } if (backpos.ga_maxlen > BACKPOS_INITIAL) { ga_clear(&backpos); } if (retval > 0) { // Make sure the end is never before the start. Can happen when \zs // and \ze are used. if (REG_MULTI) { const lpos_T *const start = &rex.reg_mmatch->startpos[0]; const lpos_T *const end = &rex.reg_mmatch->endpos[0]; if (end->lnum < start->lnum || (end->lnum == start->lnum && end->col < start->col)) { rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0]; } // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_mmatch->rmm_matchcol = col; } else { if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) { rex.reg_match->endp[0] = rex.reg_match->startp[0]; } // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_match->rm_matchcol = col; } } return retval; } /// Match a regexp against a string. /// "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). /// Uses curbuf for line count and 'iskeyword'. /// If "line_lbr" is true, consider a "\n" in "line" to be a line break. /// /// @param line string to match against /// @param col column to start looking for match /// /// @return 0 for failure, number of lines contained in the match otherwise. static int bt_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr) { rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_line_lbr = line_lbr; rex.reg_buf = curbuf; rex.reg_win = NULL; rex.reg_ic = rmp->rm_ic; rex.reg_icombine = false; rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK; rex.reg_maxcol = 0; int64_t r = bt_regexec_both(line, col, NULL, NULL); assert(r <= INT_MAX); return (int)r; } /// Matches a regexp against multiple lines. /// "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). /// Uses curbuf for line count and 'iskeyword'. /// /// @param win Window in which to search or NULL /// @param buf Buffer in which to search /// @param lnum Number of line to start looking for match /// @param col Column to start looking for match /// @param tm Timeout limit or NULL /// /// @return zero if there is no match and number of lines contained in the match /// otherwise. static int bt_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm, int *timed_out) { init_regexec_multi(rmp, win, buf, lnum); return bt_regexec_both(NULL, col, tm, timed_out); } // Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL. static int re_num_cmp(uint32_t val, const uint8_t *scan) { uint32_t n = (uint32_t)OPERAND_MIN(scan); if (OPERAND_CMP(scan) == '>') { return val > n; } if (OPERAND_CMP(scan) == '<') { return val < n; } return val == n; } #ifdef BT_REGEXP_DUMP // regdump - dump a regexp onto stdout in vaguely comprehensible form static void regdump(uint8_t *pattern, bt_regprog_T *r) { uint8_t *s; int op = EXACTLY; // Arbitrary non-END op. uint8_t *next; uint8_t *end = NULL; FILE *f; # ifdef BT_REGEXP_LOG f = fopen("bt_regexp_log.log", "a"); # else f = stdout; # endif if (f == NULL) { return; } fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n", pattern); s = &r->program[1]; // Loop until we find the END that isn't before a referred next (an END // can also appear in a NOMATCH operand). while (op != END || s <= end) { op = OP(s); fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what. next = regnext(s); if (next == NULL) { // Next ptr. fprintf(f, "(0)"); } else { fprintf(f, "(%d)", (int)((s - r->program) + (next - s))); } if (end < next) { end = next; } if (op == BRACE_LIMITS) { // Two ints fprintf(f, " minval %" PRId64 ", maxval %" PRId64, (int64_t)OPERAND_MIN(s), (int64_t)OPERAND_MAX(s)); s += 8; } else if (op == BEHIND || op == NOBEHIND) { // one int fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s)); s += 4; } else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) { // one int plus comparator fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s)); s += 5; } s += 3; if (op == ANYOF || op == ANYOF + ADD_NL || op == ANYBUT || op == ANYBUT + ADD_NL || op == EXACTLY) { // Literal string, where present. fprintf(f, "\nxxxxxxxxx\n"); while (*s != NUL) { fprintf(f, "%c", *s++); } fprintf(f, "\nxxxxxxxxx\n"); s++; } fprintf(f, "\r\n"); } // Header fields of interest. if (r->regstart != NUL) { fprintf(f, "start `%s' 0x%x; ", r->regstart < 256 ? (char *)transchar(r->regstart) : "multibyte", r->regstart); } if (r->reganch) { fprintf(f, "anchored; "); } if (r->regmust != NULL) { fprintf(f, "must have \"%s\"", r->regmust); } fprintf(f, "\r\n"); # ifdef BT_REGEXP_LOG fclose(f); # endif } #endif // BT_REGEXP_DUMP #ifdef REGEXP_DEBUG // regprop - printable representation of opcode static uint8_t *regprop(uint8_t *op) { char *p; static char buf[50]; static size_t buflen = 0; STRCPY(buf, ":"); buflen = 1; switch ((int)OP(op)) { case BOL: p = "BOL"; break; case EOL: p = "EOL"; break; case RE_BOF: p = "BOF"; break; case RE_EOF: p = "EOF"; break; case CURSOR: p = "CURSOR"; break; case RE_VISUAL: p = "RE_VISUAL"; break; case RE_LNUM: p = "RE_LNUM"; break; case RE_MARK: p = "RE_MARK"; break; case RE_COL: p = "RE_COL"; break; case RE_VCOL: p = "RE_VCOL"; break; case BOW: p = "BOW"; break; case EOW: p = "EOW"; break; case ANY: p = "ANY"; break; case ANY + ADD_NL: p = "ANY+NL"; break; case ANYOF: p = "ANYOF"; break; case ANYOF + ADD_NL: p = "ANYOF+NL"; break; case ANYBUT: p = "ANYBUT"; break; case ANYBUT + ADD_NL: p = "ANYBUT+NL"; break; case IDENT: p = "IDENT"; break; case IDENT + ADD_NL: p = "IDENT+NL"; break; case SIDENT: p = "SIDENT"; break; case SIDENT + ADD_NL: p = "SIDENT+NL"; break; case KWORD: p = "KWORD"; break; case KWORD + ADD_NL: p = "KWORD+NL"; break; case SKWORD: p = "SKWORD"; break; case SKWORD + ADD_NL: p = "SKWORD+NL"; break; case FNAME: p = "FNAME"; break; case FNAME + ADD_NL: p = "FNAME+NL"; break; case SFNAME: p = "SFNAME"; break; case SFNAME + ADD_NL: p = "SFNAME+NL"; break; case PRINT: p = "PRINT"; break; case PRINT + ADD_NL: p = "PRINT+NL"; break; case SPRINT: p = "SPRINT"; break; case SPRINT + ADD_NL: p = "SPRINT+NL"; break; case WHITE: p = "WHITE"; break; case WHITE + ADD_NL: p = "WHITE+NL"; break; case NWHITE: p = "NWHITE"; break; case NWHITE + ADD_NL: p = "NWHITE+NL"; break; case DIGIT: p = "DIGIT"; break; case DIGIT + ADD_NL: p = "DIGIT+NL"; break; case NDIGIT: p = "NDIGIT"; break; case NDIGIT + ADD_NL: p = "NDIGIT+NL"; break; case HEX: p = "HEX"; break; case HEX + ADD_NL: p = "HEX+NL"; break; case NHEX: p = "NHEX"; break; case NHEX + ADD_NL: p = "NHEX+NL"; break; case OCTAL: p = "OCTAL"; break; case OCTAL + ADD_NL: p = "OCTAL+NL"; break; case NOCTAL: p = "NOCTAL"; break; case NOCTAL + ADD_NL: p = "NOCTAL+NL"; break; case WORD: p = "WORD"; break; case WORD + ADD_NL: p = "WORD+NL"; break; case NWORD: p = "NWORD"; break; case NWORD + ADD_NL: p = "NWORD+NL"; break; case HEAD: p = "HEAD"; break; case HEAD + ADD_NL: p = "HEAD+NL"; break; case NHEAD: p = "NHEAD"; break; case NHEAD + ADD_NL: p = "NHEAD+NL"; break; case ALPHA: p = "ALPHA"; break; case ALPHA + ADD_NL: p = "ALPHA+NL"; break; case NALPHA: p = "NALPHA"; break; case NALPHA + ADD_NL: p = "NALPHA+NL"; break; case LOWER: p = "LOWER"; break; case LOWER + ADD_NL: p = "LOWER+NL"; break; case NLOWER: p = "NLOWER"; break; case NLOWER + ADD_NL: p = "NLOWER+NL"; break; case UPPER: p = "UPPER"; break; case UPPER + ADD_NL: p = "UPPER+NL"; break; case NUPPER: p = "NUPPER"; break; case NUPPER + ADD_NL: p = "NUPPER+NL"; break; case BRANCH: p = "BRANCH"; break; case EXACTLY: p = "EXACTLY"; break; case NOTHING: p = "NOTHING"; break; case BACK: p = "BACK"; break; case END: p = "END"; break; case MOPEN + 0: p = "MATCH START"; break; case MOPEN + 1: case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "MOPEN%d", OP(op) - MOPEN); p = NULL; break; case MCLOSE + 0: p = "MATCH END"; break; case MCLOSE + 1: case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "MCLOSE%d", OP(op) - MCLOSE); p = NULL; break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "BACKREF%d", OP(op) - BACKREF); p = NULL; break; case NOPEN: p = "NOPEN"; break; case NCLOSE: p = "NCLOSE"; break; case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "ZOPEN%d", OP(op) - ZOPEN); p = NULL; break; case ZCLOSE + 1: case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "ZCLOSE%d", OP(op) - ZCLOSE); p = NULL; break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "ZREF%d", OP(op) - ZREF); p = NULL; break; case STAR: p = "STAR"; break; case PLUS: p = "PLUS"; break; case NOMATCH: p = "NOMATCH"; break; case MATCH: p = "MATCH"; break; case BEHIND: p = "BEHIND"; break; case NOBEHIND: p = "NOBEHIND"; break; case SUBPAT: p = "SUBPAT"; break; case BRACE_LIMITS: p = "BRACE_LIMITS"; break; case BRACE_SIMPLE: p = "BRACE_SIMPLE"; break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX); p = NULL; break; case MULTIBYTECODE: p = "MULTIBYTECODE"; break; case NEWL: p = "NEWL"; break; default: buflen += (size_t)snprintf(buf + buflen, sizeof(buf) - buflen, "corrupt %d", OP(op)); p = NULL; break; } if (p != NULL) { STRCPY(buf + buflen, p); } return (uint8_t *)buf; } #endif // REGEXP_DEBUG // }}}1 // regexp_nfa.c {{{1 // NFA regular expression implementation. // Logging of NFA engine. // // The NFA engine can write four log files: // - Error log: Contains NFA engine's fatal errors. // - Dump log: Contains compiled NFA state machine's information. // - Run log: Contains information of matching procedure. // - Debug log: Contains detailed information of matching procedure. Can be // disabled by undefining NFA_REGEXP_DEBUG_LOG. // The first one can also be used without debug mode. // The last three are enabled when compiled as debug mode and individually // disabled by commenting them out. // The log files can get quite big! // To disable all of this when compiling Vim for debugging, undefine REGEXP_DEBUG in // regexp.c #ifdef REGEXP_DEBUG # define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log" # define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log" # define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log" # define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log" #endif // Added to NFA_ANY - NFA_NUPPER_IC to include a NL. #define NFA_ADD_NL 31 enum { NFA_SPLIT = -1024, NFA_MATCH, NFA_EMPTY, // matches 0-length NFA_START_COLL, // [abc] start NFA_END_COLL, // [abc] end NFA_START_NEG_COLL, // [^abc] start NFA_END_NEG_COLL, // [^abc] end (postfix only) NFA_RANGE, // range of the two previous items // (postfix only) NFA_RANGE_MIN, // low end of a range NFA_RANGE_MAX, // high end of a range NFA_CONCAT, // concatenate two previous items (postfix // only) NFA_OR, // \| (postfix only) NFA_STAR, // greedy * (postfix only) NFA_STAR_NONGREEDY, // non-greedy * (postfix only) NFA_QUEST, // greedy \? (postfix only) NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only) NFA_BOL, // ^ Begin line NFA_EOL, // $ End line NFA_BOW, // \< Begin word NFA_EOW, // \> End word NFA_BOF, // \%^ Begin file NFA_EOF, // \%$ End file NFA_NEWL, NFA_ZSTART, // Used for \zs NFA_ZEND, // Used for \ze NFA_NOPEN, // Start of subexpression marked with \%( NFA_NCLOSE, // End of subexpr. marked with \%( ... \) NFA_START_INVISIBLE, NFA_START_INVISIBLE_FIRST, NFA_START_INVISIBLE_NEG, NFA_START_INVISIBLE_NEG_FIRST, NFA_START_INVISIBLE_BEFORE, NFA_START_INVISIBLE_BEFORE_FIRST, NFA_START_INVISIBLE_BEFORE_NEG, NFA_START_INVISIBLE_BEFORE_NEG_FIRST, NFA_START_PATTERN, NFA_END_INVISIBLE, NFA_END_INVISIBLE_NEG, NFA_END_PATTERN, NFA_COMPOSING, // Next nodes in NFA are part of the // composing multibyte char NFA_END_COMPOSING, // End of a composing char in the NFA NFA_ANY_COMPOSING, // \%C: Any composing characters. NFA_OPT_CHARS, // \%[abc] // The following are used only in the postfix form, not in the NFA NFA_PREV_ATOM_NO_WIDTH, // Used for \@= NFA_PREV_ATOM_NO_WIDTH_NEG, // Used for \@! NFA_PREV_ATOM_JUST_BEFORE, // Used for \@<= NFA_PREV_ATOM_JUST_BEFORE_NEG, // Used for \@ NFA_BACKREF1, // \1 NFA_BACKREF2, // \2 NFA_BACKREF3, // \3 NFA_BACKREF4, // \4 NFA_BACKREF5, // \5 NFA_BACKREF6, // \6 NFA_BACKREF7, // \7 NFA_BACKREF8, // \8 NFA_BACKREF9, // \9 NFA_ZREF1, // \z1 NFA_ZREF2, // \z2 NFA_ZREF3, // \z3 NFA_ZREF4, // \z4 NFA_ZREF5, // \z5 NFA_ZREF6, // \z6 NFA_ZREF7, // \z7 NFA_ZREF8, // \z8 NFA_ZREF9, // \z9 NFA_SKIP, // Skip characters NFA_MOPEN, NFA_MOPEN1, NFA_MOPEN2, NFA_MOPEN3, NFA_MOPEN4, NFA_MOPEN5, NFA_MOPEN6, NFA_MOPEN7, NFA_MOPEN8, NFA_MOPEN9, NFA_MCLOSE, NFA_MCLOSE1, NFA_MCLOSE2, NFA_MCLOSE3, NFA_MCLOSE4, NFA_MCLOSE5, NFA_MCLOSE6, NFA_MCLOSE7, NFA_MCLOSE8, NFA_MCLOSE9, NFA_ZOPEN, NFA_ZOPEN1, NFA_ZOPEN2, NFA_ZOPEN3, NFA_ZOPEN4, NFA_ZOPEN5, NFA_ZOPEN6, NFA_ZOPEN7, NFA_ZOPEN8, NFA_ZOPEN9, NFA_ZCLOSE, NFA_ZCLOSE1, NFA_ZCLOSE2, NFA_ZCLOSE3, NFA_ZCLOSE4, NFA_ZCLOSE5, NFA_ZCLOSE6, NFA_ZCLOSE7, NFA_ZCLOSE8, NFA_ZCLOSE9, // NFA_FIRST_NL NFA_ANY, // Match any one character. NFA_IDENT, // Match identifier char NFA_SIDENT, // Match identifier char but no digit NFA_KWORD, // Match keyword char NFA_SKWORD, // Match word char but no digit NFA_FNAME, // Match file name char NFA_SFNAME, // Match file name char but no digit NFA_PRINT, // Match printable char NFA_SPRINT, // Match printable char but no digit NFA_WHITE, // Match whitespace char NFA_NWHITE, // Match non-whitespace char NFA_DIGIT, // Match digit char NFA_NDIGIT, // Match non-digit char NFA_HEX, // Match hex char NFA_NHEX, // Match non-hex char NFA_OCTAL, // Match octal char NFA_NOCTAL, // Match non-octal char NFA_WORD, // Match word char NFA_NWORD, // Match non-word char NFA_HEAD, // Match head char NFA_NHEAD, // Match non-head char NFA_ALPHA, // Match alpha char NFA_NALPHA, // Match non-alpha char NFA_LOWER, // Match lowercase char NFA_NLOWER, // Match non-lowercase char NFA_UPPER, // Match uppercase char NFA_NUPPER, // Match non-uppercase char NFA_LOWER_IC, // Match [a-z] NFA_NLOWER_IC, // Match [^a-z] NFA_UPPER_IC, // Match [A-Z] NFA_NUPPER_IC, // Match [^A-Z] NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL, NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL, NFA_CURSOR, // Match cursor pos NFA_LNUM, // Match line number NFA_LNUM_GT, // Match > line number NFA_LNUM_LT, // Match < line number NFA_COL, // Match cursor column NFA_COL_GT, // Match > cursor column NFA_COL_LT, // Match < cursor column NFA_VCOL, // Match cursor virtual column NFA_VCOL_GT, // Match > cursor virtual column NFA_VCOL_LT, // Match < cursor virtual column NFA_MARK, // Match mark NFA_MARK_GT, // Match > mark NFA_MARK_LT, // Match < mark NFA_VISUAL, // Match Visual area // Character classes [:alnum:] etc NFA_CLASS_ALNUM, NFA_CLASS_ALPHA, NFA_CLASS_BLANK, NFA_CLASS_CNTRL, NFA_CLASS_DIGIT, NFA_CLASS_GRAPH, NFA_CLASS_LOWER, NFA_CLASS_PRINT, NFA_CLASS_PUNCT, NFA_CLASS_SPACE, NFA_CLASS_UPPER, NFA_CLASS_XDIGIT, NFA_CLASS_TAB, NFA_CLASS_RETURN, NFA_CLASS_BACKSPACE, NFA_CLASS_ESCAPE, NFA_CLASS_IDENT, NFA_CLASS_KEYWORD, NFA_CLASS_FNAME, }; // Keep in sync with classchars. static int nfa_classcodes[] = { NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD, NFA_SKWORD, NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT, NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT, NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL, NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD, NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER, NFA_UPPER, NFA_NUPPER }; static const char e_nul_found[] = N_("E865: (NFA) Regexp end encountered prematurely"); static const char e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c"); static const char e_ill_char_class[] = N_("E877: (NFA regexp) Invalid character class: %" PRId64); static const char e_value_too_large[] = N_("E951: \\% value too large"); // Variables only used in nfa_regcomp() and descendants. static int nfa_re_flags; ///< re_flags passed to nfa_regcomp(). static int *post_start; ///< holds the postfix form of r.e. static int *post_end; static int *post_ptr; // Set when the pattern should use the NFA engine. // E.g. [[:upper:]] only allows 8bit characters for BT engine, // while NFA engine handles multibyte characters correctly. static bool wants_nfa; static int nstate; ///< Number of states in the NFA. Also used when executing. static int istate; ///< Index in the state vector, used in alloc_state() // If not NULL match must end at this position static save_se_T *nfa_endp = NULL; // 0 for first call to nfa_regmatch(), 1 for recursive call. static int nfa_ll_index = 0; // Helper functions used when doing re2post() ... regatom() parsing #define EMIT(c) \ do { \ if (post_ptr >= post_end) { \ realloc_post_list(); \ } \ *post_ptr++ = c; \ } while (0) /// Initialize internal variables before NFA compilation. /// /// @param re_flags @see vim_regcomp() static void nfa_regcomp_start(uint8_t *expr, int re_flags) { size_t postfix_size; size_t nstate_max; nstate = 0; istate = 0; // A reasonable estimation for maximum size nstate_max = (strlen((char *)expr) + 1) * 25; // Some items blow up in size, such as [A-z]. Add more space for that. // When it is still not enough realloc_post_list() will be used. nstate_max += 1000; // Size for postfix representation of expr. postfix_size = sizeof(int) * nstate_max; post_start = (int *)xmalloc(postfix_size); post_ptr = post_start; post_end = post_start + nstate_max; wants_nfa = false; rex.nfa_has_zend = false; rex.nfa_has_backref = false; // shared with BT engine regcomp_start(expr, re_flags); } // Figure out if the NFA state list starts with an anchor, must match at start // of the line. static int nfa_get_reganch(nfa_state_T *start, int depth) { nfa_state_T *p = start; if (depth > 4) { return 0; } while (p != NULL) { switch (p->c) { case NFA_BOL: case NFA_BOF: return 1; // yes! case NFA_ZSTART: case NFA_ZEND: case NFA_CURSOR: case NFA_VISUAL: case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_NOPEN: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: p = p->out; break; case NFA_SPLIT: return nfa_get_reganch(p->out, depth + 1) && nfa_get_reganch(p->out1, depth + 1); default: return 0; // noooo } } return 0; } // Figure out if the NFA state list starts with a character which must match // at start of the match. static int nfa_get_regstart(nfa_state_T *start, int depth) { nfa_state_T *p = start; if (depth > 4) { return 0; } while (p != NULL) { switch (p->c) { // all kinds of zero-width matches case NFA_BOL: case NFA_BOF: case NFA_BOW: case NFA_EOW: case NFA_ZSTART: case NFA_ZEND: case NFA_CURSOR: case NFA_VISUAL: case NFA_LNUM: case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_COL: case NFA_COL_GT: case NFA_COL_LT: case NFA_VCOL: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_MARK: case NFA_MARK_GT: case NFA_MARK_LT: case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_NOPEN: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: p = p->out; break; case NFA_SPLIT: { int c1 = nfa_get_regstart(p->out, depth + 1); int c2 = nfa_get_regstart(p->out1, depth + 1); if (c1 == c2) { return c1; // yes! } return 0; } default: if (p->c > 0) { return p->c; // yes! } return 0; } } return 0; } // Figure out if the NFA state list contains just literal text and nothing // else. If so return a string in allocated memory with what must match after // regstart. Otherwise return NULL. static uint8_t *nfa_get_match_text(nfa_state_T *start) { nfa_state_T *p = start; int len = 0; uint8_t *ret; uint8_t *s; if (p->c != NFA_MOPEN) { return NULL; // just in case } p = p->out; while (p->c > 0) { len += utf_char2len(p->c); p = p->out; } if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH) { return NULL; } ret = xmalloc((size_t)len); p = start->out->out; // skip first char, it goes into regstart s = ret; while (p->c > 0) { s += utf_char2bytes(p->c, (char *)s); p = p->out; } *s = NUL; return ret; } // Allocate more space for post_start. Called when // running above the estimated number of states. static void realloc_post_list(void) { // For weird patterns the number of states can be very high. Increasing by // 50% seems a reasonable compromise between memory use and speed. const size_t new_max = (size_t)(post_end - post_start) * 3 / 2; int *new_start = xrealloc(post_start, new_max * sizeof(int)); post_ptr = new_start + (post_ptr - post_start); post_end = new_start + new_max; post_start = new_start; } // Search between "start" and "end" and try to recognize a // character class in expanded form. For example [0-9]. // On success, return the id the character class to be emitted. // On failure, return 0 (=FAIL) // Start points to the first char of the range, while end should point // to the closing brace. // Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may // need to be interpreted as [a-zA-Z]. static int nfa_recognize_char_class(uint8_t *start, const uint8_t *end, int extra_newl) { #define CLASS_not 0x80 #define CLASS_af 0x40 #define CLASS_AF 0x20 #define CLASS_az 0x10 #define CLASS_AZ 0x08 #define CLASS_o7 0x04 #define CLASS_o9 0x02 #define CLASS_underscore 0x01 uint8_t *p; int config = 0; bool newl = extra_newl == true; if (*end != ']') { return FAIL; } p = start; if (*p == '^') { config |= CLASS_not; p++; } while (p < end) { if (p + 2 < end && *(p + 1) == '-') { switch (*p) { case '0': if (*(p + 2) == '9') { config |= CLASS_o9; break; } else if (*(p + 2) == '7') { config |= CLASS_o7; break; } return FAIL; case 'a': if (*(p + 2) == 'z') { config |= CLASS_az; break; } else if (*(p + 2) == 'f') { config |= CLASS_af; break; } return FAIL; case 'A': if (*(p + 2) == 'Z') { config |= CLASS_AZ; break; } else if (*(p + 2) == 'F') { config |= CLASS_AF; break; } return FAIL; default: return FAIL; } p += 3; } else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') { newl = true; p += 2; } else if (*p == '_') { config |= CLASS_underscore; p++; } else if (*p == '\n') { newl = true; p++; } else { return FAIL; } } // while (p < end) if (p != end) { return FAIL; } if (newl == true) { extra_newl = NFA_ADD_NL; } switch (config) { case CLASS_o9: return extra_newl + NFA_DIGIT; case CLASS_not | CLASS_o9: return extra_newl + NFA_NDIGIT; case CLASS_af | CLASS_AF | CLASS_o9: return extra_newl + NFA_HEX; case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9: return extra_newl + NFA_NHEX; case CLASS_o7: return extra_newl + NFA_OCTAL; case CLASS_not | CLASS_o7: return extra_newl + NFA_NOCTAL; case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore: return extra_newl + NFA_WORD; case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore: return extra_newl + NFA_NWORD; case CLASS_az | CLASS_AZ | CLASS_underscore: return extra_newl + NFA_HEAD; case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore: return extra_newl + NFA_NHEAD; case CLASS_az | CLASS_AZ: return extra_newl + NFA_ALPHA; case CLASS_not | CLASS_az | CLASS_AZ: return extra_newl + NFA_NALPHA; case CLASS_az: return extra_newl + NFA_LOWER_IC; case CLASS_not | CLASS_az: return extra_newl + NFA_NLOWER_IC; case CLASS_AZ: return extra_newl + NFA_UPPER_IC; case CLASS_not | CLASS_AZ: return extra_newl + NFA_NUPPER_IC; } return FAIL; } // Produce the bytes for equivalence class "c". // Currently only handles latin1, latin9 and utf-8. // Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is // equivalent to 'a OR b OR c' // // NOTE! When changing this function, also update reg_equi_class() static void nfa_emit_equi_class(int c) { #define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT); { #define A_grave 0xc0 #define A_acute 0xc1 #define A_circumflex 0xc2 #define A_virguilla 0xc3 #define A_diaeresis 0xc4 #define A_ring 0xc5 #define C_cedilla 0xc7 #define E_grave 0xc8 #define E_acute 0xc9 #define E_circumflex 0xca #define E_diaeresis 0xcb #define I_grave 0xcc #define I_acute 0xcd #define I_circumflex 0xce #define I_diaeresis 0xcf #define N_virguilla 0xd1 #define O_grave 0xd2 #define O_acute 0xd3 #define O_circumflex 0xd4 #define O_virguilla 0xd5 #define O_diaeresis 0xd6 #define O_slash 0xd8 #define U_grave 0xd9 #define U_acute 0xda #define U_circumflex 0xdb #define U_diaeresis 0xdc #define Y_acute 0xdd #define a_grave 0xe0 #define a_acute 0xe1 #define a_circumflex 0xe2 #define a_virguilla 0xe3 #define a_diaeresis 0xe4 #define a_ring 0xe5 #define c_cedilla 0xe7 #define e_grave 0xe8 #define e_acute 0xe9 #define e_circumflex 0xea #define e_diaeresis 0xeb #define i_grave 0xec #define i_acute 0xed #define i_circumflex 0xee #define i_diaeresis 0xef #define n_virguilla 0xf1 #define o_grave 0xf2 #define o_acute 0xf3 #define o_circumflex 0xf4 #define o_virguilla 0xf5 #define o_diaeresis 0xf6 #define o_slash 0xf8 #define u_grave 0xf9 #define u_acute 0xfa #define u_circumflex 0xfb #define u_diaeresis 0xfc #define y_acute 0xfd #define y_diaeresis 0xff switch (c) { case 'A': case A_grave: case A_acute: case A_circumflex: case A_virguilla: case A_diaeresis: case A_ring: case 0x100: case 0x102: case 0x104: case 0x1cd: case 0x1de: case 0x1e0: case 0x1fa: case 0x200: case 0x202: case 0x226: case 0x23a: case 0x1e00: case 0x1ea0: case 0x1ea2: case 0x1ea4: case 0x1ea6: case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae: case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6: EMIT2('A') EMIT2(A_grave) EMIT2(A_acute) EMIT2(A_circumflex) EMIT2(A_virguilla) EMIT2(A_diaeresis) EMIT2(A_ring) EMIT2(0x100) EMIT2(0x102) EMIT2(0x104) EMIT2(0x1cd) EMIT2(0x1de) EMIT2(0x1e0) EMIT2(0x1fa) EMIT2(0x200) EMIT2(0x202) EMIT2(0x226) EMIT2(0x23a) EMIT2(0x1e00) EMIT2(0x1ea0) EMIT2(0x1ea2) EMIT2(0x1ea4) EMIT2(0x1ea6) EMIT2(0x1ea8) EMIT2(0x1eaa) EMIT2(0x1eac) EMIT2(0x1eae) EMIT2(0x1eb0) EMIT2(0x1eb2) EMIT2(0x1eb6) EMIT2(0x1eb4) return; case 'B': case 0x181: case 0x243: case 0x1e02: case 0x1e04: case 0x1e06: EMIT2('B') EMIT2(0x181) EMIT2(0x243) EMIT2(0x1e02) EMIT2(0x1e04) EMIT2(0x1e06) return; case 'C': case C_cedilla: case 0x106: case 0x108: case 0x10a: case 0x10c: case 0x187: case 0x23b: case 0x1e08: case 0xa792: EMIT2('C') EMIT2(C_cedilla) EMIT2(0x106) EMIT2(0x108) EMIT2(0x10a) EMIT2(0x10c) EMIT2(0x187) EMIT2(0x23b) EMIT2(0x1e08) EMIT2(0xa792) return; case 'D': case 0x10e: case 0x110: case 0x18a: case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10: case 0x1e12: EMIT2('D') EMIT2(0x10e) EMIT2(0x110) EMIT2(0x18a) EMIT2(0x1e0a) EMIT2(0x1e0c) EMIT2(0x1e0e) EMIT2(0x1e10) EMIT2(0x1e12) return; case 'E': case E_grave: case E_acute: case E_circumflex: case E_diaeresis: case 0x112: case 0x114: case 0x116: case 0x118: case 0x11a: case 0x204: case 0x206: case 0x228: case 0x246: case 0x1e14: case 0x1e16: case 0x1e18: case 0x1e1a: case 0x1e1c: case 0x1eb8: case 0x1eba: case 0x1ebc: case 0x1ebe: case 0x1ec0: case 0x1ec2: case 0x1ec4: case 0x1ec6: EMIT2('E') EMIT2(E_grave) EMIT2(E_acute) EMIT2(E_circumflex) EMIT2(E_diaeresis) EMIT2(0x112) EMIT2(0x114) EMIT2(0x116) EMIT2(0x118) EMIT2(0x11a) EMIT2(0x204) EMIT2(0x206) EMIT2(0x228) EMIT2(0x246) EMIT2(0x1e14) EMIT2(0x1e16) EMIT2(0x1e18) EMIT2(0x1e1a) EMIT2(0x1e1c) EMIT2(0x1eb8) EMIT2(0x1eba) EMIT2(0x1ebc) EMIT2(0x1ebe) EMIT2(0x1ec0) EMIT2(0x1ec2) EMIT2(0x1ec4) EMIT2(0x1ec6) return; case 'F': case 0x191: case 0x1e1e: case 0xa798: EMIT2('F') EMIT2(0x191) EMIT2(0x1e1e) EMIT2(0xa798) return; case 'G': case 0x11c: case 0x11e: case 0x120: case 0x122: case 0x193: case 0x1e4: case 0x1e6: case 0x1f4: case 0x1e20: case 0xa7a0: EMIT2('G') EMIT2(0x11c) EMIT2(0x11e) EMIT2(0x120) EMIT2(0x122) EMIT2(0x193) EMIT2(0x1e4) EMIT2(0x1e6) EMIT2(0x1f4) EMIT2(0x1e20) EMIT2(0xa7a0) return; case 'H': case 0x124: case 0x126: case 0x21e: case 0x1e22: case 0x1e24: case 0x1e26: case 0x1e28: case 0x1e2a: case 0x2c67: EMIT2('H') EMIT2(0x124) EMIT2(0x126) EMIT2(0x21e) EMIT2(0x1e22) EMIT2(0x1e24) EMIT2(0x1e26) EMIT2(0x1e28) EMIT2(0x1e2a) EMIT2(0x2c67) return; case 'I': case I_grave: case I_acute: case I_circumflex: case I_diaeresis: case 0x128: case 0x12a: case 0x12c: case 0x12e: case 0x130: case 0x197: case 0x1cf: case 0x208: case 0x20a: case 0x1e2c: case 0x1e2e: case 0x1ec8: case 0x1eca: EMIT2('I') EMIT2(I_grave) EMIT2(I_acute) EMIT2(I_circumflex) EMIT2(I_diaeresis) EMIT2(0x128) EMIT2(0x12a) EMIT2(0x12c) EMIT2(0x12e) EMIT2(0x130) EMIT2(0x197) EMIT2(0x1cf) EMIT2(0x208) EMIT2(0x20a) EMIT2(0x1e2c) EMIT2(0x1e2e) EMIT2(0x1ec8) EMIT2(0x1eca) return; case 'J': case 0x134: case 0x248: EMIT2('J') EMIT2(0x134) EMIT2(0x248) return; case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30: case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740: EMIT2('K') EMIT2(0x136) EMIT2(0x198) EMIT2(0x1e8) EMIT2(0x1e30) EMIT2(0x1e32) EMIT2(0x1e34) EMIT2(0x2c69) EMIT2(0xa740) return; case 'L': case 0x139: case 0x13b: case 0x13d: case 0x13f: case 0x141: case 0x23d: case 0x1e36: case 0x1e38: case 0x1e3a: case 0x1e3c: case 0x2c60: EMIT2('L') EMIT2(0x139) EMIT2(0x13b) EMIT2(0x13d) EMIT2(0x13f) EMIT2(0x141) EMIT2(0x23d) EMIT2(0x1e36) EMIT2(0x1e38) EMIT2(0x1e3a) EMIT2(0x1e3c) EMIT2(0x2c60) return; case 'M': case 0x1e3e: case 0x1e40: case 0x1e42: EMIT2('M') EMIT2(0x1e3e) EMIT2(0x1e40) EMIT2(0x1e42) return; case 'N': case N_virguilla: case 0x143: case 0x145: case 0x147: case 0x1f8: case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a: case 0xa7a4: EMIT2('N') EMIT2(N_virguilla) EMIT2(0x143) EMIT2(0x145) EMIT2(0x147) EMIT2(0x1f8) EMIT2(0x1e44) EMIT2(0x1e46) EMIT2(0x1e48) EMIT2(0x1e4a) EMIT2(0xa7a4) return; case 'O': case O_grave: case O_acute: case O_circumflex: case O_virguilla: case O_diaeresis: case O_slash: case 0x14c: case 0x14e: case 0x150: case 0x19f: case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec: case 0x1fe: case 0x20c: case 0x20e: case 0x22a: case 0x22c: case 0x22e: case 0x230: case 0x1e4c: case 0x1e4e: case 0x1e50: case 0x1e52: case 0x1ecc: case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4: case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc: case 0x1ede: case 0x1ee0: case 0x1ee2: EMIT2('O') EMIT2(O_grave) EMIT2(O_acute) EMIT2(O_circumflex) EMIT2(O_virguilla) EMIT2(O_diaeresis) EMIT2(O_slash) EMIT2(0x14c) EMIT2(0x14e) EMIT2(0x150) EMIT2(0x19f) EMIT2(0x1a0) EMIT2(0x1d1) EMIT2(0x1ea) EMIT2(0x1ec) EMIT2(0x1fe) EMIT2(0x20c) EMIT2(0x20e) EMIT2(0x22a) EMIT2(0x22c) EMIT2(0x22e) EMIT2(0x230) EMIT2(0x1e4c) EMIT2(0x1e4e) EMIT2(0x1e50) EMIT2(0x1e52) EMIT2(0x1ecc) EMIT2(0x1ece) EMIT2(0x1ed0) EMIT2(0x1ed2) EMIT2(0x1ed4) EMIT2(0x1ed6) EMIT2(0x1ed8) EMIT2(0x1eda) EMIT2(0x1edc) EMIT2(0x1ede) EMIT2(0x1ee0) EMIT2(0x1ee2) return; case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63: EMIT2('P') EMIT2(0x1a4) EMIT2(0x1e54) EMIT2(0x1e56) EMIT2(0x2c63) return; case 'Q': case 0x24a: EMIT2('Q') EMIT2(0x24a) return; case 'R': case 0x154: case 0x156: case 0x158: case 0x210: case 0x212: case 0x24c: case 0x1e58: case 0x1e5a: case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6: EMIT2('R') EMIT2(0x154) EMIT2(0x156) EMIT2(0x158) EMIT2(0x210) EMIT2(0x212) EMIT2(0x24c) EMIT2(0x1e58) EMIT2(0x1e5a) EMIT2(0x1e5c) EMIT2(0x1e5e) EMIT2(0x2c64) EMIT2(0xa7a6) return; case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160: case 0x218: case 0x1e60: case 0x1e62: case 0x1e64: case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8: EMIT2('S') EMIT2(0x15a) EMIT2(0x15c) EMIT2(0x15e) EMIT2(0x160) EMIT2(0x218) EMIT2(0x1e60) EMIT2(0x1e62) EMIT2(0x1e64) EMIT2(0x1e66) EMIT2(0x1e68) EMIT2(0x2c7e) EMIT2(0xa7a8) return; case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac: case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c: case 0x1e6e: case 0x1e70: EMIT2('T') EMIT2(0x162) EMIT2(0x164) EMIT2(0x166) EMIT2(0x1ac) EMIT2(0x1ae) EMIT2(0x23e) EMIT2(0x21a) EMIT2(0x1e6a) EMIT2(0x1e6c) EMIT2(0x1e6e) EMIT2(0x1e70) return; case 'U': case U_grave: case U_acute: case U_diaeresis: case U_circumflex: case 0x168: case 0x16a: case 0x16c: case 0x16e: case 0x170: case 0x172: case 0x1af: case 0x1d3: case 0x1d5: case 0x1d7: case 0x1d9: case 0x1db: case 0x214: case 0x216: case 0x244: case 0x1e72: case 0x1e74: case 0x1e76: case 0x1e78: case 0x1e7a: case 0x1ee4: case 0x1ee6: case 0x1ee8: case 0x1eea: case 0x1eec: case 0x1eee: case 0x1ef0: EMIT2('U') EMIT2(U_grave) EMIT2(U_acute) EMIT2(U_diaeresis) EMIT2(U_circumflex) EMIT2(0x168) EMIT2(0x16a) EMIT2(0x16c) EMIT2(0x16e) EMIT2(0x170) EMIT2(0x172) EMIT2(0x1af) EMIT2(0x1d3) EMIT2(0x1d5) EMIT2(0x1d7) EMIT2(0x1d9) EMIT2(0x1db) EMIT2(0x214) EMIT2(0x216) EMIT2(0x244) EMIT2(0x1e72) EMIT2(0x1e74) EMIT2(0x1e76) EMIT2(0x1e78) EMIT2(0x1e7a) EMIT2(0x1ee4) EMIT2(0x1ee6) EMIT2(0x1ee8) EMIT2(0x1eea) EMIT2(0x1eec) EMIT2(0x1eee) EMIT2(0x1ef0) return; case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e: EMIT2('V') EMIT2(0x1b2) EMIT2(0x1e7c) EMIT2(0x1e7e) return; case 'W': case 0x174: case 0x1e80: case 0x1e82: case 0x1e84: case 0x1e86: case 0x1e88: EMIT2('W') EMIT2(0x174) EMIT2(0x1e80) EMIT2(0x1e82) EMIT2(0x1e84) EMIT2(0x1e86) EMIT2(0x1e88) return; case 'X': case 0x1e8a: case 0x1e8c: EMIT2('X') EMIT2(0x1e8a) EMIT2(0x1e8c) return; case 'Y': case Y_acute: case 0x176: case 0x178: case 0x1b3: case 0x232: case 0x24e: case 0x1e8e: case 0x1ef2: case 0x1ef4: case 0x1ef6: case 0x1ef8: EMIT2('Y') EMIT2(Y_acute) EMIT2(0x176) EMIT2(0x178) EMIT2(0x1b3) EMIT2(0x232) EMIT2(0x24e) EMIT2(0x1e8e) EMIT2(0x1ef2) EMIT2(0x1ef4) EMIT2(0x1ef6) EMIT2(0x1ef8) return; case 'Z': case 0x179: case 0x17b: case 0x17d: case 0x1b5: case 0x1e90: case 0x1e92: case 0x1e94: case 0x2c6b: EMIT2('Z') EMIT2(0x179) EMIT2(0x17b) EMIT2(0x17d) EMIT2(0x1b5) EMIT2(0x1e90) EMIT2(0x1e92) EMIT2(0x1e94) EMIT2(0x2c6b) return; case 'a': case a_grave: case a_acute: case a_circumflex: case a_virguilla: case a_diaeresis: case a_ring: case 0x101: case 0x103: case 0x105: case 0x1ce: case 0x1df: case 0x1e1: case 0x1fb: case 0x201: case 0x203: case 0x227: case 0x1d8f: case 0x1e01: case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5: case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead: case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5: case 0x1eb7: case 0x2c65: EMIT2('a') EMIT2(a_grave) EMIT2(a_acute) EMIT2(a_circumflex) EMIT2(a_virguilla) EMIT2(a_diaeresis) EMIT2(a_ring) EMIT2(0x101) EMIT2(0x103) EMIT2(0x105) EMIT2(0x1ce) EMIT2(0x1df) EMIT2(0x1e1) EMIT2(0x1fb) EMIT2(0x201) EMIT2(0x203) EMIT2(0x227) EMIT2(0x1d8f) EMIT2(0x1e01) EMIT2(0x1e9a) EMIT2(0x1ea1) EMIT2(0x1ea3) EMIT2(0x1ea5) EMIT2(0x1ea7) EMIT2(0x1ea9) EMIT2(0x1eab) EMIT2(0x1ead) EMIT2(0x1eaf) EMIT2(0x1eb1) EMIT2(0x1eb3) EMIT2(0x1eb5) EMIT2(0x1eb7) EMIT2(0x2c65) return; case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80: case 0x1e03: case 0x1e05: case 0x1e07: EMIT2('b') EMIT2(0x180) EMIT2(0x253) EMIT2(0x1d6c) EMIT2(0x1d80) EMIT2(0x1e03) EMIT2(0x1e05) EMIT2(0x1e07) return; case 'c': case c_cedilla: case 0x107: case 0x109: case 0x10b: case 0x10d: case 0x188: case 0x23c: case 0x1e09: case 0xa793: case 0xa794: EMIT2('c') EMIT2(c_cedilla) EMIT2(0x107) EMIT2(0x109) EMIT2(0x10b) EMIT2(0x10d) EMIT2(0x188) EMIT2(0x23c) EMIT2(0x1e09) EMIT2(0xa793) EMIT2(0xa794) return; case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d: case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d: case 0x1e0f: case 0x1e11: case 0x1e13: EMIT2('d') EMIT2(0x10f) EMIT2(0x111) EMIT2(0x257) EMIT2(0x1d6d) EMIT2(0x1d81) EMIT2(0x1d91) EMIT2(0x1e0b) EMIT2(0x1e0d) EMIT2(0x1e0f) EMIT2(0x1e11) EMIT2(0x1e13) return; case 'e': case e_grave: case e_acute: case e_circumflex: case e_diaeresis: case 0x113: case 0x115: case 0x117: case 0x119: case 0x11b: case 0x205: case 0x207: case 0x229: case 0x247: case 0x1d92: case 0x1e15: case 0x1e17: case 0x1e19: case 0x1e1b: case 0x1e1d: case 0x1eb9: case 0x1ebb: case 0x1ebd: case 0x1ebf: case 0x1ec1: case 0x1ec3: case 0x1ec5: case 0x1ec7: EMIT2('e') EMIT2(e_grave) EMIT2(e_acute) EMIT2(e_circumflex) EMIT2(e_diaeresis) EMIT2(0x113) EMIT2(0x115) EMIT2(0x117) EMIT2(0x119) EMIT2(0x11b) EMIT2(0x205) EMIT2(0x207) EMIT2(0x229) EMIT2(0x247) EMIT2(0x1d92) EMIT2(0x1e15) EMIT2(0x1e17) EMIT2(0x1e19) EMIT2(0x1e1b) EMIT2(0x1e1d) EMIT2(0x1eb9) EMIT2(0x1ebb) EMIT2(0x1ebd) EMIT2(0x1ebf) EMIT2(0x1ec1) EMIT2(0x1ec3) EMIT2(0x1ec5) EMIT2(0x1ec7) return; case 'f': case 0x192: case 0x1d6e: case 0x1d82: case 0x1e1f: case 0xa799: EMIT2('f') EMIT2(0x192) EMIT2(0x1d6e) EMIT2(0x1d82) EMIT2(0x1e1f) EMIT2(0xa799) return; case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123: case 0x1e5: case 0x1e7: case 0x1f5: case 0x260: case 0x1d83: case 0x1e21: case 0xa7a1: EMIT2('g') EMIT2(0x11d) EMIT2(0x11f) EMIT2(0x121) EMIT2(0x123) EMIT2(0x1e5) EMIT2(0x1e7) EMIT2(0x1f5) EMIT2(0x260) EMIT2(0x1d83) EMIT2(0x1e21) EMIT2(0xa7a1) return; case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23: case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b: case 0x1e96: case 0x2c68: case 0xa795: EMIT2('h') EMIT2(0x125) EMIT2(0x127) EMIT2(0x21f) EMIT2(0x1e23) EMIT2(0x1e25) EMIT2(0x1e27) EMIT2(0x1e29) EMIT2(0x1e2b) EMIT2(0x1e96) EMIT2(0x2c68) EMIT2(0xa795) return; case 'i': case i_grave: case i_acute: case i_circumflex: case i_diaeresis: case 0x129: case 0x12b: case 0x12d: case 0x12f: case 0x1d0: case 0x209: case 0x20b: case 0x268: case 0x1d96: case 0x1e2d: case 0x1e2f: case 0x1ec9: case 0x1ecb: EMIT2('i') EMIT2(i_grave) EMIT2(i_acute) EMIT2(i_circumflex) EMIT2(i_diaeresis) EMIT2(0x129) EMIT2(0x12b) EMIT2(0x12d) EMIT2(0x12f) EMIT2(0x1d0) EMIT2(0x209) EMIT2(0x20b) EMIT2(0x268) EMIT2(0x1d96) EMIT2(0x1e2d) EMIT2(0x1e2f) EMIT2(0x1ec9) EMIT2(0x1ecb) EMIT2(0x1ecb) return; case 'j': case 0x135: case 0x1f0: case 0x249: EMIT2('j') EMIT2(0x135) EMIT2(0x1f0) EMIT2(0x249) return; case 'k': case 0x137: case 0x199: case 0x1e9: case 0x1d84: case 0x1e31: case 0x1e33: case 0x1e35: case 0x2c6a: case 0xa741: EMIT2('k') EMIT2(0x137) EMIT2(0x199) EMIT2(0x1e9) EMIT2(0x1d84) EMIT2(0x1e31) EMIT2(0x1e33) EMIT2(0x1e35) EMIT2(0x2c6a) EMIT2(0xa741) return; case 'l': case 0x13a: case 0x13c: case 0x13e: case 0x140: case 0x142: case 0x19a: case 0x1e37: case 0x1e39: case 0x1e3b: case 0x1e3d: case 0x2c61: EMIT2('l') EMIT2(0x13a) EMIT2(0x13c) EMIT2(0x13e) EMIT2(0x140) EMIT2(0x142) EMIT2(0x19a) EMIT2(0x1e37) EMIT2(0x1e39) EMIT2(0x1e3b) EMIT2(0x1e3d) EMIT2(0x2c61) return; case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43: EMIT2('m') EMIT2(0x1d6f) EMIT2(0x1e3f) EMIT2(0x1e41) EMIT2(0x1e43) return; case 'n': case n_virguilla: case 0x144: case 0x146: case 0x148: case 0x149: case 0x1f9: case 0x1d70: case 0x1d87: case 0x1e45: case 0x1e47: case 0x1e49: case 0x1e4b: case 0xa7a5: EMIT2('n') EMIT2(n_virguilla) EMIT2(0x144) EMIT2(0x146) EMIT2(0x148) EMIT2(0x149) EMIT2(0x1f9) EMIT2(0x1d70) EMIT2(0x1d87) EMIT2(0x1e45) EMIT2(0x1e47) EMIT2(0x1e49) EMIT2(0x1e4b) EMIT2(0xa7a5) return; case 'o': case o_grave: case o_acute: case o_circumflex: case o_virguilla: case o_diaeresis: case o_slash: case 0x14d: case 0x14f: case 0x151: case 0x1a1: case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff: case 0x20d: case 0x20f: case 0x22b: case 0x22d: case 0x22f: case 0x231: case 0x275: case 0x1e4d: case 0x1e4f: case 0x1e51: case 0x1e53: case 0x1ecd: case 0x1ecf: case 0x1ed1: case 0x1ed3: case 0x1ed5: case 0x1ed7: case 0x1ed9: case 0x1edb: case 0x1edd: case 0x1edf: case 0x1ee1: case 0x1ee3: EMIT2('o') EMIT2(o_grave) EMIT2(o_acute) EMIT2(o_circumflex) EMIT2(o_virguilla) EMIT2(o_diaeresis) EMIT2(o_slash) EMIT2(0x14d) EMIT2(0x14f) EMIT2(0x151) EMIT2(0x1a1) EMIT2(0x1d2) EMIT2(0x1eb) EMIT2(0x1ed) EMIT2(0x1ff) EMIT2(0x20d) EMIT2(0x20f) EMIT2(0x22b) EMIT2(0x22d) EMIT2(0x22f) EMIT2(0x231) EMIT2(0x275) EMIT2(0x1e4d) EMIT2(0x1e4f) EMIT2(0x1e51) EMIT2(0x1e53) EMIT2(0x1ecd) EMIT2(0x1ecf) EMIT2(0x1ed1) EMIT2(0x1ed3) EMIT2(0x1ed5) EMIT2(0x1ed7) EMIT2(0x1ed9) EMIT2(0x1edb) EMIT2(0x1edd) EMIT2(0x1edf) EMIT2(0x1ee1) EMIT2(0x1ee3) return; case 'p': case 0x1a5: case 0x1d71: case 0x1d7d: case 0x1d88: case 0x1e55: case 0x1e57: EMIT2('p') EMIT2(0x1a5) EMIT2(0x1d71) EMIT2(0x1d7d) EMIT2(0x1d88) EMIT2(0x1e55) EMIT2(0x1e57) return; case 'q': case 0x24b: case 0x2a0: EMIT2('q') EMIT2(0x24b) EMIT2(0x2a0) return; case 'r': case 0x155: case 0x157: case 0x159: case 0x211: case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73: case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f: case 0xa7a7: EMIT2('r') EMIT2(0x155) EMIT2(0x157) EMIT2(0x159) EMIT2(0x211) EMIT2(0x213) EMIT2(0x24d) EMIT2(0x27d) EMIT2(0x1d72) EMIT2(0x1d73) EMIT2(0x1d89) EMIT2(0x1e59) EMIT2(0x1e5b) EMIT2(0x1e5d) EMIT2(0x1e5f) EMIT2(0xa7a7) return; case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161: case 0x219: case 0x23f: case 0x1d74: case 0x1d8a: case 0x1e61: case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9: EMIT2('s') EMIT2(0x15b) EMIT2(0x15d) EMIT2(0x15f) EMIT2(0x161) EMIT2(0x219) EMIT2(0x23f) EMIT2(0x1d74) EMIT2(0x1d8a) EMIT2(0x1e61) EMIT2(0x1e63) EMIT2(0x1e65) EMIT2(0x1e67) EMIT2(0x1e69) EMIT2(0xa7a9) return; case 't': case 0x163: case 0x165: case 0x167: case 0x1ab: case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b: case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66: EMIT2('t') EMIT2(0x163) EMIT2(0x165) EMIT2(0x167) EMIT2(0x1ab) EMIT2(0x1ad) EMIT2(0x21b) EMIT2(0x288) EMIT2(0x1d75) EMIT2(0x1e6b) EMIT2(0x1e6d) EMIT2(0x1e6f) EMIT2(0x1e71) EMIT2(0x1e97) EMIT2(0x2c66) return; case 'u': case u_grave: case u_acute: case u_circumflex: case u_diaeresis: case 0x169: case 0x16b: case 0x16d: case 0x16f: case 0x171: case 0x173: case 0x1b0: case 0x1d4: case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc: case 0x215: case 0x217: case 0x289: case 0x1d7e: case 0x1d99: case 0x1e73: case 0x1e75: case 0x1e77: case 0x1e79: case 0x1e7b: case 0x1ee5: case 0x1ee7: case 0x1ee9: case 0x1eeb: case 0x1eed: case 0x1eef: case 0x1ef1: EMIT2('u') EMIT2(u_grave) EMIT2(u_acute) EMIT2(u_circumflex) EMIT2(u_diaeresis) EMIT2(0x169) EMIT2(0x16b) EMIT2(0x16d) EMIT2(0x16f) EMIT2(0x171) EMIT2(0x173) EMIT2(0x1d6) EMIT2(0x1d8) EMIT2(0x215) EMIT2(0x217) EMIT2(0x1b0) EMIT2(0x1d4) EMIT2(0x1da) EMIT2(0x1dc) EMIT2(0x289) EMIT2(0x1e73) EMIT2(0x1d7e) EMIT2(0x1d99) EMIT2(0x1e75) EMIT2(0x1e77) EMIT2(0x1e79) EMIT2(0x1e7b) EMIT2(0x1ee5) EMIT2(0x1ee7) EMIT2(0x1ee9) EMIT2(0x1eeb) EMIT2(0x1eed) EMIT2(0x1eef) EMIT2(0x1ef1) return; case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f: EMIT2('v') EMIT2(0x28b) EMIT2(0x1d8c) EMIT2(0x1e7d) EMIT2(0x1e7f) return; case 'w': case 0x175: case 0x1e81: case 0x1e83: case 0x1e85: case 0x1e87: case 0x1e89: case 0x1e98: EMIT2('w') EMIT2(0x175) EMIT2(0x1e81) EMIT2(0x1e83) EMIT2(0x1e85) EMIT2(0x1e87) EMIT2(0x1e89) EMIT2(0x1e98) return; case 'x': case 0x1e8b: case 0x1e8d: EMIT2('x') EMIT2(0x1e8b) EMIT2(0x1e8d) return; case 'y': case y_acute: case y_diaeresis: case 0x177: case 0x1b4: case 0x233: case 0x24f: case 0x1e8f: case 0x1e99: case 0x1ef3: case 0x1ef5: case 0x1ef7: case 0x1ef9: EMIT2('y') EMIT2(y_acute) EMIT2(y_diaeresis) EMIT2(0x177) EMIT2(0x1b4) EMIT2(0x233) EMIT2(0x24f) EMIT2(0x1e8f) EMIT2(0x1e99) EMIT2(0x1ef3) EMIT2(0x1ef5) EMIT2(0x1ef7) EMIT2(0x1ef9) return; case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6: case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93: case 0x1e95: case 0x2c6c: EMIT2('z') EMIT2(0x17a) EMIT2(0x17c) EMIT2(0x17e) EMIT2(0x1b6) EMIT2(0x1d76) EMIT2(0x1d8e) EMIT2(0x1e91) EMIT2(0x1e93) EMIT2(0x1e95) EMIT2(0x2c6c) return; // default: character itself } } EMIT2(c); #undef EMIT2 } // Code to parse regular expression. // // We try to reuse parsing functions in regexp.c to // minimize surprise and keep the syntax consistent. // Parse the lowest level. // // An atom can be one of a long list of items. Many atoms match one character // in the text. It is often an ordinary character or a character class. // Braces can be used to make a pattern into an atom. The "\z(\)" construct // is only for syntax highlighting. // // atom ::= ordinary-atom // or \( pattern \) // or \%( pattern \) // or \z( pattern \) static int nfa_regatom(void) { int c; int charclass; int equiclass; int collclass; int got_coll_char; uint8_t *p; uint8_t *endp; uint8_t *old_regparse = (uint8_t *)regparse; int extra = 0; int emit_range; int negated; int startc = -1; int save_prev_at_start = prev_at_start; c = getchr(); switch (c) { case NUL: EMSG_RET_FAIL(_(e_nul_found)); case Magic('^'): EMIT(NFA_BOL); break; case Magic('$'): EMIT(NFA_EOL); had_eol = true; break; case Magic('<'): EMIT(NFA_BOW); break; case Magic('>'): EMIT(NFA_EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == NUL) { EMSG_RET_FAIL(_(e_nul_found)); } if (c == '^') { // "\_^" is start-of-line EMIT(NFA_BOL); break; } if (c == '$') { // "\_$" is end-of-line EMIT(NFA_EOL); had_eol = true; break; } extra = NFA_ADD_NL; // "\_[" is collection plus newline if (c == '[') { goto collection; } // "\_x" is character class plus newline FALLTHROUGH; // Character classes. case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c)); if (p == NULL) { if (extra == NFA_ADD_NL) { semsg(_(e_ill_char_class), (int64_t)c); rc_did_emsg = true; return FAIL; } siemsg("INTERNAL: Unknown character class char: %" PRId64, (int64_t)c); return FAIL; } // When '.' is followed by a composing char ignore the dot, so that // the composing char is matched here. if (c == Magic('.') && utf_iscomposing_legacy(peekchr())) { old_regparse = (uint8_t *)regparse; c = getchr(); goto nfa_do_multibyte; } EMIT(nfa_classcodes[p - classchars]); if (extra == NFA_ADD_NL) { EMIT(NFA_NEWL); EMIT(NFA_OR); regflags |= RF_HASNL; } break; case Magic('n'): if (reg_string) { // In a string "\n" matches a newline character. EMIT(NL); } else { // In buffer text "\n" matches the end of a line. EMIT(NFA_NEWL); regflags |= RF_HASNL; } break; case Magic('('): if (nfa_reg(REG_PAREN) == FAIL) { return FAIL; // cascaded error } break; case Magic('|'): case Magic('&'): case Magic(')'): semsg(_(e_misplaced), (char)no_Magic(c)); return FAIL; case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('*'): case Magic('{'): // these should follow an atom, not form an atom semsg(_(e_misplaced), (char)no_Magic(c)); return FAIL; case Magic('~'): { uint8_t *lp; // Previous substitute pattern. // Generated as "\%(pattern\)". if (reg_prev_sub == NULL) { emsg(_(e_nopresub)); return FAIL; } for (lp = (uint8_t *)reg_prev_sub; *lp != NUL; lp += utf_ptr2len((char *)lp)) { EMIT(utf_ptr2char((char *)lp)); if (lp != (uint8_t *)reg_prev_sub) { EMIT(NFA_CONCAT); } } EMIT(NFA_NOPEN); break; } case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): { int refnum = no_Magic(c) - '1'; if (!seen_endbrace(refnum + 1)) { return FAIL; } EMIT(NFA_BACKREF1 + refnum); rex.nfa_has_backref = true; } break; case Magic('z'): c = no_Magic(getchr()); switch (c) { case 's': EMIT(NFA_ZSTART); if (!re_mult_next("\\zs")) { return false; } break; case 'e': EMIT(NFA_ZEND); rex.nfa_has_zend = true; if (!re_mult_next("\\ze")) { return false; } break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': // \z1...\z9 if ((reg_do_extmatch & REX_USE) == 0) { EMSG_RET_FAIL(_(e_z1_not_allowed)); } EMIT(NFA_ZREF1 + (no_Magic(c) - '1')); // No need to set rex.nfa_has_backref, the sub-matches don't // change when \z1 .. \z9 matches or not. re_has_z = REX_USE; break; case '(': // \z( if (reg_do_extmatch != REX_SET) { EMSG_RET_FAIL(_(e_z_not_allowed)); } if (nfa_reg(REG_ZPAREN) == FAIL) { return FAIL; // cascaded error } re_has_z = REX_SET; break; default: semsg(_("E867: (NFA) Unknown operator '\\z%c'"), no_Magic(c)); return FAIL; } break; case Magic('%'): c = no_Magic(getchr()); switch (c) { // () without a back reference case '(': if (nfa_reg(REG_NPAREN) == FAIL) { return FAIL; } EMIT(NFA_NOPEN); break; case 'd': // %d123 decimal case 'o': // %o123 octal case 'x': // %xab hex 2 case 'u': // %uabcd hex 4 case 'U': // %U1234abcd hex 8 { int64_t nr; switch (c) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; default: nr = -1; break; } if (nr < 0 || nr > INT_MAX) { EMSG2_RET_FAIL(_("E678: Invalid character after %s%%[dxouU]"), reg_magic == MAGIC_ALL); } // A NUL is stored in the text as NL // TODO(vim): what if a composing character follows? EMIT(nr == 0 ? 0x0a : (int)nr); } break; // Catch \%^ and \%$ regardless of where they appear in the // pattern -- regardless of whether or not it makes sense. case '^': EMIT(NFA_BOF); break; case '$': EMIT(NFA_EOF); break; case '#': if (regparse[0] == '=' && regparse[1] >= 48 && regparse[1] <= 50) { // misplaced \%#=1 semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]); return FAIL; } EMIT(NFA_CURSOR); break; case 'V': EMIT(NFA_VISUAL); break; case 'C': EMIT(NFA_ANY_COMPOSING); break; case '[': { int n; // \%[abc] for (n = 0; (c = peekchr()) != ']'; n++) { if (c == NUL) { EMSG2_RET_FAIL(_(e_missing_sb), reg_magic == MAGIC_ALL); } // recursive call! if (nfa_regatom() == FAIL) { return FAIL; } } (void)getchr(); // get the ] if (n == 0) { EMSG2_RET_FAIL(_(e_empty_sb), reg_magic == MAGIC_ALL); } EMIT(NFA_OPT_CHARS); EMIT(n); // Emit as "\%(\%[abc]\)" to be able to handle // "\%[abc]*" which would cause the empty string to be // matched an unlimited number of times. NFA_NOPEN is // added only once at a position, while NFA_SPLIT is // added multiple times. This is more efficient than // not allowing NFA_SPLIT multiple times, it is used // a lot. EMIT(NFA_NOPEN); break; } default: { int64_t n = 0; const int cmp = c; bool cur = false; bool got_digit = false; if (c == '<' || c == '>') { c = getchr(); } if (no_Magic(c) == '.') { cur = true; c = getchr(); } while (ascii_isdigit(c)) { if (cur) { semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c)); return FAIL; } if (n > (INT32_MAX - (c - '0')) / 10) { // overflow. emsg(_(e_value_too_large)); return FAIL; } n = n * 10 + (c - '0'); c = getchr(); got_digit = true; } if (c == 'l' || c == 'c' || c == 'v') { int32_t limit = INT32_MAX; if (!cur && !got_digit) { semsg(_(e_nfa_regexp_missing_value_in_chr), no_Magic(c)); return FAIL; } if (c == 'l') { if (cur) { n = curwin->w_cursor.lnum; } // \%{n}l \%{n}l EMIT(cmp == '<' ? NFA_LNUM_LT : cmp == '>' ? NFA_LNUM_GT : NFA_LNUM); if (save_prev_at_start) { at_start = true; } } else if (c == 'c') { if (cur) { n = curwin->w_cursor.col; n++; } // \%{n}c \%{n}c EMIT(cmp == '<' ? NFA_COL_LT : cmp == '>' ? NFA_COL_GT : NFA_COL); } else { if (cur) { colnr_T vcol = 0; getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol); n = ++vcol; } // \%{n}v \%{n}v EMIT(cmp == '<' ? NFA_VCOL_LT : cmp == '>' ? NFA_VCOL_GT : NFA_VCOL); limit = INT32_MAX / MB_MAXBYTES; } if (n >= limit) { emsg(_(e_value_too_large)); return FAIL; } EMIT((int)n); break; } else if (no_Magic(c) == '\'' && n == 0) { // \%'m \%<'m \%>'m EMIT(cmp == '<' ? NFA_MARK_LT : cmp == '>' ? NFA_MARK_GT : NFA_MARK); EMIT(getchr()); break; } } semsg(_("E867: (NFA) Unknown operator '\\%%%c'"), no_Magic(c)); return FAIL; } break; case Magic('['): collection: // [abc] uses NFA_START_COLL - NFA_END_COLL // [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL // Each character is produced as a regular state, using // NFA_CONCAT to bind them together. // Besides normal characters there can be: // - character classes NFA_CLASS_* // - ranges, two characters followed by NFA_RANGE. p = (uint8_t *)regparse; endp = (uint8_t *)skip_anyof((char *)p); if (*endp == ']') { // Try to reverse engineer character classes. For example, // recognize that [0-9] stands for \d and [A-Za-z_] for \h, // and perform the necessary substitutions in the NFA. int result = nfa_recognize_char_class((uint8_t *)regparse, endp, extra == NFA_ADD_NL); if (result != FAIL) { if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) { EMIT(result - NFA_ADD_NL); EMIT(NFA_NEWL); EMIT(NFA_OR); } else { EMIT(result); } regparse = (char *)endp; MB_PTR_ADV(regparse); return OK; } // Failed to recognize a character class. Use the simple // version that turns [abc] into 'a' OR 'b' OR 'c' negated = false; if (*regparse == '^') { // negated range negated = true; MB_PTR_ADV(regparse); EMIT(NFA_START_NEG_COLL); } else { EMIT(NFA_START_COLL); } if (*regparse == '-') { startc = '-'; EMIT(startc); EMIT(NFA_CONCAT); MB_PTR_ADV(regparse); } // Emit the OR branches for each character in the [] emit_range = false; while ((uint8_t *)regparse < endp) { int oldstartc = startc; startc = -1; got_coll_char = false; if (*regparse == '[') { // Check for [: :], [= =], [. .] equiclass = collclass = 0; charclass = get_char_class(®parse); if (charclass == CLASS_NONE) { equiclass = get_equi_class(®parse); if (equiclass == 0) { collclass = get_coll_element(®parse); } } // Character class like [:alpha:] if (charclass != CLASS_NONE) { switch (charclass) { case CLASS_ALNUM: EMIT(NFA_CLASS_ALNUM); break; case CLASS_ALPHA: EMIT(NFA_CLASS_ALPHA); break; case CLASS_BLANK: EMIT(NFA_CLASS_BLANK); break; case CLASS_CNTRL: EMIT(NFA_CLASS_CNTRL); break; case CLASS_DIGIT: EMIT(NFA_CLASS_DIGIT); break; case CLASS_GRAPH: EMIT(NFA_CLASS_GRAPH); break; case CLASS_LOWER: wants_nfa = true; EMIT(NFA_CLASS_LOWER); break; case CLASS_PRINT: EMIT(NFA_CLASS_PRINT); break; case CLASS_PUNCT: EMIT(NFA_CLASS_PUNCT); break; case CLASS_SPACE: EMIT(NFA_CLASS_SPACE); break; case CLASS_UPPER: wants_nfa = true; EMIT(NFA_CLASS_UPPER); break; case CLASS_XDIGIT: EMIT(NFA_CLASS_XDIGIT); break; case CLASS_TAB: EMIT(NFA_CLASS_TAB); break; case CLASS_RETURN: EMIT(NFA_CLASS_RETURN); break; case CLASS_BACKSPACE: EMIT(NFA_CLASS_BACKSPACE); break; case CLASS_ESCAPE: EMIT(NFA_CLASS_ESCAPE); break; case CLASS_IDENT: EMIT(NFA_CLASS_IDENT); break; case CLASS_KEYWORD: EMIT(NFA_CLASS_KEYWORD); break; case CLASS_FNAME: EMIT(NFA_CLASS_FNAME); break; } EMIT(NFA_CONCAT); continue; } // Try equivalence class [=a=] and the like if (equiclass != 0) { nfa_emit_equi_class(equiclass); continue; } // Try collating class like [. .] if (collclass != 0) { startc = collclass; // allow [.a.]-x as a range // Will emit the proper atom at the end of the // while loop. } } // Try a range like 'a-x' or '\t-z'. Also allows '-' as a // start character. if (*regparse == '-' && oldstartc != -1) { emit_range = true; startc = oldstartc; MB_PTR_ADV(regparse); continue; // reading the end of the range } // Now handle simple and escaped characters. // Only "\]", "\^", "\]" and "\\" are special in Vi. Vim // accepts "\t", "\e", etc., but only when the 'l' flag in // 'cpoptions' is not included. if (*regparse == '\\' && (uint8_t *)regparse + 1 <= endp && (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, (uint8_t)regparse[1]) != NULL))) { MB_PTR_ADV(regparse); if (*regparse == 'n') { startc = (reg_string || emit_range || regparse[1] == '-') ? NL : NFA_NEWL; } else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U') { // TODO(RE): This needs more testing startc = coll_get_char(); got_coll_char = true; MB_PTR_BACK(old_regparse, regparse); } else { // \r,\t,\e,\b startc = backslash_trans(*regparse); } } // Normal printable char if (startc == -1) { startc = utf_ptr2char(regparse); } // Previous char was '-', so this char is end of range. if (emit_range) { int endc = startc; startc = oldstartc; if (startc > endc) { EMSG_RET_FAIL(_(e_reverse_range)); } if (endc > startc + 2) { // Emit a range instead of the sequence of // individual characters. if (startc == 0) { // \x00 is translated to \x0a, start at \x01. EMIT(1); } else { post_ptr--; // remove NFA_CONCAT } EMIT(endc); EMIT(NFA_RANGE); EMIT(NFA_CONCAT); } else if (utf_char2len(startc) > 1 || utf_char2len(endc) > 1) { // Emit the characters in the range. // "startc" was already emitted, so skip it. for (c = startc + 1; c <= endc; c++) { EMIT(c); EMIT(NFA_CONCAT); } } else { // Emit the range. "startc" was already emitted, so // skip it. for (c = startc + 1; c <= endc; c++) { EMIT(c); EMIT(NFA_CONCAT); } } emit_range = false; startc = -1; } else { // This char (startc) is not part of a range. Just // emit it. // Normally, simply emit startc. But if we get char // code=0 from a collating char, then replace it with // 0x0a. // This is needed to completely mimic the behaviour of // the backtracking engine. if (startc == NFA_NEWL) { // Line break can't be matched as part of the // collection, add an OR below. But not for negated // range. if (!negated) { extra = NFA_ADD_NL; } } else { if (got_coll_char == true && startc == 0) { EMIT(0x0a); EMIT(NFA_CONCAT); } else { EMIT(startc); if (utf_ptr2len(regparse) == utfc_ptr2len(regparse)) { EMIT(NFA_CONCAT); } } } } int plen; if (utf_ptr2len(regparse) != (plen = utfc_ptr2len(regparse))) { int i = utf_ptr2len(regparse); c = utf_ptr2char(regparse + i); // Add composing characters while (true) { if (c == 0) { // \x00 is translated to \x0a, start at \x01. EMIT(1); } else { EMIT(c); } EMIT(NFA_CONCAT); if ((i += utf_char2len(c)) >= plen) { break; } c = utf_ptr2char(regparse + i); } EMIT(NFA_COMPOSING); EMIT(NFA_CONCAT); } MB_PTR_ADV(regparse); } // while (p < endp) MB_PTR_BACK(old_regparse, regparse); if (*regparse == '-') { // if last, '-' is just a char EMIT('-'); EMIT(NFA_CONCAT); } // skip the trailing ] regparse = (char *)endp; MB_PTR_ADV(regparse); // Mark end of the collection. if (negated == true) { EMIT(NFA_END_NEG_COLL); } else { EMIT(NFA_END_COLL); } // \_[] also matches \n but it's not negated if (extra == NFA_ADD_NL) { EMIT(reg_string ? NL : NFA_NEWL); EMIT(NFA_OR); } return OK; } // if exists closing ] if (reg_strict) { EMSG_RET_FAIL(_(e_missingbracket)); } FALLTHROUGH; default: { int plen; nfa_do_multibyte: // plen is length of current char with composing chars if (utf_char2len(c) != (plen = utfc_ptr2len((char *)old_regparse)) || utf_iscomposing_legacy(c)) { int i = 0; // A base character plus composing characters, or just one // or more composing characters. // This requires creating a separate atom as if enclosing // the characters in (), where NFA_COMPOSING is the ( and // NFA_END_COMPOSING is the ). Note that right now we are // building the postfix form, not the NFA itself; // a composing char could be: a, b, c, NFA_COMPOSING // where 'b' and 'c' are chars with codes > 256. while (true) { EMIT(c); if (i > 0) { EMIT(NFA_CONCAT); } if ((i += utf_char2len(c)) >= plen) { break; } c = utf_ptr2char((char *)old_regparse + i); } EMIT(NFA_COMPOSING); regparse = (char *)old_regparse + plen; } else { c = no_Magic(c); EMIT(c); } return OK; } } return OK; } // Parse something followed by possible [*+=]. // // A piece is an atom, possibly followed by a multi, an indication of how many // times the atom can be matched. Example: "a*" matches any sequence of "a" // characters: "", "a", "aa", etc. // // piece ::= atom // or atom multi static int nfa_regpiece(void) { int i; int op; int ret; int minval, maxval; bool greedy = true; // Braces are prefixed with '-' ? parse_state_T old_state; parse_state_T new_state; int64_t c2; int old_post_pos; int my_post_start; int quest; // Save the current parse state, so that we can use it if {m,n} is // next. save_parse_state(&old_state); // store current pos in the postfix form, for \{m,n} involving 0s my_post_start = (int)(post_ptr - post_start); ret = nfa_regatom(); if (ret == FAIL) { return FAIL; // cascaded error } op = peekchr(); if (re_multi_type(op) == NOT_MULTI) { return OK; } skipchr(); switch (op) { case Magic('*'): EMIT(NFA_STAR); break; case Magic('+'): // Trick: Normally, (a*)\+ would match the whole input "aaa". The // first and only submatch would be "aaa". But the backtracking // engine interprets the plus as "try matching one more time", and // a* matches a second time at the end of the input, the empty // string. // The submatch will be the empty string. // // In order to be consistent with the old engine, we replace // + with * restore_parse_state(&old_state); curchr = -1; if (nfa_regatom() == FAIL) { return FAIL; } EMIT(NFA_STAR); EMIT(NFA_CONCAT); skipchr(); // skip the \+ break; case Magic('@'): c2 = getdecchrs(); op = no_Magic(getchr()); i = 0; switch (op) { case '=': // \@= i = NFA_PREV_ATOM_NO_WIDTH; break; case '!': // \@! i = NFA_PREV_ATOM_NO_WIDTH_NEG; break; case '<': op = no_Magic(getchr()); if (op == '=') { // \@<= i = NFA_PREV_ATOM_JUST_BEFORE; } else if (op == '!') { // \@': // \@> i = NFA_PREV_ATOM_LIKE_PATTERN; break; } if (i == 0) { semsg(_("E869: (NFA) Unknown operator '\\@%c'"), op); return FAIL; } EMIT(i); if (i == NFA_PREV_ATOM_JUST_BEFORE || i == NFA_PREV_ATOM_JUST_BEFORE_NEG) { EMIT((int)c2); } break; case Magic('?'): case Magic('='): EMIT(NFA_QUEST); break; case Magic('{'): // a{2,5} will expand to 'aaa?a?a?' // a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy // version of '?' // \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the // parenthesis have the same id greedy = true; c2 = peekchr(); if (c2 == '-' || c2 == Magic('-')) { skipchr(); greedy = false; } if (!read_limits(&minval, &maxval)) { EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits")); } // {0,inf}, {0,} and {} are equivalent to // * if (minval == 0 && maxval == MAX_LIMIT) { if (greedy) { // \{}, \{0,} EMIT(NFA_STAR); } else { // \{-}, \{-0,} EMIT(NFA_STAR_NONGREEDY); } break; } // Special case: x{0} or x{-0} if (maxval == 0) { // Ignore result of previous call to nfa_regatom() post_ptr = post_start + my_post_start; // NFA_EMPTY is 0-length and works everywhere EMIT(NFA_EMPTY); return OK; } // The engine is very inefficient (uses too many states) when the // maximum is much larger than the minimum and when the maximum is // large. However, when maxval is MAX_LIMIT, it is okay, as this // will emit NFA_STAR. // Bail out if we can use the other engine, but only, when the // pattern does not need the NFA engine like (e.g. [[:upper:]]\{2,\} // does not work with characters > 8 bit with the BT engine) if ((nfa_re_flags & RE_AUTO) && (maxval > 500 || maxval > minval + 200) && (maxval != MAX_LIMIT && minval < 200) && !wants_nfa) { return FAIL; } // Ignore previous call to nfa_regatom() post_ptr = post_start + my_post_start; // Save parse state after the repeated atom and the \{} save_parse_state(&new_state); quest = (greedy == true ? NFA_QUEST : NFA_QUEST_NONGREEDY); for (i = 0; i < maxval; i++) { // Goto beginning of the repeated atom restore_parse_state(&old_state); old_post_pos = (int)(post_ptr - post_start); if (nfa_regatom() == FAIL) { return FAIL; } // after "minval" times, atoms are optional if (i + 1 > minval) { if (maxval == MAX_LIMIT) { if (greedy) { EMIT(NFA_STAR); } else { EMIT(NFA_STAR_NONGREEDY); } } else { EMIT(quest); } } if (old_post_pos != my_post_start) { EMIT(NFA_CONCAT); } if (i + 1 > minval && maxval == MAX_LIMIT) { break; } } // Go to just after the repeated atom and the \{} restore_parse_state(&new_state); curchr = -1; break; default: break; } // end switch if (re_multi_type(peekchr()) != NOT_MULTI) { // Can't have a multi follow a multi. EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi")); } return OK; } // Parse one or more pieces, concatenated. It matches a match for the // first piece, followed by a match for the second piece, etc. Example: // "f[0-9]b", first matches "f", then a digit and then "b". // // concat ::= piece // or piece piece // or piece piece piece // etc. static int nfa_regconcat(void) { bool cont = true; bool first = true; while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = false; break; case Magic('Z'): regflags |= RF_ICOMBINE; skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: if (nfa_regpiece() == FAIL) { return FAIL; } if (first == false) { EMIT(NFA_CONCAT); } else { first = false; } break; } } return OK; } // Parse a branch, one or more concats, separated by "\&". It matches the // last concat, but only if all the preceding concats also match at the same // position. Examples: // "foobeep\&..." matches "foo" in "foobeep". // ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob" // // branch ::= concat // or concat \& concat // or concat \& concat \& concat // etc. static int nfa_regbranch(void) { int old_post_pos; old_post_pos = (int)(post_ptr - post_start); // First branch, possibly the only one if (nfa_regconcat() == FAIL) { return FAIL; } // Try next concats while (peekchr() == Magic('&')) { skipchr(); // if concat is empty do emit a node if (old_post_pos == (int)(post_ptr - post_start)) { EMIT(NFA_EMPTY); } EMIT(NFA_NOPEN); EMIT(NFA_PREV_ATOM_NO_WIDTH); old_post_pos = (int)(post_ptr - post_start); if (nfa_regconcat() == FAIL) { return FAIL; } // if concat is empty do emit a node if (old_post_pos == (int)(post_ptr - post_start)) { EMIT(NFA_EMPTY); } EMIT(NFA_CONCAT); } // if a branch is empty, emit one node for it if (old_post_pos == (int)(post_ptr - post_start)) { EMIT(NFA_EMPTY); } return OK; } /// Parse a pattern, one or more branches, separated by "\|". It matches /// anything that matches one of the branches. Example: "foo\|beep" matches /// "foo" and matches "beep". If more than one branch matches, the first one /// is used. /// /// pattern ::= branch /// or branch \| branch /// or branch \| branch \| branch /// etc. /// /// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN static int nfa_reg(int paren) { int parno = 0; if (paren == REG_PAREN) { if (regnpar >= NSUBEXP) { // Too many `(' EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('")); } parno = regnpar++; } else if (paren == REG_ZPAREN) { // Make a ZOPEN node. if (regnzpar >= NSUBEXP) { EMSG_RET_FAIL(_("E879: (NFA regexp) Too many \\z(")); } parno = regnzpar++; } if (nfa_regbranch() == FAIL) { return FAIL; // cascaded error } while (peekchr() == Magic('|')) { skipchr(); if (nfa_regbranch() == FAIL) { return FAIL; // cascaded error } EMIT(NFA_OR); } // Check for proper termination. if (paren != REG_NOPAREN && getchr() != Magic(')')) { if (paren == REG_NPAREN) { EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL); } else { EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL); } } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (peekchr() == Magic(')')) { EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL); } else { EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error")); } } // Here we set the flag allowing back references to this set of // parentheses. if (paren == REG_PAREN) { had_endbrace[parno] = true; // have seen the close paren EMIT(NFA_MOPEN + parno); } else if (paren == REG_ZPAREN) { EMIT(NFA_ZOPEN + parno); } return OK; } #ifdef REGEXP_DEBUG static uint8_t code[50]; static void nfa_set_code(int c) { int addnl = false; if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) { addnl = true; c -= NFA_ADD_NL; } STRCPY(code, ""); switch (c) { case NFA_MATCH: STRCPY(code, "NFA_MATCH "); break; case NFA_SPLIT: STRCPY(code, "NFA_SPLIT "); break; case NFA_CONCAT: STRCPY(code, "NFA_CONCAT "); break; case NFA_NEWL: STRCPY(code, "NFA_NEWL "); break; case NFA_ZSTART: STRCPY(code, "NFA_ZSTART"); break; case NFA_ZEND: STRCPY(code, "NFA_ZEND"); break; case NFA_BACKREF1: STRCPY(code, "NFA_BACKREF1"); break; case NFA_BACKREF2: STRCPY(code, "NFA_BACKREF2"); break; case NFA_BACKREF3: STRCPY(code, "NFA_BACKREF3"); break; case NFA_BACKREF4: STRCPY(code, "NFA_BACKREF4"); break; case NFA_BACKREF5: STRCPY(code, "NFA_BACKREF5"); break; case NFA_BACKREF6: STRCPY(code, "NFA_BACKREF6"); break; case NFA_BACKREF7: STRCPY(code, "NFA_BACKREF7"); break; case NFA_BACKREF8: STRCPY(code, "NFA_BACKREF8"); break; case NFA_BACKREF9: STRCPY(code, "NFA_BACKREF9"); break; case NFA_ZREF1: STRCPY(code, "NFA_ZREF1"); break; case NFA_ZREF2: STRCPY(code, "NFA_ZREF2"); break; case NFA_ZREF3: STRCPY(code, "NFA_ZREF3"); break; case NFA_ZREF4: STRCPY(code, "NFA_ZREF4"); break; case NFA_ZREF5: STRCPY(code, "NFA_ZREF5"); break; case NFA_ZREF6: STRCPY(code, "NFA_ZREF6"); break; case NFA_ZREF7: STRCPY(code, "NFA_ZREF7"); break; case NFA_ZREF8: STRCPY(code, "NFA_ZREF8"); break; case NFA_ZREF9: STRCPY(code, "NFA_ZREF9"); break; case NFA_SKIP: STRCPY(code, "NFA_SKIP"); break; case NFA_PREV_ATOM_NO_WIDTH: STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break; case NFA_PREV_ATOM_NO_WIDTH_NEG: STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break; case NFA_PREV_ATOM_JUST_BEFORE: STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break; case NFA_PREV_ATOM_JUST_BEFORE_NEG: STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break; case NFA_PREV_ATOM_LIKE_PATTERN: STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break; case NFA_NOPEN: STRCPY(code, "NFA_NOPEN"); break; case NFA_NCLOSE: STRCPY(code, "NFA_NCLOSE"); break; case NFA_START_INVISIBLE: STRCPY(code, "NFA_START_INVISIBLE"); break; case NFA_START_INVISIBLE_FIRST: STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break; case NFA_START_INVISIBLE_NEG: STRCPY(code, "NFA_START_INVISIBLE_NEG"); break; case NFA_START_INVISIBLE_NEG_FIRST: STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break; case NFA_START_INVISIBLE_BEFORE: STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break; case NFA_START_INVISIBLE_BEFORE_FIRST: STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break; case NFA_START_INVISIBLE_BEFORE_NEG: STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break; case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break; case NFA_START_PATTERN: STRCPY(code, "NFA_START_PATTERN"); break; case NFA_END_INVISIBLE: STRCPY(code, "NFA_END_INVISIBLE"); break; case NFA_END_INVISIBLE_NEG: STRCPY(code, "NFA_END_INVISIBLE_NEG"); break; case NFA_END_PATTERN: STRCPY(code, "NFA_END_PATTERN"); break; case NFA_COMPOSING: STRCPY(code, "NFA_COMPOSING"); break; case NFA_END_COMPOSING: STRCPY(code, "NFA_END_COMPOSING"); break; case NFA_OPT_CHARS: STRCPY(code, "NFA_OPT_CHARS"); break; case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: STRCPY(code, "NFA_MOPEN(x)"); code[10] = c - NFA_MOPEN + '0'; break; case NFA_MCLOSE: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: STRCPY(code, "NFA_MCLOSE(x)"); code[11] = c - NFA_MCLOSE + '0'; break; case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: STRCPY(code, "NFA_ZOPEN(x)"); code[10] = c - NFA_ZOPEN + '0'; break; case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: STRCPY(code, "NFA_ZCLOSE(x)"); code[11] = c - NFA_ZCLOSE + '0'; break; case NFA_EOL: STRCPY(code, "NFA_EOL "); break; case NFA_BOL: STRCPY(code, "NFA_BOL "); break; case NFA_EOW: STRCPY(code, "NFA_EOW "); break; case NFA_BOW: STRCPY(code, "NFA_BOW "); break; case NFA_EOF: STRCPY(code, "NFA_EOF "); break; case NFA_BOF: STRCPY(code, "NFA_BOF "); break; case NFA_LNUM: STRCPY(code, "NFA_LNUM "); break; case NFA_LNUM_GT: STRCPY(code, "NFA_LNUM_GT "); break; case NFA_LNUM_LT: STRCPY(code, "NFA_LNUM_LT "); break; case NFA_COL: STRCPY(code, "NFA_COL "); break; case NFA_COL_GT: STRCPY(code, "NFA_COL_GT "); break; case NFA_COL_LT: STRCPY(code, "NFA_COL_LT "); break; case NFA_VCOL: STRCPY(code, "NFA_VCOL "); break; case NFA_VCOL_GT: STRCPY(code, "NFA_VCOL_GT "); break; case NFA_VCOL_LT: STRCPY(code, "NFA_VCOL_LT "); break; case NFA_MARK: STRCPY(code, "NFA_MARK "); break; case NFA_MARK_GT: STRCPY(code, "NFA_MARK_GT "); break; case NFA_MARK_LT: STRCPY(code, "NFA_MARK_LT "); break; case NFA_CURSOR: STRCPY(code, "NFA_CURSOR "); break; case NFA_VISUAL: STRCPY(code, "NFA_VISUAL "); break; case NFA_ANY_COMPOSING: STRCPY(code, "NFA_ANY_COMPOSING "); break; case NFA_STAR: STRCPY(code, "NFA_STAR "); break; case NFA_STAR_NONGREEDY: STRCPY(code, "NFA_STAR_NONGREEDY "); break; case NFA_QUEST: STRCPY(code, "NFA_QUEST"); break; case NFA_QUEST_NONGREEDY: STRCPY(code, "NFA_QUEST_NON_GREEDY"); break; case NFA_EMPTY: STRCPY(code, "NFA_EMPTY"); break; case NFA_OR: STRCPY(code, "NFA_OR"); break; case NFA_START_COLL: STRCPY(code, "NFA_START_COLL"); break; case NFA_END_COLL: STRCPY(code, "NFA_END_COLL"); break; case NFA_START_NEG_COLL: STRCPY(code, "NFA_START_NEG_COLL"); break; case NFA_END_NEG_COLL: STRCPY(code, "NFA_END_NEG_COLL"); break; case NFA_RANGE: STRCPY(code, "NFA_RANGE"); break; case NFA_RANGE_MIN: STRCPY(code, "NFA_RANGE_MIN"); break; case NFA_RANGE_MAX: STRCPY(code, "NFA_RANGE_MAX"); break; case NFA_CLASS_ALNUM: STRCPY(code, "NFA_CLASS_ALNUM"); break; case NFA_CLASS_ALPHA: STRCPY(code, "NFA_CLASS_ALPHA"); break; case NFA_CLASS_BLANK: STRCPY(code, "NFA_CLASS_BLANK"); break; case NFA_CLASS_CNTRL: STRCPY(code, "NFA_CLASS_CNTRL"); break; case NFA_CLASS_DIGIT: STRCPY(code, "NFA_CLASS_DIGIT"); break; case NFA_CLASS_GRAPH: STRCPY(code, "NFA_CLASS_GRAPH"); break; case NFA_CLASS_LOWER: STRCPY(code, "NFA_CLASS_LOWER"); break; case NFA_CLASS_PRINT: STRCPY(code, "NFA_CLASS_PRINT"); break; case NFA_CLASS_PUNCT: STRCPY(code, "NFA_CLASS_PUNCT"); break; case NFA_CLASS_SPACE: STRCPY(code, "NFA_CLASS_SPACE"); break; case NFA_CLASS_UPPER: STRCPY(code, "NFA_CLASS_UPPER"); break; case NFA_CLASS_XDIGIT: STRCPY(code, "NFA_CLASS_XDIGIT"); break; case NFA_CLASS_TAB: STRCPY(code, "NFA_CLASS_TAB"); break; case NFA_CLASS_RETURN: STRCPY(code, "NFA_CLASS_RETURN"); break; case NFA_CLASS_BACKSPACE: STRCPY(code, "NFA_CLASS_BACKSPACE"); break; case NFA_CLASS_ESCAPE: STRCPY(code, "NFA_CLASS_ESCAPE"); break; case NFA_CLASS_IDENT: STRCPY(code, "NFA_CLASS_IDENT"); break; case NFA_CLASS_KEYWORD: STRCPY(code, "NFA_CLASS_KEYWORD"); break; case NFA_CLASS_FNAME: STRCPY(code, "NFA_CLASS_FNAME"); break; case NFA_ANY: STRCPY(code, "NFA_ANY"); break; case NFA_IDENT: STRCPY(code, "NFA_IDENT"); break; case NFA_SIDENT: STRCPY(code, "NFA_SIDENT"); break; case NFA_KWORD: STRCPY(code, "NFA_KWORD"); break; case NFA_SKWORD: STRCPY(code, "NFA_SKWORD"); break; case NFA_FNAME: STRCPY(code, "NFA_FNAME"); break; case NFA_SFNAME: STRCPY(code, "NFA_SFNAME"); break; case NFA_PRINT: STRCPY(code, "NFA_PRINT"); break; case NFA_SPRINT: STRCPY(code, "NFA_SPRINT"); break; case NFA_WHITE: STRCPY(code, "NFA_WHITE"); break; case NFA_NWHITE: STRCPY(code, "NFA_NWHITE"); break; case NFA_DIGIT: STRCPY(code, "NFA_DIGIT"); break; case NFA_NDIGIT: STRCPY(code, "NFA_NDIGIT"); break; case NFA_HEX: STRCPY(code, "NFA_HEX"); break; case NFA_NHEX: STRCPY(code, "NFA_NHEX"); break; case NFA_OCTAL: STRCPY(code, "NFA_OCTAL"); break; case NFA_NOCTAL: STRCPY(code, "NFA_NOCTAL"); break; case NFA_WORD: STRCPY(code, "NFA_WORD"); break; case NFA_NWORD: STRCPY(code, "NFA_NWORD"); break; case NFA_HEAD: STRCPY(code, "NFA_HEAD"); break; case NFA_NHEAD: STRCPY(code, "NFA_NHEAD"); break; case NFA_ALPHA: STRCPY(code, "NFA_ALPHA"); break; case NFA_NALPHA: STRCPY(code, "NFA_NALPHA"); break; case NFA_LOWER: STRCPY(code, "NFA_LOWER"); break; case NFA_NLOWER: STRCPY(code, "NFA_NLOWER"); break; case NFA_UPPER: STRCPY(code, "NFA_UPPER"); break; case NFA_NUPPER: STRCPY(code, "NFA_NUPPER"); break; case NFA_LOWER_IC: STRCPY(code, "NFA_LOWER_IC"); break; case NFA_NLOWER_IC: STRCPY(code, "NFA_NLOWER_IC"); break; case NFA_UPPER_IC: STRCPY(code, "NFA_UPPER_IC"); break; case NFA_NUPPER_IC: STRCPY(code, "NFA_NUPPER_IC"); break; default: STRCPY(code, "CHAR(x)"); code[5] = c; } if (addnl == true) { strcat(code, " + NEWLINE "); } } static FILE *log_fd; static const uint8_t e_log_open_failed[] = N_("Could not open temporary log file for writing, displaying on stderr... "); // Print the postfix notation of the current regexp. static void nfa_postfix_dump(uint8_t *expr, int retval) { int *p; FILE *f; f = fopen(NFA_REGEXP_DUMP_LOG, "a"); if (f == NULL) { return; } fprintf(f, "\n-------------------------\n"); if (retval == FAIL) { fprintf(f, ">>> NFA engine failed... \n"); } else if (retval == OK) { fprintf(f, ">>> NFA engine succeeded !\n"); } fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr); for (p = post_start; *p && p < post_ptr; p++) { nfa_set_code(*p); fprintf(f, "%s, ", code); } fprintf(f, "\"\nPostfix notation (int): "); for (p = post_start; *p && p < post_ptr; p++) { fprintf(f, "%d ", *p); } fprintf(f, "\n\n"); fclose(f); } // Print the NFA starting with a root node "state". static void nfa_print_state(FILE *debugf, nfa_state_T *state) { garray_T indent; ga_init(&indent, 1, 64); ga_append(&indent, NUL); nfa_print_state2(debugf, state, &indent); ga_clear(&indent); } static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent) { uint8_t *p; if (state == NULL) { return; } fprintf(debugf, "(%2d)", abs(state->id)); // Output indent p = (uint8_t *)indent->ga_data; if (indent->ga_len >= 3) { int last = indent->ga_len - 3; uint8_t save[2]; strncpy(save, &p[last], 2); // NOLINT(runtime/printf) memcpy(&p[last], "+-", 2); fprintf(debugf, " %s", p); strncpy(&p[last], save, 2); // NOLINT(runtime/printf) } else { fprintf(debugf, " %s", p); } nfa_set_code(state->c); fprintf(debugf, "%s (%d) (id=%d) val=%d\n", code, state->c, abs(state->id), state->val); if (state->id < 0) { return; } state->id = abs(state->id) * -1; // grow indent for state->out indent->ga_len -= 1; if (state->out1) { ga_concat(indent, (uint8_t *)"| "); } else { ga_concat(indent, (uint8_t *)" "); } ga_append(indent, NUL); nfa_print_state2(debugf, state->out, indent); // replace last part of indent for state->out1 indent->ga_len -= 3; ga_concat(indent, (uint8_t *)" "); ga_append(indent, NUL); nfa_print_state2(debugf, state->out1, indent); // shrink indent indent->ga_len -= 3; ga_append(indent, NUL); } // Print the NFA state machine. static void nfa_dump(nfa_regprog_T *prog) { FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a"); if (debugf == NULL) { return; } nfa_print_state(debugf, prog->start); if (prog->reganch) { fprintf(debugf, "reganch: %d\n", prog->reganch); } if (prog->regstart != NUL) { fprintf(debugf, "regstart: %c (decimal: %d)\n", prog->regstart, prog->regstart); } if (prog->match_text != NULL) { fprintf(debugf, "match_text: \"%s\"\n", prog->match_text); } fclose(debugf); } #endif // REGEXP_DEBUG // Parse r.e. @expr and convert it into postfix form. // Return the postfix string on success, NULL otherwise. static int *re2post(void) { if (nfa_reg(REG_NOPAREN) == FAIL) { return NULL; } EMIT(NFA_MOPEN); return post_start; } // NB. Some of the code below is inspired by Russ's. // Represents an NFA state plus zero or one or two arrows exiting. // if c == MATCH, no arrows out; matching state. // If c == SPLIT, unlabeled arrows to out and out1 (if != NULL). // If c < 256, labeled arrow with character c to out. static nfa_state_T *state_ptr; // points to nfa_prog->state // Allocate and initialize nfa_state_T. static nfa_state_T *alloc_state(int c, nfa_state_T *out, nfa_state_T *out1) { nfa_state_T *s; if (istate >= nstate) { return NULL; } s = &state_ptr[istate++]; s->c = c; s->out = out; s->out1 = out1; s->val = 0; s->id = istate; s->lastlist[0] = 0; s->lastlist[1] = 0; return s; } // A partially built NFA without the matching state filled in. // Frag_T.start points at the start state. // Frag_T.out is a list of places that need to be set to the // next state for this fragment. // Initialize a Frag_T struct and return it. static Frag_T frag(nfa_state_T *start, Ptrlist *out) { Frag_T n; n.start = start; n.out = out; return n; } // Create singleton list containing just outp. static Ptrlist *list1(nfa_state_T **outp) { Ptrlist *l; l = (Ptrlist *)outp; l->next = NULL; return l; } // Patch the list of states at out to point to start. static void patch(Ptrlist *l, nfa_state_T *s) { Ptrlist *next; for (; l; l = next) { next = l->next; l->s = s; } } // Join the two lists l1 and l2, returning the combination. static Ptrlist *append(Ptrlist *l1, Ptrlist *l2) { Ptrlist *oldl1; oldl1 = l1; while (l1->next) { l1 = l1->next; } l1->next = l2; return oldl1; } // Stack used for transforming postfix form into NFA. static Frag_T empty; static void st_error(int *postfix, int *end, int *p) { #ifdef NFA_REGEXP_ERROR_LOG FILE *df; int *p2; df = fopen(NFA_REGEXP_ERROR_LOG, "a"); if (df) { fprintf(df, "Error popping the stack!\n"); # ifdef REGEXP_DEBUG fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr); # endif fprintf(df, "Postfix form is: "); # ifdef REGEXP_DEBUG for (p2 = postfix; p2 < end; p2++) { nfa_set_code(*p2); fprintf(df, "%s, ", code); } nfa_set_code(*p); fprintf(df, "\nCurrent position is: "); for (p2 = postfix; p2 <= p; p2++) { nfa_set_code(*p2); fprintf(df, "%s, ", code); } # else for (p2 = postfix; p2 < end; p2++) { fprintf(df, "%d, ", *p2); } fprintf(df, "\nCurrent position is: "); for (p2 = postfix; p2 <= p; p2++) { fprintf(df, "%d, ", *p2); } # endif fprintf(df, "\n--------------------------\n"); fclose(df); } #endif emsg(_("E874: (NFA) Could not pop the stack!")); } // Push an item onto the stack. static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end) { Frag_T *stackp = *p; if (stackp >= stack_end) { return; } *stackp = s; *p = *p + 1; } // Pop an item from the stack. static Frag_T st_pop(Frag_T **p, Frag_T *stack) { Frag_T *stackp; *p = *p - 1; stackp = *p; if (stackp < stack) { return empty; } return **p; } // Estimate the maximum byte length of anything matching "state". // When unknown or unlimited return -1. static int nfa_max_width(nfa_state_T *startstate, int depth) { int l, r; nfa_state_T *state = startstate; int len = 0; // detect looping in a NFA_SPLIT if (depth > 4) { return -1; } while (state != NULL) { switch (state->c) { case NFA_END_INVISIBLE: case NFA_END_INVISIBLE_NEG: // the end, return what we have return len; case NFA_SPLIT: // two alternatives, use the maximum l = nfa_max_width(state->out, depth + 1); r = nfa_max_width(state->out1, depth + 1); if (l < 0 || r < 0) { return -1; } return len + (l > r ? l : r); case NFA_ANY: case NFA_START_COLL: case NFA_START_NEG_COLL: // Matches some character, including composing chars. len += MB_MAXBYTES; if (state->c != NFA_ANY) { // Skip over the characters. state = state->out1->out; continue; } break; case NFA_DIGIT: case NFA_WHITE: case NFA_HEX: case NFA_OCTAL: // ascii len++; break; case NFA_IDENT: case NFA_SIDENT: case NFA_KWORD: case NFA_SKWORD: case NFA_FNAME: case NFA_SFNAME: case NFA_PRINT: case NFA_SPRINT: case NFA_NWHITE: case NFA_NDIGIT: case NFA_NHEX: case NFA_NOCTAL: case NFA_WORD: case NFA_NWORD: case NFA_HEAD: case NFA_NHEAD: case NFA_ALPHA: case NFA_NALPHA: case NFA_LOWER: case NFA_NLOWER: case NFA_UPPER: case NFA_NUPPER: case NFA_LOWER_IC: case NFA_NLOWER_IC: case NFA_UPPER_IC: case NFA_NUPPER_IC: case NFA_ANY_COMPOSING: // possibly non-ascii len += 3; break; case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_NEG: // zero-width, out1 points to the END state state = state->out1->out; continue; case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: case NFA_NEWL: case NFA_SKIP: // unknown width return -1; case NFA_BOL: case NFA_EOL: case NFA_BOF: case NFA_EOF: case NFA_BOW: case NFA_EOW: case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: case NFA_MCLOSE: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: case NFA_NOPEN: case NFA_NCLOSE: case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_COL_GT: case NFA_COL_LT: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_MARK_GT: case NFA_MARK_LT: case NFA_VISUAL: case NFA_LNUM: case NFA_CURSOR: case NFA_COL: case NFA_VCOL: case NFA_MARK: case NFA_ZSTART: case NFA_ZEND: case NFA_OPT_CHARS: case NFA_EMPTY: case NFA_START_PATTERN: case NFA_END_PATTERN: case NFA_COMPOSING: case NFA_END_COMPOSING: // zero-width break; default: if (state->c < 0) { // don't know what this is return -1; } // normal character len += utf_char2len(state->c); break; } // normal way to continue state = state->out; } // unrecognized, "cannot happen" return -1; } // Convert a postfix form into its equivalent NFA. // Return the NFA start state on success, NULL otherwise. static nfa_state_T *post2nfa(int *postfix, int *end, int nfa_calc_size) { int *p; int mopen; int mclose; Frag_T *stack = NULL; Frag_T *stackp = NULL; Frag_T *stack_end = NULL; Frag_T e1; Frag_T e2; Frag_T e; nfa_state_T *s; nfa_state_T *s1; nfa_state_T *matchstate; nfa_state_T *ret = NULL; if (postfix == NULL) { return NULL; } #define PUSH(s) st_push((s), &stackp, stack_end) #define POP() st_pop(&stackp, stack); \ if (stackp < stack) { \ st_error(postfix, end, p); \ xfree(stack); \ return NULL; \ } if (nfa_calc_size == false) { // Allocate space for the stack. Max states on the stack: "nstate". stack = xmalloc((size_t)(nstate + 1) * sizeof(Frag_T)); stackp = stack; stack_end = stack + (nstate + 1); } for (p = postfix; p < end; p++) { switch (*p) { case NFA_CONCAT: // Concatenation. // Pay attention: this operator does not exist in the r.e. itself // (it is implicit, really). It is added when r.e. is translated // to postfix form in re2post(). if (nfa_calc_size == true) { // nstate += 0; break; } e2 = POP(); e1 = POP(); patch(e1.out, e2.start); PUSH(frag(e1.start, e2.out)); break; case NFA_OR: // Alternation if (nfa_calc_size == true) { nstate++; break; } e2 = POP(); e1 = POP(); s = alloc_state(NFA_SPLIT, e1.start, e2.start); if (s == NULL) { goto theend; } PUSH(frag(s, append(e1.out, e2.out))); break; case NFA_STAR: // Zero or more, prefer more if (nfa_calc_size == true) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, e.start, NULL); if (s == NULL) { goto theend; } patch(e.out, s); PUSH(frag(s, list1(&s->out1))); break; case NFA_STAR_NONGREEDY: // Zero or more, prefer zero if (nfa_calc_size == true) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, NULL, e.start); if (s == NULL) { goto theend; } patch(e.out, s); PUSH(frag(s, list1(&s->out))); break; case NFA_QUEST: // one or zero atoms=> greedy match if (nfa_calc_size == true) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, e.start, NULL); if (s == NULL) { goto theend; } PUSH(frag(s, append(e.out, list1(&s->out1)))); break; case NFA_QUEST_NONGREEDY: // zero or one atoms => non-greedy match if (nfa_calc_size == true) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, NULL, e.start); if (s == NULL) { goto theend; } PUSH(frag(s, append(e.out, list1(&s->out)))); break; case NFA_END_COLL: case NFA_END_NEG_COLL: // On the stack is the sequence starting with NFA_START_COLL or // NFA_START_NEG_COLL and all possible characters. Patch it to // add the output to the start. if (nfa_calc_size == true) { nstate++; break; } e = POP(); s = alloc_state(NFA_END_COLL, NULL, NULL); if (s == NULL) { goto theend; } patch(e.out, s); e.start->out1 = s; PUSH(frag(e.start, list1(&s->out))); break; case NFA_RANGE: // Before this are two characters, the low and high end of a // range. Turn them into two states with MIN and MAX. if (nfa_calc_size == true) { // nstate += 0; break; } e2 = POP(); e1 = POP(); e2.start->val = e2.start->c; e2.start->c = NFA_RANGE_MAX; e1.start->val = e1.start->c; e1.start->c = NFA_RANGE_MIN; patch(e1.out, e2.start); PUSH(frag(e1.start, e2.out)); break; case NFA_EMPTY: // 0-length, used in a repetition with max/min count of 0 if (nfa_calc_size == true) { nstate++; break; } s = alloc_state(NFA_EMPTY, NULL, NULL); if (s == NULL) { goto theend; } PUSH(frag(s, list1(&s->out))); break; case NFA_OPT_CHARS: { int n; // \%[abc] implemented as: // NFA_SPLIT // +-CHAR(a) // | +-NFA_SPLIT // | +-CHAR(b) // | | +-NFA_SPLIT // | | +-CHAR(c) // | | | +-next // | | +- next // | +- next // +- next n = *++p; // get number of characters if (nfa_calc_size == true) { nstate += n; break; } s = NULL; // avoid compiler warning e1.out = NULL; // stores list with out1's s1 = NULL; // previous NFA_SPLIT to connect to while (n-- > 0) { e = POP(); // get character s = alloc_state(NFA_SPLIT, e.start, NULL); if (s == NULL) { goto theend; } if (e1.out == NULL) { e1 = e; } patch(e.out, s1); append(e1.out, list1(&s->out1)); s1 = s; } PUSH(frag(s, e1.out)); break; } case NFA_PREV_ATOM_NO_WIDTH: case NFA_PREV_ATOM_NO_WIDTH_NEG: case NFA_PREV_ATOM_JUST_BEFORE: case NFA_PREV_ATOM_JUST_BEFORE_NEG: case NFA_PREV_ATOM_LIKE_PATTERN: { int before = (*p == NFA_PREV_ATOM_JUST_BEFORE || *p == NFA_PREV_ATOM_JUST_BEFORE_NEG); int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN); int start_state; int end_state; int n = 0; nfa_state_T *zend; nfa_state_T *skip; switch (*p) { case NFA_PREV_ATOM_NO_WIDTH: start_state = NFA_START_INVISIBLE; end_state = NFA_END_INVISIBLE; break; case NFA_PREV_ATOM_NO_WIDTH_NEG: start_state = NFA_START_INVISIBLE_NEG; end_state = NFA_END_INVISIBLE_NEG; break; case NFA_PREV_ATOM_JUST_BEFORE: start_state = NFA_START_INVISIBLE_BEFORE; end_state = NFA_END_INVISIBLE; break; case NFA_PREV_ATOM_JUST_BEFORE_NEG: start_state = NFA_START_INVISIBLE_BEFORE_NEG; end_state = NFA_END_INVISIBLE_NEG; break; default: // NFA_PREV_ATOM_LIKE_PATTERN: start_state = NFA_START_PATTERN; end_state = NFA_END_PATTERN; break; } if (before) { n = *++p; // get the count } // The \@= operator: match the preceding atom with zero width. // The \@! operator: no match for the preceding atom. // The \@<= operator: match for the preceding atom. // The \@ NFA_END_PATTERN -> NFA_SKIP -> what follows. skip = alloc_state(NFA_SKIP, NULL, NULL); if (skip == NULL) { goto theend; } zend = alloc_state(NFA_ZEND, s1, NULL); if (zend == NULL) { goto theend; } s1->out = skip; patch(e.out, zend); PUSH(frag(s, list1(&skip->out))); } else { patch(e.out, s1); PUSH(frag(s, list1(&s1->out))); if (before) { if (n <= 0) { // See if we can guess the maximum width, it avoids a // lot of pointless tries. n = nfa_max_width(e.start, 0); } s->val = n; // store the count } } break; } case NFA_COMPOSING: // char with composing char FALLTHROUGH; case NFA_MOPEN: // \( \) Submatch case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_ZOPEN: // \z( \) Submatch case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_NOPEN: // \%( \) "Invisible Submatch" if (nfa_calc_size == true) { nstate += 2; break; } mopen = *p; switch (*p) { case NFA_NOPEN: mclose = NFA_NCLOSE; break; case NFA_ZOPEN: mclose = NFA_ZCLOSE; break; case NFA_ZOPEN1: mclose = NFA_ZCLOSE1; break; case NFA_ZOPEN2: mclose = NFA_ZCLOSE2; break; case NFA_ZOPEN3: mclose = NFA_ZCLOSE3; break; case NFA_ZOPEN4: mclose = NFA_ZCLOSE4; break; case NFA_ZOPEN5: mclose = NFA_ZCLOSE5; break; case NFA_ZOPEN6: mclose = NFA_ZCLOSE6; break; case NFA_ZOPEN7: mclose = NFA_ZCLOSE7; break; case NFA_ZOPEN8: mclose = NFA_ZCLOSE8; break; case NFA_ZOPEN9: mclose = NFA_ZCLOSE9; break; case NFA_COMPOSING: mclose = NFA_END_COMPOSING; break; default: // NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9 mclose = *p + NSUBEXP; break; } // Allow "NFA_MOPEN" as a valid postfix representation for // the empty regexp "". In this case, the NFA will be // NFA_MOPEN -> NFA_MCLOSE. Note that this also allows // empty groups of parenthesis, and empty mbyte chars if (stackp == stack) { s = alloc_state(mopen, NULL, NULL); if (s == NULL) { goto theend; } s1 = alloc_state(mclose, NULL, NULL); if (s1 == NULL) { goto theend; } patch(list1(&s->out), s1); PUSH(frag(s, list1(&s1->out))); break; } // At least one node was emitted before NFA_MOPEN, so // at least one node will be between NFA_MOPEN and NFA_MCLOSE e = POP(); s = alloc_state(mopen, e.start, NULL); // `(' if (s == NULL) { goto theend; } s1 = alloc_state(mclose, NULL, NULL); // `)' if (s1 == NULL) { goto theend; } patch(e.out, s1); if (mopen == NFA_COMPOSING) { // COMPOSING->out1 = END_COMPOSING patch(list1(&s->out1), s1); } PUSH(frag(s, list1(&s1->out))); break; case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: if (nfa_calc_size == true) { nstate += 2; break; } s = alloc_state(*p, NULL, NULL); if (s == NULL) { goto theend; } s1 = alloc_state(NFA_SKIP, NULL, NULL); if (s1 == NULL) { goto theend; } patch(list1(&s->out), s1); PUSH(frag(s, list1(&s1->out))); break; case NFA_LNUM: case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_VCOL: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_COL: case NFA_COL_GT: case NFA_COL_LT: case NFA_MARK: case NFA_MARK_GT: case NFA_MARK_LT: { int n = *++p; // lnum, col or mark name if (nfa_calc_size == true) { nstate += 1; break; } s = alloc_state(p[-1], NULL, NULL); if (s == NULL) { goto theend; } s->val = n; PUSH(frag(s, list1(&s->out))); break; } case NFA_ZSTART: case NFA_ZEND: default: // Operands if (nfa_calc_size == true) { nstate++; break; } s = alloc_state(*p, NULL, NULL); if (s == NULL) { goto theend; } PUSH(frag(s, list1(&s->out))); break; } // switch(*p) } // for(p = postfix; *p; ++p) if (nfa_calc_size == true) { nstate++; goto theend; // Return value when counting size is ignored anyway } e = POP(); if (stackp != stack) { xfree(stack); EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA)," "too many states left on stack")); } if (istate >= nstate) { xfree(stack); EMSG_RET_NULL(_("E876: (NFA regexp) " "Not enough space to store the whole NFA ")); } matchstate = &state_ptr[istate++]; // the match state matchstate->c = NFA_MATCH; matchstate->out = matchstate->out1 = NULL; matchstate->id = 0; patch(e.out, matchstate); ret = e.start; theend: xfree(stack); return ret; #undef POP1 #undef PUSH1 #undef POP2 #undef PUSH2 #undef POP #undef PUSH } // After building the NFA program, inspect it to add optimization hints. static void nfa_postprocess(nfa_regprog_T *prog) { int i; int c; for (i = 0; i < prog->nstate; i++) { c = prog->state[i].c; if (c == NFA_START_INVISIBLE || c == NFA_START_INVISIBLE_NEG || c == NFA_START_INVISIBLE_BEFORE || c == NFA_START_INVISIBLE_BEFORE_NEG) { int directly; // Do it directly when what follows is possibly the end of the // match. if (match_follows(prog->state[i].out1->out, 0)) { directly = true; } else { int ch_invisible = failure_chance(prog->state[i].out, 0); int ch_follows = failure_chance(prog->state[i].out1->out, 0); // Postpone when the invisible match is expensive or has a // lower chance of failing. if (c == NFA_START_INVISIBLE_BEFORE || c == NFA_START_INVISIBLE_BEFORE_NEG) { // "before" matches are very expensive when // unbounded, always prefer what follows then, // unless what follows will always match. // Otherwise strongly prefer what follows. if (prog->state[i].val <= 0 && ch_follows > 0) { directly = false; } else { directly = ch_follows * 10 < ch_invisible; } } else { // normal invisible, first do the one with the // highest failure chance directly = ch_follows < ch_invisible; } } if (directly) { // switch to the _FIRST state prog->state[i].c++; } } } } ///////////////////////////////////////////////////////////////// // NFA execution code. ///////////////////////////////////////////////////////////////// // Values for done in nfa_pim_T. #define NFA_PIM_UNUSED 0 // pim not used #define NFA_PIM_TODO 1 // pim not done yet #define NFA_PIM_MATCH 2 // pim executed, matches #define NFA_PIM_NOMATCH 3 // pim executed, no match #ifdef REGEXP_DEBUG static void log_subsexpr(regsubs_T *subs) { log_subexpr(&subs->norm); if (rex.nfa_has_zsubexpr) { log_subexpr(&subs->synt); } } static void log_subexpr(regsub_T *sub) { int j; for (j = 0; j < sub->in_use; j++) { if (REG_MULTI) { fprintf(log_fd, "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n", j, sub->list.multi[j].start_col, (int)sub->list.multi[j].start_lnum, sub->list.multi[j].end_col, (int)sub->list.multi[j].end_lnum); } else { char *s = (char *)sub->list.line[j].start; char *e = (char *)sub->list.line[j].end; fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n", j, s == NULL ? "NULL" : s, e == NULL ? "NULL" : e); } } } static char *pim_info(const nfa_pim_T *pim) { static char buf[30]; if (pim == NULL || pim->result == NFA_PIM_UNUSED) { buf[0] = NUL; } else { snprintf(buf, sizeof(buf), " PIM col %d", REG_MULTI ? (int)pim->end.pos.col : (int)(pim->end.ptr - rex.input)); } return buf; } #endif // Used during execution: whether a match has been found. static int nfa_match; static proftime_T *nfa_time_limit; static int *nfa_timed_out; static int nfa_time_count; // Copy postponed invisible match info from "from" to "to". static void copy_pim(nfa_pim_T *to, nfa_pim_T *from) { to->result = from->result; to->state = from->state; copy_sub(&to->subs.norm, &from->subs.norm); if (rex.nfa_has_zsubexpr) { copy_sub(&to->subs.synt, &from->subs.synt); } to->end = from->end; } static void clear_sub(regsub_T *sub) { if (REG_MULTI) { // Use 0xff to set lnum to -1 memset(sub->list.multi, 0xff, sizeof(struct multipos) * (size_t)rex.nfa_nsubexpr); } else { memset(sub->list.line, 0, sizeof(struct linepos) * (size_t)rex.nfa_nsubexpr); } sub->in_use = 0; } // Copy the submatches from "from" to "to". static void copy_sub(regsub_T *to, regsub_T *from) { to->in_use = from->in_use; if (from->in_use <= 0) { return; } // Copy the match start and end positions. if (REG_MULTI) { memmove(&to->list.multi[0], &from->list.multi[0], sizeof(struct multipos) * (size_t)from->in_use); to->orig_start_col = from->orig_start_col; } else { memmove(&to->list.line[0], &from->list.line[0], sizeof(struct linepos) * (size_t)from->in_use); } } // Like copy_sub() but exclude the main match. static void copy_sub_off(regsub_T *to, regsub_T *from) { if (to->in_use < from->in_use) { to->in_use = from->in_use; } if (from->in_use <= 1) { return; } // Copy the match start and end positions. if (REG_MULTI) { memmove(&to->list.multi[1], &from->list.multi[1], sizeof(struct multipos) * (size_t)(from->in_use - 1)); } else { memmove(&to->list.line[1], &from->list.line[1], sizeof(struct linepos) * (size_t)(from->in_use - 1)); } } // Like copy_sub() but only do the end of the main match if \ze is present. static void copy_ze_off(regsub_T *to, regsub_T *from) { if (!rex.nfa_has_zend) { return; } if (REG_MULTI) { if (from->list.multi[0].end_lnum >= 0) { to->list.multi[0].end_lnum = from->list.multi[0].end_lnum; to->list.multi[0].end_col = from->list.multi[0].end_col; } } else { if (from->list.line[0].end != NULL) { to->list.line[0].end = from->list.line[0].end; } } } // Return true if "sub1" and "sub2" have the same start positions. // When using back-references also check the end position. static bool sub_equal(regsub_T *sub1, regsub_T *sub2) { int i; int todo; linenr_T s1; linenr_T s2; uint8_t *sp1; uint8_t *sp2; todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use; if (REG_MULTI) { for (i = 0; i < todo; i++) { if (i < sub1->in_use) { s1 = sub1->list.multi[i].start_lnum; } else { s1 = -1; } if (i < sub2->in_use) { s2 = sub2->list.multi[i].start_lnum; } else { s2 = -1; } if (s1 != s2) { return false; } if (s1 != -1 && sub1->list.multi[i].start_col != sub2->list.multi[i].start_col) { return false; } if (rex.nfa_has_backref) { if (i < sub1->in_use) { s1 = sub1->list.multi[i].end_lnum; } else { s1 = -1; } if (i < sub2->in_use) { s2 = sub2->list.multi[i].end_lnum; } else { s2 = -1; } if (s1 != s2) { return false; } if (s1 != -1 && sub1->list.multi[i].end_col != sub2->list.multi[i].end_col) { return false; } } } } else { for (i = 0; i < todo; i++) { if (i < sub1->in_use) { sp1 = sub1->list.line[i].start; } else { sp1 = NULL; } if (i < sub2->in_use) { sp2 = sub2->list.line[i].start; } else { sp2 = NULL; } if (sp1 != sp2) { return false; } if (rex.nfa_has_backref) { if (i < sub1->in_use) { sp1 = sub1->list.line[i].end; } else { sp1 = NULL; } if (i < sub2->in_use) { sp2 = sub2->list.line[i].end; } else { sp2 = NULL; } if (sp1 != sp2) { return false; } } } } return true; } #ifdef REGEXP_DEBUG static void open_debug_log(TriState result) { log_fd = fopen(NFA_REGEXP_RUN_LOG, "a"); if (log_fd == NULL) { emsg(_(e_log_open_failed)); log_fd = stderr; } fprintf(log_fd, "****************************\n"); fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n"); fprintf(log_fd, "MATCH = %s\n", result == kTrue ? "OK" : result == kNone ? "MAYBE" : "FALSE"); fprintf(log_fd, "****************************\n"); } static void report_state(char *action, regsub_T *sub, nfa_state_T *state, int lid, nfa_pim_T *pim) { int col; if (sub->in_use <= 0) { col = -1; } else if (REG_MULTI) { col = sub->list.multi[0].start_col; } else { col = (int)(sub->list.line[0].start - rex.line); } nfa_set_code(state->c); if (log_fd == NULL) { open_debug_log(kNone); } fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n", action, abs(state->id), lid, state->c, code, col, pim_info(pim)); } #endif /// @param l runtime state list /// @param state state to update /// @param subs pointers to subexpressions /// @param pim postponed match or NULL /// /// @return true if the same state is already in list "l" with the same /// positions as "subs". static bool has_state_with_pos(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim) FUNC_ATTR_NONNULL_ARG(1, 2, 3) { for (int i = 0; i < l->n; i++) { nfa_thread_T *thread = &l->t[i]; if (thread->state->id == state->id && sub_equal(&thread->subs.norm, &subs->norm) && (!rex.nfa_has_zsubexpr || sub_equal(&thread->subs.synt, &subs->synt)) && pim_equal(&thread->pim, pim)) { return true; } } return false; } // Return true if "one" and "two" are equal. That includes when both are not // set. static bool pim_equal(const nfa_pim_T *one, const nfa_pim_T *two) { const bool one_unused = (one == NULL || one->result == NFA_PIM_UNUSED); const bool two_unused = (two == NULL || two->result == NFA_PIM_UNUSED); if (one_unused) { // one is unused: equal when two is also unused return two_unused; } if (two_unused) { // one is used and two is not: not equal return false; } // compare the state id if (one->state->id != two->state->id) { return false; } // compare the position if (REG_MULTI) { return one->end.pos.lnum == two->end.pos.lnum && one->end.pos.col == two->end.pos.col; } return one->end.ptr == two->end.ptr; } // Return true if "state" leads to a NFA_MATCH without advancing the input. static bool match_follows(const nfa_state_T *startstate, int depth) FUNC_ATTR_NONNULL_ALL { const nfa_state_T *state = startstate; // avoid too much recursion if (depth > 10) { return false; } while (state != NULL) { switch (state->c) { case NFA_MATCH: case NFA_MCLOSE: case NFA_END_INVISIBLE: case NFA_END_INVISIBLE_NEG: case NFA_END_PATTERN: return true; case NFA_SPLIT: return match_follows(state->out, depth + 1) || match_follows(state->out1, depth + 1); case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_FIRST: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_FIRST: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_NEG_FIRST: case NFA_START_INVISIBLE_BEFORE_NEG: case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: case NFA_COMPOSING: // skip ahead to next state state = state->out1->out; continue; case NFA_ANY: case NFA_ANY_COMPOSING: case NFA_IDENT: case NFA_SIDENT: case NFA_KWORD: case NFA_SKWORD: case NFA_FNAME: case NFA_SFNAME: case NFA_PRINT: case NFA_SPRINT: case NFA_WHITE: case NFA_NWHITE: case NFA_DIGIT: case NFA_NDIGIT: case NFA_HEX: case NFA_NHEX: case NFA_OCTAL: case NFA_NOCTAL: case NFA_WORD: case NFA_NWORD: case NFA_HEAD: case NFA_NHEAD: case NFA_ALPHA: case NFA_NALPHA: case NFA_LOWER: case NFA_NLOWER: case NFA_UPPER: case NFA_NUPPER: case NFA_LOWER_IC: case NFA_NLOWER_IC: case NFA_UPPER_IC: case NFA_NUPPER_IC: case NFA_START_COLL: case NFA_START_NEG_COLL: case NFA_NEWL: // state will advance input return false; default: if (state->c > 0) { // state will advance input return false; } // Others: zero-width or possibly zero-width, might still find // a match at the same position, keep looking. break; } state = state->out; } return false; } /// @param l runtime state list /// @param state state to update /// @param subs pointers to subexpressions /// /// @return true if "state" is already in list "l". static bool state_in_list(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs) FUNC_ATTR_NONNULL_ALL { if (state->lastlist[nfa_ll_index] == l->id) { if (!rex.nfa_has_backref || has_state_with_pos(l, state, subs, NULL)) { return true; } } return false; } // Offset used for "off" by addstate_here(). #define ADDSTATE_HERE_OFFSET 10 /// Add "state" and possibly what follows to state list ".". /// /// @param l runtime state list /// @param state state to update /// @param subs_arg pointers to subexpressions /// @param pim postponed look-behind match /// @param off_arg byte offset, when -1 go to next line /// /// @return "subs_arg", possibly copied into temp_subs. /// NULL when recursiveness is too deep. static regsubs_T *addstate(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs_arg, nfa_pim_T *pim, int off_arg) FUNC_ATTR_NONNULL_ARG(1, 2) FUNC_ATTR_WARN_UNUSED_RESULT { int subidx; int off = off_arg; int add_here = false; int listindex = 0; int k; int found = false; nfa_thread_T *thread; struct multipos save_multipos; int save_in_use; uint8_t *save_ptr; int i; regsub_T *sub; regsubs_T *subs = subs_arg; static regsubs_T temp_subs; #ifdef REGEXP_DEBUG int did_print = false; #endif static int depth = 0; // This function is called recursively. When the depth is too much we run // out of stack and crash, limit recursiveness here. if (++depth >= 5000 || subs == NULL) { depth--; return NULL; } if (off_arg <= -ADDSTATE_HERE_OFFSET) { add_here = true; off = 0; listindex = -(off_arg + ADDSTATE_HERE_OFFSET); } switch (state->c) { case NFA_NCLOSE: case NFA_MCLOSE: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: case NFA_MOPEN: case NFA_ZEND: case NFA_SPLIT: case NFA_EMPTY: // These nodes are not added themselves but their "out" and/or // "out1" may be added below. break; case NFA_BOL: case NFA_BOF: // "^" won't match past end-of-line, don't bother trying. // Except when at the end of the line, or when we are going to the // next line for a look-behind match. if (rex.input > rex.line && *rex.input != NUL && (nfa_endp == NULL || !REG_MULTI || rex.lnum == nfa_endp->se_u.pos.lnum)) { goto skip_add; } FALLTHROUGH; case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_NOPEN: case NFA_ZSTART: // These nodes need to be added so that we can bail out when it // was added to this list before at the same position to avoid an // endless loop for "\(\)*" default: if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) { // This state is already in the list, don't add it again, // unless it is an MOPEN that is used for a backreference or // when there is a PIM. For NFA_MATCH check the position, // lower position is preferred. if (!rex.nfa_has_backref && pim == NULL && !l->has_pim && state->c != NFA_MATCH) { // When called from addstate_here() do insert before // existing states. if (add_here) { for (k = 0; k < l->n && k < listindex; k++) { if (l->t[k].state->id == state->id) { found = true; break; } } } if (!add_here || found) { skip_add: #ifdef REGEXP_DEBUG nfa_set_code(state->c); fprintf(log_fd, "> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n", abs(state->id), l->id, state->c, code, pim == NULL ? "NULL" : "yes", l->has_pim, found); #endif depth--; return subs; } } // Do not add the state again when it exists with the same // positions. if (has_state_with_pos(l, state, subs, pim)) { goto skip_add; } } // When there are backreferences or PIMs the number of states may // be (a lot) bigger than anticipated. if (l->n == l->len) { const int newlen = l->len * 3 / 2 + 50; const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T); if ((int64_t)(newsize >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); depth--; return NULL; } if (subs != &temp_subs) { // "subs" may point into the current array, need to make a // copy before it becomes invalid. copy_sub(&temp_subs.norm, &subs->norm); if (rex.nfa_has_zsubexpr) { copy_sub(&temp_subs.synt, &subs->synt); } subs = &temp_subs; } nfa_thread_T *const newt = xrealloc(l->t, newsize); l->t = newt; l->len = newlen; } // add the state to the list state->lastlist[nfa_ll_index] = l->id; thread = &l->t[l->n++]; thread->state = state; if (pim == NULL) { thread->pim.result = NFA_PIM_UNUSED; } else { copy_pim(&thread->pim, pim); l->has_pim = true; } copy_sub(&thread->subs.norm, &subs->norm); if (rex.nfa_has_zsubexpr) { copy_sub(&thread->subs.synt, &subs->synt); } #ifdef REGEXP_DEBUG report_state("Adding", &thread->subs.norm, state, l->id, pim); did_print = true; #endif } #ifdef REGEXP_DEBUG if (!did_print) { report_state("Processing", &subs->norm, state, l->id, pim); } #endif switch (state->c) { case NFA_MATCH: break; case NFA_SPLIT: // order matters here subs = addstate(l, state->out, subs, pim, off_arg); subs = addstate(l, state->out1, subs, pim, off_arg); break; case NFA_EMPTY: case NFA_NOPEN: case NFA_NCLOSE: subs = addstate(l, state->out, subs, pim, off_arg); break; case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_ZSTART: if (state->c == NFA_ZSTART) { subidx = 0; sub = &subs->norm; } else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { subidx = state->c - NFA_ZOPEN; sub = &subs->synt; } else { subidx = state->c - NFA_MOPEN; sub = &subs->norm; } // avoid compiler warnings save_ptr = NULL; CLEAR_FIELD(save_multipos); // Set the position (with "off" added) in the subexpression. Save // and restore it when it was in use. Otherwise fill any gap. if (REG_MULTI) { if (subidx < sub->in_use) { save_multipos = sub->list.multi[subidx]; save_in_use = -1; } else { save_in_use = sub->in_use; for (i = sub->in_use; i < subidx; i++) { sub->list.multi[i].start_lnum = -1; sub->list.multi[i].end_lnum = -1; } sub->in_use = subidx + 1; } if (off == -1) { sub->list.multi[subidx].start_lnum = rex.lnum + 1; sub->list.multi[subidx].start_col = 0; } else { sub->list.multi[subidx].start_lnum = rex.lnum; sub->list.multi[subidx].start_col = (colnr_T)(rex.input - rex.line + off); } sub->list.multi[subidx].end_lnum = -1; } else { if (subidx < sub->in_use) { save_ptr = sub->list.line[subidx].start; save_in_use = -1; } else { save_in_use = sub->in_use; for (i = sub->in_use; i < subidx; i++) { sub->list.line[i].start = NULL; sub->list.line[i].end = NULL; } sub->in_use = subidx + 1; } sub->list.line[subidx].start = rex.input + off; } subs = addstate(l, state->out, subs, pim, off_arg); if (subs == NULL) { break; } // "subs" may have changed, need to set "sub" again. if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { sub = &subs->synt; } else { sub = &subs->norm; } if (save_in_use == -1) { if (REG_MULTI) { sub->list.multi[subidx] = save_multipos; } else { sub->list.line[subidx].start = save_ptr; } } else { sub->in_use = save_in_use; } break; case NFA_MCLOSE: if (rex.nfa_has_zend && (REG_MULTI ? subs->norm.list.multi[0].end_lnum >= 0 : subs->norm.list.line[0].end != NULL)) { // Do not overwrite the position set by \ze. subs = addstate(l, state->out, subs, pim, off_arg); break; } FALLTHROUGH; case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: case NFA_ZEND: if (state->c == NFA_ZEND) { subidx = 0; sub = &subs->norm; } else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { subidx = state->c - NFA_ZCLOSE; sub = &subs->synt; } else { subidx = state->c - NFA_MCLOSE; sub = &subs->norm; } // We don't fill in gaps here, there must have been an MOPEN that // has done that. save_in_use = sub->in_use; if (sub->in_use <= subidx) { sub->in_use = subidx + 1; } if (REG_MULTI) { save_multipos = sub->list.multi[subidx]; if (off == -1) { sub->list.multi[subidx].end_lnum = rex.lnum + 1; sub->list.multi[subidx].end_col = 0; } else { sub->list.multi[subidx].end_lnum = rex.lnum; sub->list.multi[subidx].end_col = (colnr_T)(rex.input - rex.line + off); } // avoid compiler warnings save_ptr = NULL; } else { save_ptr = sub->list.line[subidx].end; sub->list.line[subidx].end = rex.input + off; // avoid compiler warnings CLEAR_FIELD(save_multipos); } subs = addstate(l, state->out, subs, pim, off_arg); if (subs == NULL) { break; } // "subs" may have changed, need to set "sub" again. if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { sub = &subs->synt; } else { sub = &subs->norm; } if (REG_MULTI) { sub->list.multi[subidx] = save_multipos; } else { sub->list.line[subidx].end = save_ptr; } sub->in_use = save_in_use; break; } depth--; return subs; } /// Like addstate(), but the new state(s) are put at position "*ip". /// Used for zero-width matches, next state to use is the added one. /// This makes sure the order of states to be tried does not change, which /// matters for alternatives. /// /// @param l runtime state list /// @param state state to update /// @param subs pointers to subexpressions /// @param pim postponed look-behind match static regsubs_T *addstate_here(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim, int *ip) FUNC_ATTR_NONNULL_ARG(1, 2, 5) FUNC_ATTR_WARN_UNUSED_RESULT { int tlen = l->n; int count; int listidx = *ip; // First add the state(s) at the end, so that we know how many there are. // Pass the listidx as offset (avoids adding another argument to // addstate()). regsubs_T *r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET); if (r == NULL) { return NULL; } // when "*ip" was at the end of the list, nothing to do if (listidx + 1 == tlen) { return r; } // re-order to put the new state at the current position count = l->n - tlen; if (count == 0) { return r; // no state got added } if (count == 1) { // overwrite the current state l->t[listidx] = l->t[l->n - 1]; } else if (count > 1) { if (l->n + count - 1 >= l->len) { // not enough space to move the new states, reallocate the list // and move the states to the right position const int newlen = l->len * 3 / 2 + 50; const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T); if ((int64_t)(newsize >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); return NULL; } nfa_thread_T *const newl = xmalloc(newsize); l->len = newlen; memmove(&(newl[0]), &(l->t[0]), sizeof(nfa_thread_T) * (size_t)listidx); memmove(&(newl[listidx]), &(l->t[l->n - count]), sizeof(nfa_thread_T) * (size_t)count); memmove(&(newl[listidx + count]), &(l->t[listidx + 1]), sizeof(nfa_thread_T) * (size_t)(l->n - count - listidx - 1)); xfree(l->t); l->t = newl; } else { // make space for new states, then move them from the // end to the current position memmove(&(l->t[listidx + count]), &(l->t[listidx + 1]), sizeof(nfa_thread_T) * (size_t)(l->n - listidx - 1)); memmove(&(l->t[listidx]), &(l->t[l->n - 1]), sizeof(nfa_thread_T) * (size_t)count); } } l->n--; *ip = listidx - 1; return r; } // Check character class "class" against current character c. static int check_char_class(int cls, int c) { switch (cls) { case NFA_CLASS_ALNUM: if (c >= 1 && c < 128 && isalnum(c)) { return OK; } break; case NFA_CLASS_ALPHA: if (c >= 1 && c < 128 && isalpha(c)) { return OK; } break; case NFA_CLASS_BLANK: if (c == ' ' || c == '\t') { return OK; } break; case NFA_CLASS_CNTRL: if (c >= 1 && c <= 127 && iscntrl(c)) { return OK; } break; case NFA_CLASS_DIGIT: if (ascii_isdigit(c)) { return OK; } break; case NFA_CLASS_GRAPH: if (c >= 1 && c <= 127 && isgraph(c)) { return OK; } break; case NFA_CLASS_LOWER: if (mb_islower(c) && c != 170 && c != 186) { return OK; } break; case NFA_CLASS_PRINT: if (vim_isprintc(c)) { return OK; } break; case NFA_CLASS_PUNCT: if (c >= 1 && c < 128 && ispunct(c)) { return OK; } break; case NFA_CLASS_SPACE: if ((c >= 9 && c <= 13) || (c == ' ')) { return OK; } break; case NFA_CLASS_UPPER: if (mb_isupper(c)) { return OK; } break; case NFA_CLASS_XDIGIT: if (ascii_isxdigit(c)) { return OK; } break; case NFA_CLASS_TAB: if (c == '\t') { return OK; } break; case NFA_CLASS_RETURN: if (c == '\r') { return OK; } break; case NFA_CLASS_BACKSPACE: if (c == '\b') { return OK; } break; case NFA_CLASS_ESCAPE: if (c == ESC) { return OK; } break; case NFA_CLASS_IDENT: if (vim_isIDc(c)) { return OK; } break; case NFA_CLASS_KEYWORD: if (reg_iswordc(c)) { return OK; } break; case NFA_CLASS_FNAME: if (vim_isfilec(c)) { return OK; } break; default: // should not be here :P siemsg(_(e_ill_char_class), (int64_t)cls); return FAIL; } return FAIL; } /// Check for a match with subexpression "subidx". /// /// @param sub pointers to subexpressions /// @param bytelen out: length of match in bytes /// /// @return true if it matches. static int match_backref(regsub_T *sub, int subidx, int *bytelen) { int len; if (sub->in_use <= subidx) { retempty: // backref was not set, match an empty string *bytelen = 0; return true; } if (REG_MULTI) { if (sub->list.multi[subidx].start_lnum < 0 || sub->list.multi[subidx].end_lnum < 0) { goto retempty; } if (sub->list.multi[subidx].start_lnum == rex.lnum && sub->list.multi[subidx].end_lnum == rex.lnum) { len = sub->list.multi[subidx].end_col - sub->list.multi[subidx].start_col; if (cstrncmp((char *)rex.line + sub->list.multi[subidx].start_col, (char *)rex.input, &len) == 0) { *bytelen = len; return true; } } else { if (match_with_backref(sub->list.multi[subidx].start_lnum, sub->list.multi[subidx].start_col, sub->list.multi[subidx].end_lnum, sub->list.multi[subidx].end_col, bytelen) == RA_MATCH) { return true; } } } else { if (sub->list.line[subidx].start == NULL || sub->list.line[subidx].end == NULL) { goto retempty; } len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start); if (cstrncmp((char *)sub->list.line[subidx].start, (char *)rex.input, &len) == 0) { *bytelen = len; return true; } } return false; } /// Check for a match with \z subexpression "subidx". /// /// @param bytelen out: length of match in bytes /// /// @return true if it matches. static int match_zref(int subidx, int *bytelen) { int len; cleanup_zsubexpr(); if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) { // backref was not set, match an empty string *bytelen = 0; return true; } len = (int)strlen((char *)re_extmatch_in->matches[subidx]); if (cstrncmp((char *)re_extmatch_in->matches[subidx], (char *)rex.input, &len) == 0) { *bytelen = len; return true; } return false; } // Save list IDs for all NFA states of "prog" into "list". // Also reset the IDs to zero. // Only used for the recursive value lastlist[1]. static void nfa_save_listids(nfa_regprog_T *prog, int *list) { int i; nfa_state_T *p; // Order in the list is reverse, it's a bit faster that way. p = &prog->state[0]; for (i = prog->nstate; --i >= 0;) { list[i] = p->lastlist[1]; p->lastlist[1] = 0; p++; } } // Restore list IDs from "list" to all NFA states. static void nfa_restore_listids(nfa_regprog_T *prog, const int *list) { int i; nfa_state_T *p; p = &prog->state[0]; for (i = prog->nstate; --i >= 0;) { p->lastlist[1] = list[i]; p++; } } static bool nfa_re_num_cmp(uintmax_t val, int op, uintmax_t pos) { if (op == 1) { return pos > val; } if (op == 2) { return pos < val; } return val == pos; } // Recursively call nfa_regmatch() // "pim" is NULL or contains info about a Postponed Invisible Match (start // position). static int recursive_regmatch(nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog, regsubs_T *submatch, regsubs_T *m, int **listids, int *listids_len) FUNC_ATTR_NONNULL_ARG(1, 3, 5, 6, 7) { const int save_reginput_col = (int)(rex.input - rex.line); const int save_reglnum = rex.lnum; const int save_nfa_match = nfa_match; const int save_nfa_listid = rex.nfa_listid; save_se_T *const save_nfa_endp = nfa_endp; save_se_T endpos; save_se_T *endposp = NULL; int need_restore = false; if (pim != NULL) { // start at the position where the postponed match was if (REG_MULTI) { rex.input = rex.line + pim->end.pos.col; } else { rex.input = pim->end.ptr; } } if (state->c == NFA_START_INVISIBLE_BEFORE || state->c == NFA_START_INVISIBLE_BEFORE_FIRST || state->c == NFA_START_INVISIBLE_BEFORE_NEG || state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) { // The recursive match must end at the current position. When "pim" is // not NULL it specifies the current position. endposp = &endpos; if (REG_MULTI) { if (pim == NULL) { endpos.se_u.pos.col = (int)(rex.input - rex.line); endpos.se_u.pos.lnum = rex.lnum; } else { endpos.se_u.pos = pim->end.pos; } } else { if (pim == NULL) { endpos.se_u.ptr = rex.input; } else { endpos.se_u.ptr = pim->end.ptr; } } // Go back the specified number of bytes, or as far as the // start of the previous line, to try matching "\@<=" or // not matching "\@val <= 0) { if (REG_MULTI) { rex.line = (uint8_t *)reg_getline(--rex.lnum); if (rex.line == NULL) { // can't go before the first line rex.line = (uint8_t *)reg_getline(++rex.lnum); } } rex.input = rex.line; } else { if (REG_MULTI && (int)(rex.input - rex.line) < state->val) { // Not enough bytes in this line, go to end of // previous line. rex.line = (uint8_t *)reg_getline(--rex.lnum); if (rex.line == NULL) { // can't go before the first line rex.line = (uint8_t *)reg_getline(++rex.lnum); rex.input = rex.line; } else { rex.input = rex.line + reg_getline_len(rex.lnum); } } if ((int)(rex.input - rex.line) >= state->val) { rex.input -= state->val; rex.input -= utf_head_off((char *)rex.line, (char *)rex.input); } else { rex.input = rex.line; } } } #ifdef REGEXP_DEBUG if (log_fd != stderr) { fclose(log_fd); } log_fd = NULL; #endif // Have to clear the lastlist field of the NFA nodes, so that // nfa_regmatch() and addstate() can run properly after recursion. if (nfa_ll_index == 1) { // Already calling nfa_regmatch() recursively. Save the lastlist[1] // values and clear them. if (*listids == NULL || *listids_len < prog->nstate) { xfree(*listids); *listids = xmalloc(sizeof(**listids) * (size_t)prog->nstate); *listids_len = prog->nstate; } nfa_save_listids(prog, *listids); need_restore = true; // any value of rex.nfa_listid will do } else { // First recursive nfa_regmatch() call, switch to the second lastlist // entry. Make sure rex.nfa_listid is different from a previous // recursive call, because some states may still have this ID. nfa_ll_index++; if (rex.nfa_listid <= rex.nfa_alt_listid) { rex.nfa_listid = rex.nfa_alt_listid; } } // Call nfa_regmatch() to check if the current concat matches at this // position. The concat ends with the node NFA_END_INVISIBLE nfa_endp = endposp; const int result = nfa_regmatch(prog, state->out, submatch, m); if (need_restore) { nfa_restore_listids(prog, *listids); } else { nfa_ll_index--; rex.nfa_alt_listid = rex.nfa_listid; } // restore position in input text rex.lnum = save_reglnum; if (REG_MULTI) { rex.line = (uint8_t *)reg_getline(rex.lnum); } rex.input = rex.line + save_reginput_col; if (result != NFA_TOO_EXPENSIVE) { nfa_match = save_nfa_match; rex.nfa_listid = save_nfa_listid; } nfa_endp = save_nfa_endp; #ifdef REGEXP_DEBUG open_debug_log(result); #endif return result; } // Estimate the chance of a match with "state" failing. // empty match: 0 // NFA_ANY: 1 // specific character: 99 static int failure_chance(nfa_state_T *state, int depth) { int c = state->c; int l, r; // detect looping if (depth > 4) { return 1; } switch (c) { case NFA_SPLIT: if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT) { // avoid recursive stuff return 1; } // two alternatives, use the lowest failure chance l = failure_chance(state->out, depth + 1); r = failure_chance(state->out1, depth + 1); return l < r ? l : r; case NFA_ANY: // matches anything, unlikely to fail return 1; case NFA_MATCH: case NFA_MCLOSE: case NFA_ANY_COMPOSING: // empty match works always return 0; case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_FIRST: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_NEG_FIRST: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_FIRST: case NFA_START_INVISIBLE_BEFORE_NEG: case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: case NFA_START_PATTERN: // recursive regmatch is expensive, use low failure chance return 5; case NFA_BOL: case NFA_EOL: case NFA_BOF: case NFA_EOF: case NFA_NEWL: return 99; case NFA_BOW: case NFA_EOW: return 90; case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: case NFA_NOPEN: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: case NFA_NCLOSE: return failure_chance(state->out, depth + 1); case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: // backreferences don't match in many places return 94; case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_COL_GT: case NFA_COL_LT: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_MARK_GT: case NFA_MARK_LT: case NFA_VISUAL: // before/after positions don't match very often return 85; case NFA_LNUM: return 90; case NFA_CURSOR: case NFA_COL: case NFA_VCOL: case NFA_MARK: // specific positions rarely match return 98; case NFA_COMPOSING: return 95; default: if (c > 0) { // character match fails often return 95; } } // something else, includes character classes return 50; } // Skip until the char "c" we know a match must start with. static int skip_to_start(int c, colnr_T *colp) { const uint8_t *const s = (uint8_t *)cstrchr((char *)rex.line + *colp, c); if (s == NULL) { return FAIL; } *colp = (int)(s - rex.line); return OK; } // Check for a match with match_text. // Called after skip_to_start() has found regstart. // Returns zero for no match, 1 for a match. static int find_match_text(colnr_T *startcol, int regstart, uint8_t *match_text) { colnr_T col = *startcol; const int regstart_len = utf_char2len(regstart); while (true) { bool match = true; uint8_t *s1 = match_text; // skip regstart int regstart_len2 = regstart_len; if (regstart_len2 > 1 && utf_ptr2len((char *)rex.line + col) != regstart_len2) { // because of case-folding of the previously matched text, we may need // to skip fewer bytes than utf_char2len(regstart) regstart_len2 = utf_char2len(utf_fold(regstart)); } uint8_t *s2 = rex.line + col + regstart_len2; while (*s1) { int c1_len = utf_ptr2len((char *)s1); int c1 = utf_ptr2char((char *)s1); int c2_len = utf_ptr2len((char *)s2); int c2 = utf_ptr2char((char *)s2); if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) { match = false; break; } s1 += c1_len; s2 += c2_len; } if (match // check that no composing char follows && !utf_iscomposing_legacy(utf_ptr2char((char *)s2))) { cleanup_subexpr(); if (REG_MULTI) { rex.reg_startpos[0].lnum = rex.lnum; rex.reg_startpos[0].col = col; rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = (colnr_T)(s2 - rex.line); } else { rex.reg_startp[0] = rex.line + col; rex.reg_endp[0] = s2; } *startcol = col; return 1L; } // Try finding regstart after the current match. col += regstart_len; // skip regstart if (skip_to_start(regstart, &col) == FAIL) { break; } } *startcol = col; return 0L; } static int nfa_did_time_out(void) { if (nfa_time_limit != NULL && profile_passed_limit(*nfa_time_limit)) { if (nfa_timed_out != NULL) { *nfa_timed_out = true; } return true; } return false; } /// Main matching routine. /// /// Run NFA to determine whether it matches rex.input. /// /// When "nfa_endp" is not NULL it is a required end-of-match position. /// /// Return true if there is a match, false if there is no match, /// NFA_TOO_EXPENSIVE if we end up with too many states. /// When there is a match "submatch" contains the positions. /// /// Note: Caller must ensure that: start != NULL. static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m) FUNC_ATTR_NONNULL_ARG(1, 2, 4) { int result = false; int flag = 0; bool go_to_nextline = false; nfa_thread_T *t; nfa_list_T list[2]; int listidx; nfa_list_T *thislist; nfa_list_T *nextlist; int *listids = NULL; int listids_len = 0; nfa_state_T *add_state; bool add_here; int add_count; int add_off = 0; int toplevel = start->c == NFA_MOPEN; regsubs_T *r; // Some patterns may take a long time to match, especially when using // recursive_regmatch(). Allow interrupting them with CTRL-C. reg_breakcheck(); if (got_int) { return false; } if (nfa_did_time_out()) { return false; } #ifdef NFA_REGEXP_DEBUG_LOG FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a"); if (debug == NULL) { semsg("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG); return false; } #endif nfa_match = false; // Allocate memory for the lists of nodes. size_t size = (size_t)(prog->nstate + 1) * sizeof(nfa_thread_T); list[0].t = xmalloc(size); list[0].len = prog->nstate + 1; list[1].t = xmalloc(size); list[1].len = prog->nstate + 1; #ifdef REGEXP_DEBUG log_fd = fopen(NFA_REGEXP_RUN_LOG, "a"); if (log_fd == NULL) { emsg(_(e_log_open_failed)); log_fd = stderr; } fprintf(log_fd, "**********************************\n"); nfa_set_code(start->c); fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n", abs(start->id), code); fprintf(log_fd, "**********************************\n"); #endif thislist = &list[0]; thislist->n = 0; thislist->has_pim = false; nextlist = &list[1]; nextlist->n = 0; nextlist->has_pim = false; #ifdef REGEXP_DEBUG fprintf(log_fd, "(---) STARTSTATE first\n"); #endif thislist->id = rex.nfa_listid + 1; // Inline optimized code for addstate(thislist, start, m, 0) if we know // it's the first MOPEN. if (toplevel) { if (REG_MULTI) { m->norm.list.multi[0].start_lnum = rex.lnum; m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line); m->norm.orig_start_col = m->norm.list.multi[0].start_col; } else { m->norm.list.line[0].start = rex.input; } m->norm.in_use = 1; r = addstate(thislist, start->out, m, NULL, 0); } else { r = addstate(thislist, start, m, NULL, 0); } if (r == NULL) { nfa_match = NFA_TOO_EXPENSIVE; goto theend; } #define ADD_STATE_IF_MATCH(state) \ if (result) { \ add_state = (state)->out; \ add_off = clen; \ } // Run for each character. while (true) { int curc = utf_ptr2char((char *)rex.input); int clen = utfc_ptr2len((char *)rex.input); if (curc == NUL) { clen = 0; go_to_nextline = false; } // swap lists thislist = &list[flag]; nextlist = &list[flag ^= 1]; nextlist->n = 0; // clear nextlist nextlist->has_pim = false; rex.nfa_listid++; if (prog->re_engine == AUTOMATIC_ENGINE && (rex.nfa_listid >= NFA_MAX_STATES)) { // Too many states, retry with old engine. nfa_match = NFA_TOO_EXPENSIVE; goto theend; } thislist->id = rex.nfa_listid; nextlist->id = rex.nfa_listid + 1; #ifdef REGEXP_DEBUG fprintf(log_fd, "------------------------------------------\n"); fprintf(log_fd, ">>> Reginput is \"%s\"\n", rex.input); fprintf(log_fd, ">>> Advanced one character... Current char is %c (code %d) \n", curc, (int)curc); fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n); { int i; for (i = 0; i < thislist->n; i++) { fprintf(log_fd, "%d ", abs(thislist->t[i].state->id)); } } fprintf(log_fd, "\n"); #endif #ifdef NFA_REGEXP_DEBUG_LOG fprintf(debug, "\n-------------------\n"); #endif // If the state lists are empty we can stop. if (thislist->n == 0) { break; } // compute nextlist for (listidx = 0; listidx < thislist->n; listidx++) { // If the list gets very long there probably is something wrong. // At least allow interrupting with CTRL-C. reg_breakcheck(); if (got_int) { break; } if (nfa_time_limit != NULL && ++nfa_time_count == 20) { nfa_time_count = 0; if (nfa_did_time_out()) { break; } } t = &thislist->t[listidx]; #ifdef NFA_REGEXP_DEBUG_LOG nfa_set_code(t->state->c); fprintf(debug, "%s, ", code); #endif #ifdef REGEXP_DEBUG { int col; if (t->subs.norm.in_use <= 0) { col = -1; } else if (REG_MULTI) { col = t->subs.norm.list.multi[0].start_col; } else { col = (int)(t->subs.norm.list.line[0].start - rex.line); } nfa_set_code(t->state->c); fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n", abs(t->state->id), (int)t->state->c, code, col, pim_info(&t->pim)); } #endif // Handle the possible codes of the current state. // The most important is NFA_MATCH. add_state = NULL; add_here = false; add_count = 0; switch (t->state->c) { case NFA_MATCH: // If the match is not at the start of the line, ends before a // composing characters and rex.reg_icombine is not set, that // is not really a match. if (!rex.reg_icombine && rex.input != rex.line && utf_iscomposing_legacy(curc)) { break; } nfa_match = true; copy_sub(&submatch->norm, &t->subs.norm); if (rex.nfa_has_zsubexpr) { copy_sub(&submatch->synt, &t->subs.synt); } #ifdef REGEXP_DEBUG log_subsexpr(&t->subs); #endif // Found the left-most longest match, do not look at any other // states at this position. When the list of states is going // to be empty quit without advancing, so that "rex.input" is // correct. if (nextlist->n == 0) { clen = 0; } goto nextchar; case NFA_END_INVISIBLE: case NFA_END_INVISIBLE_NEG: case NFA_END_PATTERN: // This is only encountered after a NFA_START_INVISIBLE or // NFA_START_INVISIBLE_BEFORE node. // They surround a zero-width group, used with "\@=", "\&", // "\@!", "\@<=" and "\@se_u.pos.lnum, (int)(rex.input - rex.line), nfa_endp->se_u.pos.col); } else { fprintf(log_fd, "Current col: %d, endp col: %d\n", (int)(rex.input - rex.line), (int)(nfa_endp->se_u.ptr - rex.input)); } } #endif // If "nfa_endp" is set it's only a match if it ends at // "nfa_endp" if (nfa_endp != NULL && (REG_MULTI ? (rex.lnum != nfa_endp->se_u.pos.lnum || (int)(rex.input - rex.line) != nfa_endp->se_u.pos.col) : rex.input != nfa_endp->se_u.ptr)) { break; } // do not set submatches for \@! if (t->state->c != NFA_END_INVISIBLE_NEG) { copy_sub(&m->norm, &t->subs.norm); if (rex.nfa_has_zsubexpr) { copy_sub(&m->synt, &t->subs.synt); } } #ifdef REGEXP_DEBUG fprintf(log_fd, "Match found:\n"); log_subsexpr(m); #endif nfa_match = true; // See comment above at "goto nextchar". if (nextlist->n == 0) { clen = 0; } goto nextchar; case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_FIRST: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_NEG_FIRST: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_FIRST: case NFA_START_INVISIBLE_BEFORE_NEG: case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: #ifdef REGEXP_DEBUG fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n", failure_chance(t->state->out, 0), failure_chance(t->state->out1->out, 0)); #endif // Do it directly if there already is a PIM or when // nfa_postprocess() detected it will work better. if (t->pim.result != NFA_PIM_UNUSED || t->state->c == NFA_START_INVISIBLE_FIRST || t->state->c == NFA_START_INVISIBLE_NEG_FIRST || t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) { int in_use = m->norm.in_use; // Copy submatch info for the recursive call, opposite // of what happens on success below. copy_sub_off(&m->norm, &t->subs.norm); if (rex.nfa_has_zsubexpr) { copy_sub_off(&m->synt, &t->subs.synt); } // First try matching the invisible match, then what // follows. result = recursive_regmatch(t->state, NULL, prog, submatch, m, &listids, &listids_len); if (result == NFA_TOO_EXPENSIVE) { nfa_match = result; goto theend; } // for \@! and \@state->c == NFA_START_INVISIBLE_NEG || t->state->c == NFA_START_INVISIBLE_NEG_FIRST || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) { // Copy submatch info from the recursive call copy_sub_off(&t->subs.norm, &m->norm); if (rex.nfa_has_zsubexpr) { copy_sub_off(&t->subs.synt, &m->synt); } // If the pattern has \ze and it matched in the // sub pattern, use it. copy_ze_off(&t->subs.norm, &m->norm); // t->state->out1 is the corresponding // END_INVISIBLE node; Add its out to the current // list (zero-width match). add_here = true; add_state = t->state->out1->out; } m->norm.in_use = in_use; } else { nfa_pim_T pim; // First try matching what follows. Only if a match // is found verify the invisible match matches. Add a // nfa_pim_T to the following states, it contains info // about the invisible match. pim.state = t->state; pim.result = NFA_PIM_TODO; pim.subs.norm.in_use = 0; pim.subs.synt.in_use = 0; if (REG_MULTI) { pim.end.pos.col = (int)(rex.input - rex.line); pim.end.pos.lnum = rex.lnum; } else { pim.end.ptr = rex.input; } // t->state->out1 is the corresponding END_INVISIBLE // node; Add its out to the current list (zero-width // match). if (addstate_here(thislist, t->state->out1->out, &t->subs, &pim, &listidx) == NULL) { nfa_match = NFA_TOO_EXPENSIVE; goto theend; } } break; case NFA_START_PATTERN: { nfa_state_T *skip = NULL; #ifdef REGEXP_DEBUG int skip_lid = 0; #endif // There is no point in trying to match the pattern if the // output state is not going to be added to the list. if (state_in_list(nextlist, t->state->out1->out, &t->subs)) { skip = t->state->out1->out; #ifdef REGEXP_DEBUG skip_lid = nextlist->id; #endif } else if (state_in_list(nextlist, t->state->out1->out->out, &t->subs)) { skip = t->state->out1->out->out; #ifdef REGEXP_DEBUG skip_lid = nextlist->id; #endif } else if (state_in_list(thislist, t->state->out1->out->out, &t->subs)) { skip = t->state->out1->out->out; #ifdef REGEXP_DEBUG skip_lid = thislist->id; #endif } if (skip != NULL) { #ifdef REGEXP_DEBUG nfa_set_code(skip->c); fprintf(log_fd, "> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n", abs(skip->id), skip_lid, skip->c, code); #endif break; } // Copy submatch info to the recursive call, opposite of what // happens afterwards. copy_sub_off(&m->norm, &t->subs.norm); if (rex.nfa_has_zsubexpr) { copy_sub_off(&m->synt, &t->subs.synt); } // First try matching the pattern. result = recursive_regmatch(t->state, NULL, prog, submatch, m, &listids, &listids_len); if (result == NFA_TOO_EXPENSIVE) { nfa_match = result; goto theend; } if (result) { int bytelen; #ifdef REGEXP_DEBUG fprintf(log_fd, "NFA_START_PATTERN matches:\n"); log_subsexpr(m); #endif // Copy submatch info from the recursive call copy_sub_off(&t->subs.norm, &m->norm); if (rex.nfa_has_zsubexpr) { copy_sub_off(&t->subs.synt, &m->synt); } // Now we need to skip over the matched text and then // continue with what follows. if (REG_MULTI) { // TODO(RE): multi-line match bytelen = m->norm.list.multi[0].end_col - (int)(rex.input - rex.line); } else { bytelen = (int)(m->norm.list.line[0].end - rex.input); } #ifdef REGEXP_DEBUG fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen); #endif if (bytelen == 0) { // empty match, output of corresponding // NFA_END_PATTERN/NFA_SKIP to be used at current // position add_here = true; add_state = t->state->out1->out->out; } else if (bytelen <= clen) { // match current character, output of corresponding // NFA_END_PATTERN to be used at next position. add_state = t->state->out1->out->out; add_off = clen; } else { // skip over the matched characters, set character // count in NFA_SKIP add_state = t->state->out1->out; add_off = bytelen; add_count = bytelen - clen; } } break; } case NFA_BOL: if (rex.input == rex.line) { add_here = true; add_state = t->state->out; } break; case NFA_EOL: if (curc == NUL) { add_here = true; add_state = t->state->out; } break; case NFA_BOW: result = true; if (curc == NUL) { result = false; } else { int this_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab); if (this_class <= 1) { result = false; } else if (reg_prev_class() == this_class) { result = false; } } if (result) { add_here = true; add_state = t->state->out; } break; case NFA_EOW: result = true; if (rex.input == rex.line) { result = false; } else { int this_class, prev_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) { result = false; } } if (result) { add_here = true; add_state = t->state->out; } break; case NFA_BOF: if (rex.lnum == 0 && rex.input == rex.line && (!REG_MULTI || rex.reg_firstlnum == 1)) { add_here = true; add_state = t->state->out; } break; case NFA_EOF: if (rex.lnum == rex.reg_maxline && curc == NUL) { add_here = true; add_state = t->state->out; } break; case NFA_COMPOSING: { int mc = curc; int len = 0; nfa_state_T *end; nfa_state_T *sta; int cchars[MAX_MCO]; int ccount = 0; int j; sta = t->state->out; len = 0; if (utf_iscomposing_legacy(sta->c)) { // Only match composing character(s), ignore base // character. Used for ".{composing}" and "{composing}" // (no preceding character). len += utf_char2len(mc); } if (rex.reg_icombine && len == 0) { // If \Z was present, then ignore composing characters. // When ignoring the base character this always matches. if (sta->c != curc) { result = FAIL; } else { result = OK; } while (sta->c != NFA_END_COMPOSING) { sta = sta->out; } } else if (len > 0 || mc == sta->c) { // Check base character matches first, unless ignored. if (len == 0) { len += utf_char2len(mc); sta = sta->out; } // We don't care about the order of composing characters. // Get them into cchars[] first. while (len < clen) { mc = utf_ptr2char((char *)rex.input + len); cchars[ccount++] = mc; len += utf_char2len(mc); if (ccount == MAX_MCO) { break; } } // Check that each composing char in the pattern matches a // composing char in the text. We do not check if all // composing chars are matched. result = OK; while (sta->c != NFA_END_COMPOSING) { for (j = 0; j < ccount; j++) { if (cchars[j] == sta->c) { break; } } if (j == ccount) { result = FAIL; break; } sta = sta->out; } } else { result = FAIL; } end = t->state->out1; // NFA_END_COMPOSING ADD_STATE_IF_MATCH(end); break; } case NFA_NEWL: if (curc == NUL && !rex.reg_line_lbr && REG_MULTI && rex.lnum <= rex.reg_maxline) { go_to_nextline = true; // Pass -1 for the offset, which means taking the position // at the start of the next line. add_state = t->state->out; add_off = -1; } else if (curc == '\n' && rex.reg_line_lbr) { // match \n as if it is an ordinary character add_state = t->state->out; add_off = 1; } break; case NFA_START_COLL: case NFA_START_NEG_COLL: { // What follows is a list of characters, until NFA_END_COLL. // One of them must match or none of them must match. nfa_state_T *state; int result_if_matched; int c1, c2; // Never match EOL. If it's part of the collection it is added // as a separate state with an OR. if (curc == NUL) { break; } state = t->state->out; result_if_matched = (t->state->c == NFA_START_COLL); while (true) { if (state->c == NFA_COMPOSING) { int mc = curc; int len = 0; nfa_state_T *end; nfa_state_T *sta; int cchars[MAX_MCO]; int ccount = 0; int j; sta = t->state->out->out; if (utf_iscomposing_legacy(sta->c)) { // Only match composing character(s), ignore base // character. Used for ".{composing}" and "{composing}" // (no preceding character). len += utf_char2len(mc); } if (rex.reg_icombine && len == 0) { // If \Z was present, then ignore composing characters. // When ignoring the base character this always matches. if (sta->c != curc) { result = FAIL; } else { result = OK; } while (sta->c != NFA_END_COMPOSING) { sta = sta->out; } } // Check base character matches first, unless ignored. else if (len > 0 || mc == sta->c) { if (len == 0) { len += utf_char2len(mc); sta = sta->out; } // We don't care about the order of composing characters. // Get them into cchars[] first. while (len < clen) { mc = utf_ptr2char((char *)rex.input + len); cchars[ccount++] = mc; len += utf_char2len(mc); if (ccount == MAX_MCO) { break; } } // Check that each composing char in the pattern matches a // composing char in the text. We do not check if all // composing chars are matched. result = OK; while (sta->c != NFA_END_COMPOSING) { for (j = 0; j < ccount; j++) { if (cchars[j] == sta->c) { break; } } if (j == ccount) { result = FAIL; break; } sta = sta->out; } } else { result = FAIL; } if (t->state->out->out1->c == NFA_END_COMPOSING) { end = t->state->out->out1; ADD_STATE_IF_MATCH(end); } break; } if (state->c == NFA_END_COLL) { result = !result_if_matched; break; } if (state->c == NFA_RANGE_MIN) { c1 = state->val; state = state->out; // advance to NFA_RANGE_MAX c2 = state->val; #ifdef REGEXP_DEBUG fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n", curc, c1, c2); #endif if (curc >= c1 && curc <= c2) { result = result_if_matched; break; } if (rex.reg_ic) { int curc_low = utf_fold(curc); int done = false; for (; c1 <= c2; c1++) { if (utf_fold(c1) == curc_low) { result = result_if_matched; done = true; break; } } if (done) { break; } } } else if (state->c < 0 ? check_char_class(state->c, curc) : (curc == state->c || (rex.reg_ic && utf_fold(curc) == utf_fold(state->c)))) { result = result_if_matched; break; } state = state->out; } if (result) { // next state is in out of the NFA_END_COLL, out1 of // START points to the END state add_state = t->state->out1->out; add_off = clen; } break; } case NFA_ANY: // Any char except NUL, (end of input) does not match. if (curc > 0) { add_state = t->state->out; add_off = clen; } break; case NFA_ANY_COMPOSING: // On a composing character skip over it. Otherwise do // nothing. Always matches. if (utf_iscomposing_legacy(curc)) { add_off = clen; } else { add_here = true; add_off = 0; } add_state = t->state->out; break; // Character classes like \a for alpha, \d for digit etc. case NFA_IDENT: // \i result = vim_isIDc(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_SIDENT: // \I result = !ascii_isdigit(curc) && vim_isIDc(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_KWORD: // \k result = vim_iswordp_buf((char *)rex.input, rex.reg_buf); ADD_STATE_IF_MATCH(t->state); break; case NFA_SKWORD: // \K result = !ascii_isdigit(curc) && vim_iswordp_buf((char *)rex.input, rex.reg_buf); ADD_STATE_IF_MATCH(t->state); break; case NFA_FNAME: // \f result = vim_isfilec(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_SFNAME: // \F result = !ascii_isdigit(curc) && vim_isfilec(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_PRINT: // \p result = vim_isprintc(utf_ptr2char((char *)rex.input)); ADD_STATE_IF_MATCH(t->state); break; case NFA_SPRINT: // \P result = !ascii_isdigit(curc) && vim_isprintc(utf_ptr2char((char *)rex.input)); ADD_STATE_IF_MATCH(t->state); break; case NFA_WHITE: // \s result = ascii_iswhite(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NWHITE: // \S result = curc != NUL && !ascii_iswhite(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_DIGIT: // \d result = ri_digit(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NDIGIT: // \D result = curc != NUL && !ri_digit(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_HEX: // \x result = ri_hex(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NHEX: // \X result = curc != NUL && !ri_hex(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_OCTAL: // \o result = ri_octal(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NOCTAL: // \O result = curc != NUL && !ri_octal(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_WORD: // \w result = ri_word(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NWORD: // \W result = curc != NUL && !ri_word(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_HEAD: // \h result = ri_head(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NHEAD: // \H result = curc != NUL && !ri_head(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_ALPHA: // \a result = ri_alpha(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NALPHA: // \A result = curc != NUL && !ri_alpha(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_LOWER: // \l result = ri_lower(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NLOWER: // \L result = curc != NUL && !ri_lower(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_UPPER: // \u result = ri_upper(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NUPPER: // \U result = curc != NUL && !ri_upper(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_LOWER_IC: // [a-z] result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc)); ADD_STATE_IF_MATCH(t->state); break; case NFA_NLOWER_IC: // [^a-z] result = curc != NUL && !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc))); ADD_STATE_IF_MATCH(t->state); break; case NFA_UPPER_IC: // [A-Z] result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc)); ADD_STATE_IF_MATCH(t->state); break; case NFA_NUPPER_IC: // [^A-Z] result = curc != NUL && !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc))); ADD_STATE_IF_MATCH(t->state); break; case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: // \1 .. \9 \z1 .. \z9 { int subidx; int bytelen; if (t->state->c <= NFA_BACKREF9) { subidx = t->state->c - NFA_BACKREF1 + 1; result = match_backref(&t->subs.norm, subidx, &bytelen); } else { subidx = t->state->c - NFA_ZREF1 + 1; result = match_zref(subidx, &bytelen); } if (result) { if (bytelen == 0) { // empty match always works, output of NFA_SKIP to be // used next add_here = true; add_state = t->state->out->out; } else if (bytelen <= clen) { // match current character, jump ahead to out of // NFA_SKIP add_state = t->state->out->out; add_off = clen; } else { // skip over the matched characters, set character // count in NFA_SKIP add_state = t->state->out; add_off = bytelen; add_count = bytelen - clen; } } break; } case NFA_SKIP: // character of previous matching \1 .. \9 or \@> if (t->count - clen <= 0) { // end of match, go to what follows add_state = t->state->out; add_off = clen; } else { // add state again with decremented count add_state = t->state; add_off = 0; add_count = t->count - clen; } break; case NFA_LNUM: case NFA_LNUM_GT: case NFA_LNUM_LT: assert(t->state->val >= 0 && !((rex.reg_firstlnum > 0 && rex.lnum > LONG_MAX - rex.reg_firstlnum) || (rex.reg_firstlnum < 0 && rex.lnum < LONG_MIN + rex.reg_firstlnum)) && rex.lnum + rex.reg_firstlnum >= 0); result = (REG_MULTI && nfa_re_num_cmp((uintmax_t)t->state->val, t->state->c - NFA_LNUM, (uintmax_t)rex.lnum + (uintmax_t)rex.reg_firstlnum)); if (result) { add_here = true; add_state = t->state->out; } break; case NFA_COL: case NFA_COL_GT: case NFA_COL_LT: assert(t->state->val >= 0 && rex.input >= rex.line && (uintmax_t)(rex.input - rex.line) <= UINTMAX_MAX - 1); result = nfa_re_num_cmp((uintmax_t)t->state->val, t->state->c - NFA_COL, (uintmax_t)(rex.input - rex.line + 1)); if (result) { add_here = true; add_state = t->state->out; } break; case NFA_VCOL: case NFA_VCOL_GT: case NFA_VCOL_LT: { int op = t->state->c - NFA_VCOL; colnr_T col = (colnr_T)(rex.input - rex.line); // Bail out quickly when there can't be a match, avoid the overhead of // win_linetabsize() on long lines. if (op != 1 && col > t->state->val * MB_MAXBYTES) { break; } result = false; win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; if (op == 1 && col - 1 > t->state->val && col > 100) { int64_t ts = (int64_t)wp->w_buffer->b_p_ts; // Guess that a character won't use more columns than 'tabstop', // with a minimum of 4. if (ts < 4) { ts = 4; } result = col > t->state->val * ts; } if (!result) { linenr_T lnum = REG_MULTI ? rex.reg_firstlnum + rex.lnum : 1; if (REG_MULTI && (lnum <= 0 || lnum > wp->w_buffer->b_ml.ml_line_count)) { lnum = 1; } int vcol = win_linetabsize(wp, lnum, (char *)rex.line, col); assert(t->state->val >= 0); result = nfa_re_num_cmp((uintmax_t)t->state->val, op, (uintmax_t)vcol + 1); } if (result) { add_here = true; add_state = t->state->out; } } break; case NFA_MARK: case NFA_MARK_GT: case NFA_MARK_LT: { size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0; fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, t->state->val); // Line may have been freed, get it again. if (REG_MULTI) { rex.line = (uint8_t *)reg_getline(rex.lnum); rex.input = rex.line + col; } // Compare the mark position to the match position, if the mark // exists and mark is set in reg_buf. if (fm != NULL && fm->mark.lnum > 0) { pos_T *pos = &fm->mark; const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum && pos->col == MAXCOL ? reg_getline_len(pos->lnum - rex.reg_firstlnum) : pos->col; result = pos->lnum == rex.lnum + rex.reg_firstlnum ? (pos_col == (colnr_T)(rex.input - rex.line) ? t->state->c == NFA_MARK : (pos_col < (colnr_T)(rex.input - rex.line) ? t->state->c == NFA_MARK_GT : t->state->c == NFA_MARK_LT)) : (pos->lnum < rex.lnum + rex.reg_firstlnum ? t->state->c == NFA_MARK_GT : t->state->c == NFA_MARK_LT); if (result) { add_here = true; add_state = t->state->out; } } break; } case NFA_CURSOR: result = rex.reg_win != NULL && (rex.lnum + rex.reg_firstlnum == rex.reg_win->w_cursor.lnum) && ((colnr_T)(rex.input - rex.line) == rex.reg_win->w_cursor.col); if (result) { add_here = true; add_state = t->state->out; } break; case NFA_VISUAL: result = reg_match_visual(); if (result) { add_here = true; add_state = t->state->out; } break; case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_NOPEN: case NFA_ZSTART: // These states are only added to be able to bail out when // they are added again, nothing is to be done. break; default: // regular character { int c = t->state->c; #ifdef REGEXP_DEBUG if (c < 0) { siemsg("INTERNAL: Negative state char: %" PRId64, (int64_t)c); } #endif result = (c == curc); if (!result && rex.reg_ic) { result = utf_fold(c) == utf_fold(curc); } // If rex.reg_icombine is not set only skip over the character // itself. When it is set skip over composing characters. if (result && !rex.reg_icombine) { clen = utf_ptr2len((char *)rex.input); } ADD_STATE_IF_MATCH(t->state); break; } } // switch (t->state->c) if (add_state != NULL) { nfa_pim_T *pim; nfa_pim_T pim_copy; if (t->pim.result == NFA_PIM_UNUSED) { pim = NULL; } else { pim = &t->pim; } // Handle the postponed invisible match if the match might end // without advancing and before the end of the line. if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) { if (pim->result == NFA_PIM_TODO) { #ifdef REGEXP_DEBUG fprintf(log_fd, "\n"); fprintf(log_fd, "==================================\n"); fprintf(log_fd, "Postponed recursive nfa_regmatch()\n"); fprintf(log_fd, "\n"); #endif result = recursive_regmatch(pim->state, pim, prog, submatch, m, &listids, &listids_len); pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH; // for \@! and \@state->c == NFA_START_INVISIBLE_NEG || pim->state->c == NFA_START_INVISIBLE_NEG_FIRST || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) { // Copy submatch info from the recursive call copy_sub_off(&pim->subs.norm, &m->norm); if (rex.nfa_has_zsubexpr) { copy_sub_off(&pim->subs.synt, &m->synt); } } } else { result = (pim->result == NFA_PIM_MATCH); #ifdef REGEXP_DEBUG fprintf(log_fd, "\n"); fprintf(log_fd, "Using previous recursive nfa_regmatch() result, result == %d\n", pim->result); fprintf(log_fd, "MATCH = %s\n", result ? "OK" : "false"); fprintf(log_fd, "\n"); #endif } // for \@! and \@state->c == NFA_START_INVISIBLE_NEG || pim->state->c == NFA_START_INVISIBLE_NEG_FIRST || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) { // Copy submatch info from the recursive call copy_sub_off(&t->subs.norm, &pim->subs.norm); if (rex.nfa_has_zsubexpr) { copy_sub_off(&t->subs.synt, &pim->subs.synt); } } else { // look-behind match failed, don't add the state continue; } // Postponed invisible match was handled, don't add it to // following states. pim = NULL; } // If "pim" points into l->t it will become invalid when // adding the state causes the list to be reallocated. Make a // local copy to avoid that. if (pim == &t->pim) { copy_pim(&pim_copy, pim); pim = &pim_copy; } if (add_here) { r = addstate_here(thislist, add_state, &t->subs, pim, &listidx); } else { r = addstate(nextlist, add_state, &t->subs, pim, add_off); if (add_count > 0) { nextlist->t[nextlist->n - 1].count = add_count; } } if (r == NULL) { nfa_match = NFA_TOO_EXPENSIVE; goto theend; } } } // for (thislist = thislist; thislist->state; thislist++) // Look for the start of a match in the current position by adding the // start state to the list of states. // The first found match is the leftmost one, thus the order of states // matters! // Do not add the start state in recursive calls of nfa_regmatch(), // because recursive calls should only start in the first position. // Unless "nfa_endp" is not NULL, then we match the end position. // Also don't start a match past the first line. if (!nfa_match && ((toplevel && rex.lnum == 0 && clen != 0 && (rex.reg_maxcol == 0 || (colnr_T)(rex.input - rex.line) < rex.reg_maxcol)) || (nfa_endp != NULL && (REG_MULTI ? (rex.lnum < nfa_endp->se_u.pos.lnum || (rex.lnum == nfa_endp->se_u.pos.lnum && (int)(rex.input - rex.line) < nfa_endp->se_u.pos.col)) : rex.input < nfa_endp->se_u.ptr)))) { #ifdef REGEXP_DEBUG fprintf(log_fd, "(---) STARTSTATE\n"); #endif // Inline optimized code for addstate() if we know the state is // the first MOPEN. if (toplevel) { int add = true; if (prog->regstart != NUL && clen != 0) { if (nextlist->n == 0) { colnr_T col = (colnr_T)(rex.input - rex.line) + clen; // Nextlist is empty, we can skip ahead to the // character that must appear at the start. if (skip_to_start(prog->regstart, &col) == FAIL) { break; } #ifdef REGEXP_DEBUG fprintf(log_fd, " Skipping ahead %d bytes to regstart\n", col - ((colnr_T)(rex.input - rex.line) + clen)); #endif rex.input = rex.line + col - clen; } else { // Checking if the required start character matches is // cheaper than adding a state that won't match. const int c = utf_ptr2char((char *)rex.input + clen); if (c != prog->regstart && (!rex.reg_ic || utf_fold(c) != utf_fold(prog->regstart))) { #ifdef REGEXP_DEBUG fprintf(log_fd, " Skipping start state, regstart does not match\n"); #endif add = false; } } } if (add) { if (REG_MULTI) { m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line) + clen; m->norm.orig_start_col = m->norm.list.multi[0].start_col; } else { m->norm.list.line[0].start = rex.input + clen; } if (addstate(nextlist, start->out, m, NULL, clen) == NULL) { nfa_match = NFA_TOO_EXPENSIVE; goto theend; } } } else { if (addstate(nextlist, start, m, NULL, clen) == NULL) { nfa_match = NFA_TOO_EXPENSIVE; goto theend; } } } #ifdef REGEXP_DEBUG fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n); { int i; for (i = 0; i < thislist->n; i++) { fprintf(log_fd, "%d ", abs(thislist->t[i].state->id)); } } fprintf(log_fd, "\n"); #endif nextchar: // Advance to the next character, or advance to the next line, or // finish. if (clen != 0) { rex.input += clen; } else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI && rex.lnum < nfa_endp->se_u.pos.lnum)) { reg_nextline(); } else { break; } // Allow interrupting with CTRL-C. reg_breakcheck(); if (got_int) { break; } // Check for timeout once every twenty times to avoid overhead. if (nfa_time_limit != NULL && ++nfa_time_count == 20) { nfa_time_count = 0; if (nfa_did_time_out()) { break; } } } #ifdef REGEXP_DEBUG if (log_fd != stderr) { fclose(log_fd); } log_fd = NULL; #endif theend: // Free memory xfree(list[0].t); xfree(list[1].t); xfree(listids); #undef ADD_STATE_IF_MATCH #ifdef NFA_REGEXP_DEBUG_LOG fclose(debug); #endif return nfa_match; } /// Try match of "prog" with at rex.line["col"]. /// /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return <= 0 for failure, number of lines contained in the match otherwise. static int nfa_regtry(nfa_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out) { int i; regsubs_T subs, m; nfa_state_T *start = prog->start; #ifdef REGEXP_DEBUG FILE *f; #endif rex.input = rex.line + col; nfa_time_limit = tm; nfa_timed_out = timed_out; nfa_time_count = 0; #ifdef REGEXP_DEBUG f = fopen(NFA_REGEXP_RUN_LOG, "a"); if (f != NULL) { fprintf(f, "\n\n\t=======================================================\n"); # ifdef REGEXP_DEBUG fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr); # endif fprintf(f, "\tInput text is \"%s\" \n", rex.input); fprintf(f, "\t=======================================================\n\n"); nfa_print_state(f, start); fprintf(f, "\n\n"); fclose(f); } else { emsg("Could not open temporary log file for writing"); } #endif clear_sub(&subs.norm); clear_sub(&m.norm); clear_sub(&subs.synt); clear_sub(&m.synt); int result = nfa_regmatch(prog, start, &subs, &m); if (!result) { return 0; } else if (result == NFA_TOO_EXPENSIVE) { return result; } cleanup_subexpr(); if (REG_MULTI) { for (i = 0; i < subs.norm.in_use; i++) { rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum; rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col; rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum; rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col; } if (rex.reg_mmatch != NULL) { rex.reg_mmatch->rmm_matchcol = subs.norm.orig_start_col; } if (rex.reg_startpos[0].lnum < 0) { rex.reg_startpos[0].lnum = 0; rex.reg_startpos[0].col = col; } if (rex.reg_endpos[0].lnum < 0) { // pattern has a \ze but it didn't match, use current end rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = (int)(rex.input - rex.line); } else { // Use line number of "\ze". rex.lnum = rex.reg_endpos[0].lnum; } } else { for (i = 0; i < subs.norm.in_use; i++) { rex.reg_startp[i] = subs.norm.list.line[i].start; rex.reg_endp[i] = subs.norm.list.line[i].end; } if (rex.reg_startp[0] == NULL) { rex.reg_startp[0] = rex.line + col; } if (rex.reg_endp[0] == NULL) { rex.reg_endp[0] = rex.input; } } // Package any found \z(...\) matches for export. Default is none. unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); // Loop over \z1, \z2, etc. There is no \z0. for (i = 1; i < subs.synt.in_use; i++) { if (REG_MULTI) { struct multipos *mpos = &subs.synt.list.multi[i]; // Only accept single line matches that are valid. if (mpos->start_lnum >= 0 && mpos->start_lnum == mpos->end_lnum && mpos->end_col >= mpos->start_col) { re_extmatch_out->matches[i] = (uint8_t *)xstrnsave(reg_getline(mpos->start_lnum) + mpos->start_col, (size_t)(mpos->end_col - mpos->start_col)); } } else { struct linepos *lpos = &subs.synt.list.line[i]; if (lpos->start != NULL && lpos->end != NULL) { re_extmatch_out->matches[i] = (uint8_t *)xstrnsave((char *)lpos->start, (size_t)(lpos->end - lpos->start)); } } } } return 1 + rex.lnum; } /// Match a regexp against a string ("line" points to the string) or multiple /// lines (if "line" is NULL, use reg_getline()). /// /// @param line String in which to search or NULL /// @param startcol Column to start looking for match /// @param tm Timeout limit or NULL /// @param timed_out Flag set on timeout or NULL /// /// @return <= 0 if there is no match and number of lines contained in the /// match otherwise. static int nfa_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out) { nfa_regprog_T *prog; int retval = 0; colnr_T col = startcol; if (REG_MULTI) { prog = (nfa_regprog_T *)rex.reg_mmatch->regprog; line = (uint8_t *)reg_getline(0); // relative to the cursor rex.reg_startpos = rex.reg_mmatch->startpos; rex.reg_endpos = rex.reg_mmatch->endpos; } else { prog = (nfa_regprog_T *)rex.reg_match->regprog; rex.reg_startp = (uint8_t **)rex.reg_match->startp; rex.reg_endp = (uint8_t **)rex.reg_match->endp; } // Be paranoid... if (prog == NULL || line == NULL) { iemsg(_(e_null)); goto theend; } // If pattern contains "\c" or "\C": overrule value of rex.reg_ic if (prog->regflags & RF_ICASE) { rex.reg_ic = true; } else if (prog->regflags & RF_NOICASE) { rex.reg_ic = false; } // If pattern contains "\Z" overrule value of rex.reg_icombine if (prog->regflags & RF_ICOMBINE) { rex.reg_icombine = true; } rex.line = line; rex.lnum = 0; // relative to line rex.nfa_has_zend = prog->has_zend; rex.nfa_has_backref = prog->has_backref; rex.nfa_nsubexpr = prog->nsubexp; rex.nfa_listid = 1; rex.nfa_alt_listid = 2; #ifdef REGEXP_DEBUG nfa_regengine.expr = prog->pattern; #endif if (prog->reganch && col > 0) { return 0L; } rex.need_clear_subexpr = true; // Clear the external match subpointers if necessary. if (prog->reghasz == REX_SET) { rex.nfa_has_zsubexpr = true; rex.need_clear_zsubexpr = true; } else { rex.nfa_has_zsubexpr = false; rex.need_clear_zsubexpr = false; } if (prog->regstart != NUL) { // Skip ahead until a character we know the match must start with. // When there is none there is no match. if (skip_to_start(prog->regstart, &col) == FAIL) { return 0L; } // If match_text is set it contains the full text that must match. // Nothing else to try. Doesn't handle combining chars well. if (prog->match_text != NULL && *prog->match_text != NUL && !rex.reg_icombine) { retval = find_match_text(&col, prog->regstart, prog->match_text); if (REG_MULTI) { rex.reg_mmatch->rmm_matchcol = col; } else { rex.reg_match->rm_matchcol = col; } return retval; } } // If the start column is past the maximum column: no need to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { goto theend; } // Set the "nstate" used by nfa_regcomp() to zero to trigger an error when // it's accidentally used during execution. nstate = 0; for (int i = 0; i < prog->nstate; i++) { prog->state[i].id = i; prog->state[i].lastlist[0] = 0; prog->state[i].lastlist[1] = 0; } retval = nfa_regtry(prog, col, tm, timed_out); #ifdef REGEXP_DEBUG nfa_regengine.expr = NULL; #endif theend: if (retval > 0) { // Make sure the end is never before the start. Can happen when \zs and // \ze are used. if (REG_MULTI) { const lpos_T *const start = &rex.reg_mmatch->startpos[0]; const lpos_T *const end = &rex.reg_mmatch->endpos[0]; if (end->lnum < start->lnum || (end->lnum == start->lnum && end->col < start->col)) { rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0]; } } else { if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) { rex.reg_match->endp[0] = rex.reg_match->startp[0]; } // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_match->rm_matchcol = col; } } return retval; } // Compile a regular expression into internal code for the NFA matcher. // Returns the program in allocated space. Returns NULL for an error. static regprog_T *nfa_regcomp(uint8_t *expr, int re_flags) { nfa_regprog_T *prog = NULL; int *postfix; if (expr == NULL) { return NULL; } #ifdef REGEXP_DEBUG nfa_regengine.expr = expr; #endif nfa_re_flags = re_flags; init_class_tab(); nfa_regcomp_start(expr, re_flags); // Build postfix form of the regexp. Needed to build the NFA // (and count its size). postfix = re2post(); if (postfix == NULL) { goto fail; // Cascaded (syntax?) error } // In order to build the NFA, we parse the input regexp twice: // 1. first pass to count size (so we can allocate space) // 2. second to emit code #ifdef REGEXP_DEBUG { FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a"); if (f != NULL) { fprintf(f, "\n*****************************\n\n\n\n\t" "Compiling regexp \"%s\"... hold on !\n", expr); fclose(f); } } #endif // PASS 1 // Count number of NFA states in "nstate". Do not build the NFA. post2nfa(postfix, post_ptr, true); // allocate the regprog with space for the compiled regexp size_t prog_size = offsetof(nfa_regprog_T, state) + sizeof(nfa_state_T) * (size_t)nstate; prog = xmalloc(prog_size); state_ptr = prog->state; prog->re_in_use = false; // PASS 2 // Build the NFA prog->start = post2nfa(postfix, post_ptr, false); if (prog->start == NULL) { goto fail; } prog->regflags = regflags; prog->engine = &nfa_regengine; prog->nstate = nstate; prog->has_zend = rex.nfa_has_zend; prog->has_backref = rex.nfa_has_backref; prog->nsubexp = regnpar; nfa_postprocess(prog); prog->reganch = nfa_get_reganch(prog->start, 0); prog->regstart = nfa_get_regstart(prog->start, 0); prog->match_text = nfa_get_match_text(prog->start); #ifdef REGEXP_DEBUG nfa_postfix_dump(expr, OK); nfa_dump(prog); #endif // Remember whether this pattern has any \z specials in it. prog->reghasz = re_has_z; prog->pattern = xstrdup((char *)expr); #ifdef REGEXP_DEBUG nfa_regengine.expr = NULL; #endif out: xfree(post_start); post_start = post_ptr = post_end = NULL; state_ptr = NULL; return (regprog_T *)prog; fail: XFREE_CLEAR(prog); #ifdef REGEXP_DEBUG nfa_postfix_dump(expr, FAIL); nfa_regengine.expr = NULL; #endif goto out; } // Free a compiled regexp program, returned by nfa_regcomp(). static void nfa_regfree(regprog_T *prog) { if (prog == NULL) { return; } xfree(((nfa_regprog_T *)prog)->match_text); xfree(((nfa_regprog_T *)prog)->pattern); xfree(prog); } /// Match a regexp against a string. /// "rmp->regprog" is a compiled regexp as returned by nfa_regcomp(). /// Uses curbuf for line count and 'iskeyword'. /// If "line_lbr" is true, consider a "\n" in "line" to be a line break. /// /// @param line string to match against /// @param col column to start looking for match /// /// @return <= 0 for failure, number of lines contained in the match otherwise. static int nfa_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr) { rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_line_lbr = line_lbr; rex.reg_buf = curbuf; rex.reg_win = NULL; rex.reg_ic = rmp->rm_ic; rex.reg_icombine = false; rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK; rex.reg_maxcol = 0; return nfa_regexec_both(line, col, NULL, NULL); } /// Matches a regexp against multiple lines. /// "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). /// Uses curbuf for line count and 'iskeyword'. /// /// @param win Window in which to search or NULL /// @param buf Buffer in which to search /// @param lnum Number of line to start looking for match /// @param col Column to start looking for match /// @param tm Timeout limit or NULL /// @param timed_out Flag set on timeout or NULL /// /// @return <= 0 if there is no match and number of lines contained in the match /// otherwise. /// /// @note The body is the same as bt_regexec() except for nfa_regexec_both() /// /// @warning /// Match may actually be in another line. e.g.: /// when r.e. is \nc, cursor is at 'a' and the text buffer looks like /// /// @par /// /// +-------------------------+ /// |a | /// |b | /// |c | /// | | /// +-------------------------+ /// /// @par /// then nfa_regexec_multi() returns 3. while the original vim_regexec_multi() /// returns 0 and a second call at line 2 will return 2. /// /// @par /// FIXME if this behavior is not compatible. static int nfa_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm, int *timed_out) { init_regexec_multi(rmp, win, buf, lnum); return nfa_regexec_both(NULL, col, tm, timed_out); } // }}}1 static regengine_T bt_regengine = { bt_regcomp, bt_regfree, bt_regexec_nl, bt_regexec_multi, #ifdef REGEXP_DEBUG "", #endif }; static regengine_T nfa_regengine = { nfa_regcomp, nfa_regfree, nfa_regexec_nl, nfa_regexec_multi, #ifdef REGEXP_DEBUG "", #endif }; // Which regexp engine to use? Needed for vim_regcomp(). // Must match with 'regexpengine'. static int regexp_engine = 0; #ifdef REGEXP_DEBUG static uint8_t regname[][30] = { "AUTOMATIC Regexp Engine", "BACKTRACKING Regexp Engine", "NFA Regexp Engine" }; #endif // Compile a regular expression into internal code. // Returns the program in allocated memory. // Use vim_regfree() to free the memory. // Returns NULL for an error. regprog_T *vim_regcomp(const char *expr_arg, int re_flags) { regprog_T *prog = NULL; const char *expr = expr_arg; regexp_engine = (int)p_re; // Check for prefix "\%#=", that sets the regexp engine if (strncmp(expr, "\\%#=", 4) == 0) { int newengine = expr[4] - '0'; if (newengine == AUTOMATIC_ENGINE || newengine == BACKTRACKING_ENGINE || newengine == NFA_ENGINE) { regexp_engine = expr[4] - '0'; expr += 5; #ifdef REGEXP_DEBUG smsg(0, "New regexp mode selected (%d): %s", regexp_engine, regname[newengine]); #endif } else { emsg(_("E864: \\%#= can only be followed by 0, 1, or 2. The automatic engine will be used ")); regexp_engine = AUTOMATIC_ENGINE; } } #ifdef REGEXP_DEBUG bt_regengine.expr = expr; nfa_regengine.expr = expr; #endif // reg_iswordc() uses rex.reg_buf rex.reg_buf = curbuf; // // First try the NFA engine, unless backtracking was requested. // const int called_emsg_before = called_emsg; if (regexp_engine != BACKTRACKING_ENGINE) { prog = nfa_regengine.regcomp((uint8_t *)expr, re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0)); } else { prog = bt_regengine.regcomp((uint8_t *)expr, re_flags); } // Check for error compiling regexp with initial engine. if (prog == NULL) { #ifdef BT_REGEXP_DEBUG_LOG // Debugging log for BT engine. if (regexp_engine != BACKTRACKING_ENGINE) { FILE *f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a"); if (f) { fprintf(f, "Syntax error in \"%s\"\n", expr); fclose(f); } else { semsg("(NFA) Could not open \"%s\" to write !!!", BT_REGEXP_DEBUG_LOG_NAME); } } #endif // If the NFA engine failed, try the backtracking engine. The NFA engine // also fails for patterns that it can't handle well but are still valid // patterns, thus a retry should work. // But don't try if an error message was given. if (regexp_engine == AUTOMATIC_ENGINE && called_emsg == called_emsg_before) { regexp_engine = BACKTRACKING_ENGINE; report_re_switch(expr); prog = bt_regengine.regcomp((uint8_t *)expr, re_flags); } } if (prog != NULL) { // Store the info needed to call regcomp() again when the engine turns out // to be very slow when executing it. prog->re_engine = (unsigned)regexp_engine; prog->re_flags = (unsigned)re_flags; } return prog; } // Free a compiled regexp program, returned by vim_regcomp(). void vim_regfree(regprog_T *prog) { if (prog != NULL) { prog->engine->regfree(prog); } } #if defined(EXITFREE) void free_regexp_stuff(void) { ga_clear(®stack); ga_clear(&backpos); xfree(reg_tofree); xfree(reg_prev_sub); } #endif static void report_re_switch(const char *pat) { if (p_verbose > 0) { verbose_enter(); msg_puts(_("Switching to backtracking RE engine for pattern: ")); msg_puts(pat); verbose_leave(); } } /// Match a regexp against a string. /// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp(). /// Note: "rmp->regprog" may be freed and changed. /// Uses curbuf for line count and 'iskeyword'. /// When "nl" is true consider a "\n" in "line" to be a line break. /// /// @param rmp /// @param line the string to match against /// @param col the column to start looking for match /// @param nl /// /// @return true if there is a match, false if not. static bool vim_regexec_string(regmatch_T *rmp, const char *line, colnr_T col, bool nl) { regexec_T rex_save; bool rex_in_use_save = rex_in_use; // Cannot use the same prog recursively, it contains state. if (rmp->regprog->re_in_use) { emsg(_(e_recursive)); return false; } rmp->regprog->re_in_use = true; if (rex_in_use) { // Being called recursively, save the state. rex_save = rex; } rex_in_use = true; rex.reg_startp = NULL; rex.reg_endp = NULL; rex.reg_startpos = NULL; rex.reg_endpos = NULL; int result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl); rmp->regprog->re_in_use = false; // NFA engine aborted because it's very slow, use backtracking engine instead. if (rmp->regprog->re_engine == AUTOMATIC_ENGINE && result == NFA_TOO_EXPENSIVE) { int save_p_re = (int)p_re; int re_flags = (int)rmp->regprog->re_flags; char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern); p_re = BACKTRACKING_ENGINE; vim_regfree(rmp->regprog); report_re_switch(pat); rmp->regprog = vim_regcomp(pat, re_flags); if (rmp->regprog != NULL) { rmp->regprog->re_in_use = true; result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl); rmp->regprog->re_in_use = false; } xfree(pat); p_re = save_p_re; } rex_in_use = rex_in_use_save; if (rex_in_use) { rex = rex_save; } return result > 0; } // Note: "*prog" may be freed and changed. // Return true if there is a match, false if not. bool vim_regexec_prog(regprog_T **prog, bool ignore_case, const char *line, colnr_T col) { regmatch_T regmatch = { .regprog = *prog, .rm_ic = ignore_case }; bool r = vim_regexec_string(®match, line, col, false); *prog = regmatch.regprog; return r; } // Note: "rmp->regprog" may be freed and changed. // Return true if there is a match, false if not. bool vim_regexec(regmatch_T *rmp, const char *line, colnr_T col) { return vim_regexec_string(rmp, line, col, false); } // Like vim_regexec(), but consider a "\n" in "line" to be a line break. // Note: "rmp->regprog" may be freed and changed. // Return true if there is a match, false if not. bool vim_regexec_nl(regmatch_T *rmp, const char *line, colnr_T col) { return vim_regexec_string(rmp, line, col, true); } /// Match a regexp against multiple lines. /// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp(). /// Note: "rmp->regprog" may be freed and changed, even set to NULL. /// Uses curbuf for line count and 'iskeyword'. /// /// @param win window in which to search or NULL /// @param buf buffer in which to search /// @param lnum nr of line to start looking for match /// @param col column to start looking for match /// @param tm timeout limit or NULL /// @param timed_out flag is set when timeout limit reached /// /// @return zero if there is no match. Return number of lines contained in the /// match otherwise. int vim_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm, int *timed_out) FUNC_ATTR_NONNULL_ARG(1) { regexec_T rex_save; bool rex_in_use_save = rex_in_use; // Cannot use the same prog recursively, it contains state. if (rmp->regprog->re_in_use) { emsg(_(e_recursive)); return false; } rmp->regprog->re_in_use = true; if (rex_in_use) { // Being called recursively, save the state. rex_save = rex; } rex_in_use = true; int result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out); rmp->regprog->re_in_use = false; // NFA engine aborted because it's very slow, use backtracking engine instead. if (rmp->regprog->re_engine == AUTOMATIC_ENGINE && result == NFA_TOO_EXPENSIVE) { int save_p_re = (int)p_re; int re_flags = (int)rmp->regprog->re_flags; char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern); p_re = BACKTRACKING_ENGINE; regprog_T *prev_prog = rmp->regprog; report_re_switch(pat); // checking for \z misuse was already done when compiling for NFA, // allow all here reg_do_extmatch = REX_ALL; rmp->regprog = vim_regcomp(pat, re_flags); reg_do_extmatch = 0; if (rmp->regprog == NULL) { // Somehow compiling the pattern failed now, put back the // previous one to avoid "regprog" becoming NULL. rmp->regprog = prev_prog; } else { vim_regfree(prev_prog); rmp->regprog->re_in_use = true; result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out); rmp->regprog->re_in_use = false; } xfree(pat); p_re = save_p_re; } rex_in_use = rex_in_use_save; if (rex_in_use) { rex = rex_save; } return result <= 0 ? 0 : result; }