// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com // Backtracking regular expression implementation. // // This file is included in "regexp.c". // // NOTICE: // // This is NOT the original regular expression code as written by Henry // Spencer. This code has been modified specifically for use with the VIM // editor, and should not be used separately from Vim. If you want a good // regular expression library, get the original code. The copyright notice // that follows is from the original. // // END NOTICE // // Copyright (c) 1986 by University of Toronto. // Written by Henry Spencer. Not derived from licensed software. // // Permission is granted to anyone to use this software for any // purpose on any computer system, and to redistribute it freely, // subject to the following restrictions: // // 1. The author is not responsible for the consequences of use of // this software, no matter how awful, even if they arise // from defects in it. // // 2. The origin of this software must not be misrepresented, either // by explicit claim or by omission. // // 3. Altered versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // Beware that some of this code is subtly aware of the way operator // precedence is structured in regular expressions. Serious changes in // regular-expression syntax might require a total rethink. // // Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert // Webb, Ciaran McCreesh and Bram Moolenaar. // Named character class support added by Walter Briscoe (1998 Jul 01) // The "internal use only" fields in regexp_defs.h are present to pass info from // compile to execute that permits the execute phase to run lots faster on // simple cases. They are: // // regstart char that must begin a match; NUL if none obvious; Can be a // multi-byte character. // reganch is the match anchored (at beginning-of-line only)? // regmust string (pointer into program) that match must include, or NULL // regmlen length of regmust string // regflags RF_ values or'ed together // // Regstart and reganch permit very fast decisions on suitable starting points // for a match, cutting down the work a lot. Regmust permits fast rejection // of lines that cannot possibly match. The regmust tests are costly enough // that vim_regcomp() supplies a regmust only if the r.e. contains something // potentially expensive (at present, the only such thing detected is * or + // at the start of the r.e., which can involve a lot of backup). Regmlen is // supplied because the test in vim_regexec() needs it and vim_regcomp() is // computing it anyway. // Structure for regexp "program". This is essentially a linear encoding // of a nondeterministic finite-state machine (aka syntax charts or // "railroad normal form" in parsing technology). Each node is an opcode // plus a "next" pointer, possibly plus an operand. "Next" pointers of // all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next" // pointer with a BRANCH on both ends of it is connecting two alternatives. // (Here we have one of the subtle syntax dependencies: an individual BRANCH // (as opposed to a collection of them) is never concatenated with anything // because of operator precedence). The "next" pointer of a BRACES_COMPLEX // node points to the node after the stuff to be repeated. // The operand of some types of node is a literal string; for others, it is a // node leading into a sub-FSM. In particular, the operand of a BRANCH node // is the first node of the branch. // (NB this is *not* a tree structure: the tail of the branch connects to the // thing following the set of BRANCHes.) // // pattern is coded like: // // +-----------------+ // | V // \| BRANCH BRANCH --> END // | ^ | ^ // +------+ +----------+ // // // +------------------+ // V | // * BRANCH BRANCH --> BACK BRANCH --> NOTHING --> END // | | ^ ^ // | +---------------+ | // +---------------------------------------------+ // // // +----------------------+ // V | // \+ BRANCH --> BRANCH --> BACK BRANCH --> NOTHING --> END // | | ^ ^ // | +-----------+ | // +--------------------------------------------------+ // // // +-------------------------+ // V | // \{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX --> BACK END // | | ^ // | +----------------+ // +-----------------------------------------------+ // // // \@! BRANCH NOMATCH --> END --> END // | | ^ ^ // | +----------------+ | // +--------------------------------+ // // +---------+ // | V // \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END // | | | | ^ ^ // | | | +-----+ | // | | +----------------+ | // | +---------------------------+ | // +------------------------------------------------------+ // // They all start with a BRANCH for "\|" alternatives, even when there is only // one alternative. #include #include #include #include #include "nvim/garray.h" #include "nvim/profile.h" #include "nvim/regexp.h" // The opcodes are: // definition number opnd? meaning #define END 0 // End of program or NOMATCH operand. #define BOL 1 // Match "" at beginning of line. #define EOL 2 // Match "" at end of line. #define BRANCH 3 // node Match this alternative, or the // next... #define BACK 4 // Match "", "next" ptr points backward. #define EXACTLY 5 // str Match this string. #define NOTHING 6 // Match empty string. #define STAR 7 // node Match this (simple) thing 0 or more // times. #define PLUS 8 // node Match this (simple) thing 1 or more // times. #define MATCH 9 // node match the operand zero-width #define NOMATCH 10 // node check for no match with operand #define BEHIND 11 // node look behind for a match with operand #define NOBEHIND 12 // node look behind for no match with operand #define SUBPAT 13 // node match the operand here #define BRACE_SIMPLE 14 // node Match this (simple) thing between m and // n times (\{m,n\}). #define BOW 15 // Match "" after [^a-zA-Z0-9_] #define EOW 16 // Match "" at [^a-zA-Z0-9_] #define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE // and BRACE_COMPLEX. #define NEWL 18 // Match line-break #define BHPOS 19 // End position for BEHIND or NOBEHIND // character classes: 20-48 normal, 50-78 include a line-break #define ADD_NL 30 #define FIRST_NL ANY + ADD_NL #define ANY 20 // Match any one character. #define ANYOF 21 // str Match any character in this string. #define ANYBUT 22 // str Match any character not in this // string. #define IDENT 23 // Match identifier char #define SIDENT 24 // Match identifier char but no digit #define KWORD 25 // Match keyword char #define SKWORD 26 // Match word char but no digit #define FNAME 27 // Match file name char #define SFNAME 28 // Match file name char but no digit #define PRINT 29 // Match printable char #define SPRINT 30 // Match printable char but no digit #define WHITE 31 // Match whitespace char #define NWHITE 32 // Match non-whitespace char #define DIGIT 33 // Match digit char #define NDIGIT 34 // Match non-digit char #define HEX 35 // Match hex char #define NHEX 36 // Match non-hex char #define OCTAL 37 // Match octal char #define NOCTAL 38 // Match non-octal char #define WORD 39 // Match word char #define NWORD 40 // Match non-word char #define HEAD 41 // Match head char #define NHEAD 42 // Match non-head char #define ALPHA 43 // Match alpha char #define NALPHA 44 // Match non-alpha char #define LOWER 45 // Match lowercase char #define NLOWER 46 // Match non-lowercase char #define UPPER 47 // Match uppercase char #define NUPPER 48 // Match non-uppercase char #define LAST_NL NUPPER + ADD_NL // -V:WITH_NL:560 #define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL) #define MOPEN 80 // -89 Mark this point in input as start of // \( … \) subexpr. MOPEN + 0 marks start of // match. #define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks // end of match. #define BACKREF 100 // -109 node Match same string again \1-\9. #define ZOPEN 110 // -119 Mark this point in input as start of // \z( … \) subexpr. #define ZCLOSE 120 // -129 Analogous to ZOPEN. #define ZREF 130 // -139 node Match external submatch \z1-\z9 #define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times #define NOPEN 150 // Mark this point in input as start of // \%( subexpr. #define NCLOSE 151 // Analogous to NOPEN. #define MULTIBYTECODE 200 // mbc Match one multi-byte character #define RE_BOF 201 // Match "" at beginning of file. #define RE_EOF 202 // Match "" at end of file. #define CURSOR 203 // Match location of cursor. #define RE_LNUM 204 // nr cmp Match line number #define RE_COL 205 // nr cmp Match column number #define RE_VCOL 206 // nr cmp Match virtual column number #define RE_MARK 207 // mark cmp Match mark position #define RE_VISUAL 208 // Match Visual area #define RE_COMPOSING 209 // any composing characters // Flags to be passed up and down. #define HASWIDTH 0x1 // Known never to match null string. #define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand. #define SPSTART 0x4 // Starts with * or +. #define HASNL 0x8 // Contains some \n. #define HASLOOKBH 0x10 // Contains "\@<=" or "\@ 1 && (re_multi_type(peekchr()) != NOT_MULTI || utf_iscomposing(c)); } // Emit (if appropriate) a byte of code static void regc(int b) { if (regcode == JUST_CALC_SIZE) { regsize++; } else { *regcode++ = (uint8_t)b; } } // Emit (if appropriate) a multi-byte character of code static void regmbc(int c) { if (regcode == JUST_CALC_SIZE) { regsize += utf_char2len(c); } else { regcode += utf_char2bytes(c, (char *)regcode); } } // Produce the bytes for equivalence class "c". // Currently only handles latin1, latin9 and utf-8. // NOTE: When changing this function, also change nfa_emit_equi_class() static void reg_equi_class(int c) { { switch (c) { // Do not use '\300' style, it results in a negative number. case 'A': case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: case 0x100: case 0x102: case 0x104: case 0x1cd: case 0x1de: case 0x1e0: case 0x1fa: case 0x202: case 0x226: case 0x23a: case 0x1e00: case 0x1ea0: case 0x1ea2: case 0x1ea4: case 0x1ea6: case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae: case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6: regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2); regmbc(0xc3); regmbc(0xc4); regmbc(0xc5); regmbc(0x100); regmbc(0x102); regmbc(0x104); regmbc(0x1cd); regmbc(0x1de); regmbc(0x1e0); regmbc(0x1fa); regmbc(0x202); regmbc(0x226); regmbc(0x23a); regmbc(0x1e00); regmbc(0x1ea0); regmbc(0x1ea2); regmbc(0x1ea4); regmbc(0x1ea6); regmbc(0x1ea8); regmbc(0x1eaa); regmbc(0x1eac); regmbc(0x1eae); regmbc(0x1eb0); regmbc(0x1eb2); regmbc(0x1eb4); regmbc(0x1eb6); return; case 'B': case 0x181: case 0x243: case 0x1e02: case 0x1e04: case 0x1e06: regmbc('B'); regmbc(0x181); regmbc(0x243); regmbc(0x1e02); regmbc(0x1e04); regmbc(0x1e06); return; case 'C': case 0xc7: case 0x106: case 0x108: case 0x10a: case 0x10c: case 0x187: case 0x23b: case 0x1e08: case 0xa792: regmbc('C'); regmbc(0xc7); regmbc(0x106); regmbc(0x108); regmbc(0x10a); regmbc(0x10c); regmbc(0x187); regmbc(0x23b); regmbc(0x1e08); regmbc(0xa792); return; case 'D': case 0x10e: case 0x110: case 0x18a: case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10: case 0x1e12: regmbc('D'); regmbc(0x10e); regmbc(0x110); regmbc(0x18a); regmbc(0x1e0a); regmbc(0x1e0c); regmbc(0x1e0e); regmbc(0x1e10); regmbc(0x1e12); return; case 'E': case 0xc8: case 0xc9: case 0xca: case 0xcb: case 0x112: case 0x114: case 0x116: case 0x118: case 0x11a: case 0x204: case 0x206: case 0x228: case 0x246: case 0x1e14: case 0x1e16: case 0x1e18: case 0x1e1a: case 0x1e1c: case 0x1eb8: case 0x1eba: case 0x1ebc: case 0x1ebe: case 0x1ec0: case 0x1ec2: case 0x1ec4: case 0x1ec6: regmbc('E'); regmbc(0xc8); regmbc(0xc9); regmbc(0xca); regmbc(0xcb); regmbc(0x112); regmbc(0x114); regmbc(0x116); regmbc(0x118); regmbc(0x11a); regmbc(0x204); regmbc(0x206); regmbc(0x228); regmbc(0x246); regmbc(0x1e14); regmbc(0x1e16); regmbc(0x1e18); regmbc(0x1e1a); regmbc(0x1e1c); regmbc(0x1eb8); regmbc(0x1eba); regmbc(0x1ebc); regmbc(0x1ebe); regmbc(0x1ec0); regmbc(0x1ec2); regmbc(0x1ec4); regmbc(0x1ec6); return; case 'F': case 0x191: case 0x1e1e: case 0xa798: regmbc('F'); regmbc(0x191); regmbc(0x1e1e); regmbc(0xa798); return; case 'G': case 0x11c: case 0x11e: case 0x120: case 0x122: case 0x193: case 0x1e4: case 0x1e6: case 0x1f4: case 0x1e20: case 0xa7a0: regmbc('G'); regmbc(0x11c); regmbc(0x11e); regmbc(0x120); regmbc(0x122); regmbc(0x193); regmbc(0x1e4); regmbc(0x1e6); regmbc(0x1f4); regmbc(0x1e20); regmbc(0xa7a0); return; case 'H': case 0x124: case 0x126: case 0x21e: case 0x1e22: case 0x1e24: case 0x1e26: case 0x1e28: case 0x1e2a: case 0x2c67: regmbc('H'); regmbc(0x124); regmbc(0x126); regmbc(0x21e); regmbc(0x1e22); regmbc(0x1e24); regmbc(0x1e26); regmbc(0x1e28); regmbc(0x1e2a); regmbc(0x2c67); return; case 'I': case 0xcc: case 0xcd: case 0xce: case 0xcf: case 0x128: case 0x12a: case 0x12c: case 0x12e: case 0x130: case 0x197: case 0x1cf: case 0x208: case 0x20a: case 0x1e2c: case 0x1e2e: case 0x1ec8: case 0x1eca: regmbc('I'); regmbc(0xcc); regmbc(0xcd); regmbc(0xce); regmbc(0xcf); regmbc(0x128); regmbc(0x12a); regmbc(0x12c); regmbc(0x12e); regmbc(0x130); regmbc(0x197); regmbc(0x1cf); regmbc(0x208); regmbc(0x20a); regmbc(0x1e2c); regmbc(0x1e2e); regmbc(0x1ec8); regmbc(0x1eca); return; case 'J': case 0x134: case 0x248: regmbc('J'); regmbc(0x134); regmbc(0x248); return; case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30: case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740: regmbc('K'); regmbc(0x136); regmbc(0x198); regmbc(0x1e8); regmbc(0x1e30); regmbc(0x1e32); regmbc(0x1e34); regmbc(0x2c69); regmbc(0xa740); return; case 'L': case 0x139: case 0x13b: case 0x13d: case 0x13f: case 0x141: case 0x23d: case 0x1e36: case 0x1e38: case 0x1e3a: case 0x1e3c: case 0x2c60: regmbc('L'); regmbc(0x139); regmbc(0x13b); regmbc(0x13d); regmbc(0x13f); regmbc(0x141); regmbc(0x23d); regmbc(0x1e36); regmbc(0x1e38); regmbc(0x1e3a); regmbc(0x1e3c); regmbc(0x2c60); return; case 'M': case 0x1e3e: case 0x1e40: case 0x1e42: regmbc('M'); regmbc(0x1e3e); regmbc(0x1e40); regmbc(0x1e42); return; case 'N': case 0xd1: case 0x143: case 0x145: case 0x147: case 0x1f8: case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a: case 0xa7a4: regmbc('N'); regmbc(0xd1); regmbc(0x143); regmbc(0x145); regmbc(0x147); regmbc(0x1f8); regmbc(0x1e44); regmbc(0x1e46); regmbc(0x1e48); regmbc(0x1e4a); regmbc(0xa7a4); return; case 'O': case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6: case 0xd8: case 0x14c: case 0x14e: case 0x150: case 0x19f: case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec: case 0x1fe: case 0x20c: case 0x20e: case 0x22a: case 0x22c: case 0x22e: case 0x230: case 0x1e4c: case 0x1e4e: case 0x1e50: case 0x1e52: case 0x1ecc: case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4: case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc: case 0x1ede: case 0x1ee0: case 0x1ee2: regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4); regmbc(0xd5); regmbc(0xd6); regmbc(0xd8); regmbc(0x14c); regmbc(0x14e); regmbc(0x150); regmbc(0x19f); regmbc(0x1a0); regmbc(0x1d1); regmbc(0x1ea); regmbc(0x1ec); regmbc(0x1fe); regmbc(0x20c); regmbc(0x20e); regmbc(0x22a); regmbc(0x22c); regmbc(0x22e); regmbc(0x230); regmbc(0x1e4c); regmbc(0x1e4e); regmbc(0x1e50); regmbc(0x1e52); regmbc(0x1ecc); regmbc(0x1ece); regmbc(0x1ed0); regmbc(0x1ed2); regmbc(0x1ed4); regmbc(0x1ed6); regmbc(0x1ed8); regmbc(0x1eda); regmbc(0x1edc); regmbc(0x1ede); regmbc(0x1ee0); regmbc(0x1ee2); return; case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63: regmbc('P'); regmbc(0x1a4); regmbc(0x1e54); regmbc(0x1e56); regmbc(0x2c63); return; case 'Q': case 0x24a: regmbc('Q'); regmbc(0x24a); return; case 'R': case 0x154: case 0x156: case 0x158: case 0x210: case 0x212: case 0x24c: case 0x1e58: case 0x1e5a: case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6: regmbc('R'); regmbc(0x154); regmbc(0x156); regmbc(0x210); regmbc(0x212); regmbc(0x158); regmbc(0x24c); regmbc(0x1e58); regmbc(0x1e5a); regmbc(0x1e5c); regmbc(0x1e5e); regmbc(0x2c64); regmbc(0xa7a6); return; case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160: case 0x218: case 0x1e60: case 0x1e62: case 0x1e64: case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8: regmbc('S'); regmbc(0x15a); regmbc(0x15c); regmbc(0x15e); regmbc(0x160); regmbc(0x218); regmbc(0x1e60); regmbc(0x1e62); regmbc(0x1e64); regmbc(0x1e66); regmbc(0x1e68); regmbc(0x2c7e); regmbc(0xa7a8); return; case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac: case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c: case 0x1e6e: case 0x1e70: regmbc('T'); regmbc(0x162); regmbc(0x164); regmbc(0x166); regmbc(0x1ac); regmbc(0x23e); regmbc(0x1ae); regmbc(0x21a); regmbc(0x1e6a); regmbc(0x1e6c); regmbc(0x1e6e); regmbc(0x1e70); return; case 'U': case 0xd9: case 0xda: case 0xdb: case 0xdc: case 0x168: case 0x16a: case 0x16c: case 0x16e: case 0x170: case 0x172: case 0x1af: case 0x1d3: case 0x1d5: case 0x1d7: case 0x1d9: case 0x1db: case 0x214: case 0x216: case 0x244: case 0x1e72: case 0x1e74: case 0x1e76: case 0x1e78: case 0x1e7a: case 0x1ee4: case 0x1ee6: case 0x1ee8: case 0x1eea: case 0x1eec: case 0x1eee: case 0x1ef0: regmbc('U'); regmbc(0xd9); regmbc(0xda); regmbc(0xdb); regmbc(0xdc); regmbc(0x168); regmbc(0x16a); regmbc(0x16c); regmbc(0x16e); regmbc(0x170); regmbc(0x172); regmbc(0x1af); regmbc(0x1d3); regmbc(0x1d5); regmbc(0x1d7); regmbc(0x1d9); regmbc(0x1db); regmbc(0x214); regmbc(0x216); regmbc(0x244); regmbc(0x1e72); regmbc(0x1e74); regmbc(0x1e76); regmbc(0x1e78); regmbc(0x1e7a); regmbc(0x1ee4); regmbc(0x1ee6); regmbc(0x1ee8); regmbc(0x1eea); regmbc(0x1eec); regmbc(0x1eee); regmbc(0x1ef0); return; case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e: regmbc('V'); regmbc(0x1b2); regmbc(0x1e7c); regmbc(0x1e7e); return; case 'W': case 0x174: case 0x1e80: case 0x1e82: case 0x1e84: case 0x1e86: case 0x1e88: regmbc('W'); regmbc(0x174); regmbc(0x1e80); regmbc(0x1e82); regmbc(0x1e84); regmbc(0x1e86); regmbc(0x1e88); return; case 'X': case 0x1e8a: case 0x1e8c: regmbc('X'); regmbc(0x1e8a); regmbc(0x1e8c); return; case 'Y': case 0xdd: case 0x176: case 0x178: case 0x1b3: case 0x232: case 0x24e: case 0x1e8e: case 0x1ef2: case 0x1ef6: case 0x1ef4: case 0x1ef8: regmbc('Y'); regmbc(0xdd); regmbc(0x176); regmbc(0x178); regmbc(0x1b3); regmbc(0x232); regmbc(0x24e); regmbc(0x1e8e); regmbc(0x1ef2); regmbc(0x1ef4); regmbc(0x1ef6); regmbc(0x1ef8); return; case 'Z': case 0x179: case 0x17b: case 0x17d: case 0x1b5: case 0x1e90: case 0x1e92: case 0x1e94: case 0x2c6b: regmbc('Z'); regmbc(0x179); regmbc(0x17b); regmbc(0x17d); regmbc(0x1b5); regmbc(0x1e90); regmbc(0x1e92); regmbc(0x1e94); regmbc(0x2c6b); return; case 'a': case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0x101: case 0x103: case 0x105: case 0x1ce: case 0x1df: case 0x1e1: case 0x1fb: case 0x201: case 0x203: case 0x227: case 0x1d8f: case 0x1e01: case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5: case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead: case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5: case 0x1eb7: case 0x2c65: regmbc('a'); regmbc(0xe0); regmbc(0xe1); regmbc(0xe2); regmbc(0xe3); regmbc(0xe4); regmbc(0xe5); regmbc(0x101); regmbc(0x103); regmbc(0x105); regmbc(0x1ce); regmbc(0x1df); regmbc(0x1e1); regmbc(0x1fb); regmbc(0x201); regmbc(0x203); regmbc(0x227); regmbc(0x1d8f); regmbc(0x1e01); regmbc(0x1e9a); regmbc(0x1ea1); regmbc(0x1ea3); regmbc(0x1ea5); regmbc(0x1ea7); regmbc(0x1ea9); regmbc(0x1eab); regmbc(0x1ead); regmbc(0x1eaf); regmbc(0x1eb1); regmbc(0x1eb3); regmbc(0x1eb5); regmbc(0x1eb7); regmbc(0x2c65); return; case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80: case 0x1e03: case 0x1e05: case 0x1e07: regmbc('b'); regmbc(0x180); regmbc(0x253); regmbc(0x1d6c); regmbc(0x1d80); regmbc(0x1e03); regmbc(0x1e05); regmbc(0x1e07); return; case 'c': case 0xe7: case 0x107: case 0x109: case 0x10b: case 0x10d: case 0x188: case 0x23c: case 0x1e09: case 0xa793: case 0xa794: regmbc('c'); regmbc(0xe7); regmbc(0x107); regmbc(0x109); regmbc(0x10b); regmbc(0x10d); regmbc(0x188); regmbc(0x23c); regmbc(0x1e09); regmbc(0xa793); regmbc(0xa794); return; case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d: case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d: case 0x1e0f: case 0x1e11: case 0x1e13: regmbc('d'); regmbc(0x10f); regmbc(0x111); regmbc(0x257); regmbc(0x1d6d); regmbc(0x1d81); regmbc(0x1d91); regmbc(0x1e0b); regmbc(0x1e0d); regmbc(0x1e0f); regmbc(0x1e11); regmbc(0x1e13); return; case 'e': case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0x113: case 0x115: case 0x117: case 0x119: case 0x11b: case 0x205: case 0x207: case 0x229: case 0x247: case 0x1d92: case 0x1e15: case 0x1e17: case 0x1e19: case 0x1e1b: case 0x1eb9: case 0x1ebb: case 0x1e1d: case 0x1ebd: case 0x1ebf: case 0x1ec1: case 0x1ec3: case 0x1ec5: case 0x1ec7: regmbc('e'); regmbc(0xe8); regmbc(0xe9); regmbc(0xea); regmbc(0xeb); regmbc(0x113); regmbc(0x115); regmbc(0x117); regmbc(0x119); regmbc(0x11b); regmbc(0x205); regmbc(0x207); regmbc(0x229); regmbc(0x247); regmbc(0x1d92); regmbc(0x1e15); regmbc(0x1e17); regmbc(0x1e19); regmbc(0x1e1b); regmbc(0x1e1d); regmbc(0x1eb9); regmbc(0x1ebb); regmbc(0x1ebd); regmbc(0x1ebf); regmbc(0x1ec1); regmbc(0x1ec3); regmbc(0x1ec5); regmbc(0x1ec7); return; case 'f': case 0x192: case 0x1d6e: case 0x1d82: case 0x1e1f: case 0xa799: regmbc('f'); regmbc(0x192); regmbc(0x1d6e); regmbc(0x1d82); regmbc(0x1e1f); regmbc(0xa799); return; case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123: case 0x1e5: case 0x1e7: case 0x260: case 0x1f5: case 0x1d83: case 0x1e21: case 0xa7a1: regmbc('g'); regmbc(0x11d); regmbc(0x11f); regmbc(0x121); regmbc(0x123); regmbc(0x1e5); regmbc(0x1e7); regmbc(0x1f5); regmbc(0x260); regmbc(0x1d83); regmbc(0x1e21); regmbc(0xa7a1); return; case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23: case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b: case 0x1e96: case 0x2c68: case 0xa795: regmbc('h'); regmbc(0x125); regmbc(0x127); regmbc(0x21f); regmbc(0x1e23); regmbc(0x1e25); regmbc(0x1e27); regmbc(0x1e29); regmbc(0x1e2b); regmbc(0x1e96); regmbc(0x2c68); regmbc(0xa795); return; case 'i': case 0xec: case 0xed: case 0xee: case 0xef: case 0x129: case 0x12b: case 0x12d: case 0x12f: case 0x1d0: case 0x209: case 0x20b: case 0x268: case 0x1d96: case 0x1e2d: case 0x1e2f: case 0x1ec9: case 0x1ecb: regmbc('i'); regmbc(0xec); regmbc(0xed); regmbc(0xee); regmbc(0xef); regmbc(0x129); regmbc(0x12b); regmbc(0x12d); regmbc(0x12f); regmbc(0x1d0); regmbc(0x209); regmbc(0x20b); regmbc(0x268); regmbc(0x1d96); regmbc(0x1e2d); regmbc(0x1e2f); regmbc(0x1ec9); regmbc(0x1ecb); return; case 'j': case 0x135: case 0x1f0: case 0x249: regmbc('j'); regmbc(0x135); regmbc(0x1f0); regmbc(0x249); return; case 'k': case 0x137: case 0x199: case 0x1e9: case 0x1d84: case 0x1e31: case 0x1e33: case 0x1e35: case 0x2c6a: case 0xa741: regmbc('k'); regmbc(0x137); regmbc(0x199); regmbc(0x1e9); regmbc(0x1d84); regmbc(0x1e31); regmbc(0x1e33); regmbc(0x1e35); regmbc(0x2c6a); regmbc(0xa741); return; case 'l': case 0x13a: case 0x13c: case 0x13e: case 0x140: case 0x142: case 0x19a: case 0x1e37: case 0x1e39: case 0x1e3b: case 0x1e3d: case 0x2c61: regmbc('l'); regmbc(0x13a); regmbc(0x13c); regmbc(0x13e); regmbc(0x140); regmbc(0x142); regmbc(0x19a); regmbc(0x1e37); regmbc(0x1e39); regmbc(0x1e3b); regmbc(0x1e3d); regmbc(0x2c61); return; case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43: regmbc('m'); regmbc(0x1d6f); regmbc(0x1e3f); regmbc(0x1e41); regmbc(0x1e43); return; case 'n': case 0xf1: case 0x144: case 0x146: case 0x148: case 0x149: case 0x1f9: case 0x1d70: case 0x1d87: case 0x1e45: case 0x1e47: case 0x1e49: case 0x1e4b: case 0xa7a5: regmbc('n'); regmbc(0xf1); regmbc(0x144); regmbc(0x146); regmbc(0x148); regmbc(0x149); regmbc(0x1f9); regmbc(0x1d70); regmbc(0x1d87); regmbc(0x1e45); regmbc(0x1e47); regmbc(0x1e49); regmbc(0x1e4b); regmbc(0xa7a5); return; case 'o': case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf8: case 0x14d: case 0x14f: case 0x151: case 0x1a1: case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff: case 0x20d: case 0x20f: case 0x22b: case 0x22d: case 0x22f: case 0x231: case 0x275: case 0x1e4d: case 0x1e4f: case 0x1e51: case 0x1e53: case 0x1ecd: case 0x1ecf: case 0x1ed1: case 0x1ed3: case 0x1ed5: case 0x1ed7: case 0x1ed9: case 0x1edb: case 0x1edd: case 0x1edf: case 0x1ee1: case 0x1ee3: regmbc('o'); regmbc(0xf2); regmbc(0xf3); regmbc(0xf4); regmbc(0xf5); regmbc(0xf6); regmbc(0xf8); regmbc(0x14d); regmbc(0x14f); regmbc(0x151); regmbc(0x1a1); regmbc(0x1d2); regmbc(0x1eb); regmbc(0x1ed); regmbc(0x1ff); regmbc(0x20d); regmbc(0x20f); regmbc(0x22b); regmbc(0x22d); regmbc(0x22f); regmbc(0x231); regmbc(0x275); regmbc(0x1e4d); regmbc(0x1e4f); regmbc(0x1e51); regmbc(0x1e53); regmbc(0x1ecd); regmbc(0x1ecf); regmbc(0x1ed1); regmbc(0x1ed3); regmbc(0x1ed5); regmbc(0x1ed7); regmbc(0x1ed9); regmbc(0x1edb); regmbc(0x1edd); regmbc(0x1edf); regmbc(0x1ee1); regmbc(0x1ee3); return; case 'p': case 0x1a5: case 0x1d71: case 0x1d88: case 0x1d7d: case 0x1e55: case 0x1e57: regmbc('p'); regmbc(0x1a5); regmbc(0x1d71); regmbc(0x1d7d); regmbc(0x1d88); regmbc(0x1e55); regmbc(0x1e57); return; case 'q': case 0x24b: case 0x2a0: regmbc('q'); regmbc(0x24b); regmbc(0x2a0); return; case 'r': case 0x155: case 0x157: case 0x159: case 0x211: case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73: case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f: case 0xa7a7: regmbc('r'); regmbc(0x155); regmbc(0x157); regmbc(0x159); regmbc(0x211); regmbc(0x213); regmbc(0x24d); regmbc(0x1d72); regmbc(0x1d73); regmbc(0x1d89); regmbc(0x1e59); regmbc(0x27d); regmbc(0x1e5b); regmbc(0x1e5d); regmbc(0x1e5f); regmbc(0xa7a7); return; case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161: case 0x1e61: case 0x219: case 0x23f: case 0x1d74: case 0x1d8a: case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9: regmbc('s'); regmbc(0x15b); regmbc(0x15d); regmbc(0x15f); regmbc(0x161); regmbc(0x23f); regmbc(0x219); regmbc(0x1d74); regmbc(0x1d8a); regmbc(0x1e61); regmbc(0x1e63); regmbc(0x1e65); regmbc(0x1e67); regmbc(0x1e69); regmbc(0xa7a9); return; case 't': case 0x163: case 0x165: case 0x167: case 0x1ab: case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b: case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66: regmbc('t'); regmbc(0x163); regmbc(0x165); regmbc(0x167); regmbc(0x1ab); regmbc(0x21b); regmbc(0x1ad); regmbc(0x288); regmbc(0x1d75); regmbc(0x1e6b); regmbc(0x1e6d); regmbc(0x1e6f); regmbc(0x1e71); regmbc(0x1e97); regmbc(0x2c66); return; case 'u': case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0x169: case 0x16b: case 0x16d: case 0x16f: case 0x171: case 0x173: case 0x1b0: case 0x1d4: case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc: case 0x215: case 0x217: case 0x289: case 0x1e73: case 0x1d7e: case 0x1d99: case 0x1e75: case 0x1e77: case 0x1e79: case 0x1e7b: case 0x1ee5: case 0x1ee7: case 0x1ee9: case 0x1eeb: case 0x1eed: case 0x1eef: case 0x1ef1: regmbc('u'); regmbc(0xf9); regmbc(0xfa); regmbc(0xfb); regmbc(0xfc); regmbc(0x169); regmbc(0x16b); regmbc(0x16d); regmbc(0x16f); regmbc(0x171); regmbc(0x173); regmbc(0x1d6); regmbc(0x1d8); regmbc(0x1da); regmbc(0x1dc); regmbc(0x215); regmbc(0x217); regmbc(0x1b0); regmbc(0x1d4); regmbc(0x289); regmbc(0x1d7e); regmbc(0x1d99); regmbc(0x1e73); regmbc(0x1e75); regmbc(0x1e77); regmbc(0x1e79); regmbc(0x1e7b); regmbc(0x1ee5); regmbc(0x1ee7); regmbc(0x1ee9); regmbc(0x1eeb); regmbc(0x1eed); regmbc(0x1eef); regmbc(0x1ef1); return; case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f: regmbc('v'); regmbc(0x28b); regmbc(0x1d8c); regmbc(0x1e7d); regmbc(0x1e7f); return; case 'w': case 0x175: case 0x1e81: case 0x1e83: case 0x1e85: case 0x1e87: case 0x1e89: case 0x1e98: regmbc('w'); regmbc(0x175); regmbc(0x1e81); regmbc(0x1e83); regmbc(0x1e85); regmbc(0x1e87); regmbc(0x1e89); regmbc(0x1e98); return; case 'x': case 0x1e8b: case 0x1e8d: regmbc('x'); regmbc(0x1e8b); regmbc(0x1e8d); return; case 'y': case 0xfd: case 0xff: case 0x177: case 0x1b4: case 0x233: case 0x24f: case 0x1e8f: case 0x1e99: case 0x1ef3: case 0x1ef5: case 0x1ef7: case 0x1ef9: regmbc('y'); regmbc(0xfd); regmbc(0xff); regmbc(0x177); regmbc(0x1b4); regmbc(0x233); regmbc(0x24f); regmbc(0x1e8f); regmbc(0x1e99); regmbc(0x1ef3); regmbc(0x1ef5); regmbc(0x1ef7); regmbc(0x1ef9); return; case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6: case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93: case 0x1e95: case 0x2c6c: regmbc('z'); regmbc(0x17a); regmbc(0x17c); regmbc(0x17e); regmbc(0x1b6); regmbc(0x1d76); regmbc(0x1d8e); regmbc(0x1e91); regmbc(0x1e93); regmbc(0x1e95); regmbc(0x2c6c); return; } } regmbc(c); } // Emit a node. // Return pointer to generated code. static uint8_t *regnode(int op) { uint8_t *ret; ret = regcode; if (ret == JUST_CALC_SIZE) { regsize += 3; } else { *regcode++ = (uint8_t)op; *regcode++ = NUL; // Null "next" pointer. *regcode++ = NUL; } return ret; } // Write a four bytes number at "p" and return pointer to the next char. static uint8_t *re_put_uint32(uint8_t *p, uint32_t val) { *p++ = (uint8_t)((val >> 24) & 0377); *p++ = (uint8_t)((val >> 16) & 0377); *p++ = (uint8_t)((val >> 8) & 0377); *p++ = (uint8_t)(val & 0377); return p; } // regnext - dig the "next" pointer out of a node // Returns NULL when calculating size, when there is no next item and when // there is an error. static uint8_t *regnext(uint8_t *p) FUNC_ATTR_NONNULL_ALL { int offset; if (p == JUST_CALC_SIZE || reg_toolong) { return NULL; } offset = NEXT(p); if (offset == 0) { return NULL; } if (OP(p) == BACK) { return p - offset; } else { return p + offset; } } // Set the next-pointer at the end of a node chain. static void regtail(uint8_t *p, uint8_t *val) { int offset; if (p == JUST_CALC_SIZE) { return; } // Find last node. uint8_t *scan = p; for (;;) { uint8_t *temp = regnext(scan); if (temp == NULL) { break; } scan = temp; } if (OP(scan) == BACK) { offset = (int)(scan - val); } else { offset = (int)(val - scan); } // When the offset uses more than 16 bits it can no longer fit in the two // bytes available. Use a global flag to avoid having to check return // values in too many places. if (offset > 0xffff) { reg_toolong = true; } else { *(scan + 1) = (uint8_t)(((unsigned)offset >> 8) & 0377); *(scan + 2) = (uint8_t)(offset & 0377); } } // Like regtail, on item after a BRANCH; nop if none. static void regoptail(uint8_t *p, uint8_t *val) { // When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" if (p == NULL || p == JUST_CALC_SIZE || (OP(p) != BRANCH && (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) { return; } regtail(OPERAND(p), val); } // Insert an operator in front of already-emitted operand // // Means relocating the operand. static void reginsert(int op, uint8_t *opnd) { uint8_t *src; uint8_t *dst; uint8_t *place; if (regcode == JUST_CALC_SIZE) { regsize += 3; return; } src = regcode; regcode += 3; dst = regcode; while (src > opnd) { *--dst = *--src; } place = opnd; // Op node, where operand used to be. *place++ = (uint8_t)op; *place++ = NUL; *place = NUL; } // Insert an operator in front of already-emitted operand. // Add a number to the operator. static void reginsert_nr(int op, long val, uint8_t *opnd) { uint8_t *src; uint8_t *dst; uint8_t *place; if (regcode == JUST_CALC_SIZE) { regsize += 7; return; } src = regcode; regcode += 7; dst = regcode; while (src > opnd) { *--dst = *--src; } place = opnd; // Op node, where operand used to be. *place++ = (uint8_t)op; *place++ = NUL; *place++ = NUL; assert(val >= 0 && (uintmax_t)val <= UINT32_MAX); re_put_uint32(place, (uint32_t)val); } // Insert an operator in front of already-emitted operand. // The operator has the given limit values as operands. Also set next pointer. // // Means relocating the operand. static void reginsert_limits(int op, long minval, long maxval, uint8_t *opnd) { uint8_t *src; uint8_t *dst; uint8_t *place; if (regcode == JUST_CALC_SIZE) { regsize += 11; return; } src = regcode; regcode += 11; dst = regcode; while (src > opnd) { *--dst = *--src; } place = opnd; // Op node, where operand used to be. *place++ = (uint8_t)op; *place++ = NUL; *place++ = NUL; assert(minval >= 0 && (uintmax_t)minval <= UINT32_MAX); place = re_put_uint32(place, (uint32_t)minval); assert(maxval >= 0 && (uintmax_t)maxval <= UINT32_MAX); place = re_put_uint32(place, (uint32_t)maxval); regtail(opnd, place); } /// Return true if the back reference is legal. We must have seen the close /// brace. /// TODO(vim): Should also check that we don't refer to something repeated /// (+*=): what instance of the repetition should we match? static int seen_endbrace(int refnum) { if (!had_endbrace[refnum]) { uint8_t *p; // Trick: check if "@<=" or "@'): ret = regnode(EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == '^') { // "\_^" is start-of-line ret = regnode(BOL); break; } if (c == '$') { // "\_$" is end-of-line ret = regnode(EOL); had_eol = true; break; } extra = ADD_NL; *flagp |= HASNL; // "\_[" is character range plus newline if (c == '[') { goto collection; } // "\_x" is character class plus newline FALLTHROUGH; // Character classes. case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c)); if (p == NULL) { EMSG_RET_NULL(_("E63: invalid use of \\_")); } // When '.' is followed by a composing char ignore the dot, so that // the composing char is matched here. if (c == Magic('.') && utf_iscomposing(peekchr())) { c = getchr(); goto do_multibyte; } ret = regnode(classcodes[p - classchars] + extra); *flagp |= HASWIDTH | SIMPLE; break; case Magic('n'): if (reg_string) { // In a string "\n" matches a newline character. ret = regnode(EXACTLY); regc(NL); regc(NUL); *flagp |= HASWIDTH | SIMPLE; } else { // In buffer text "\n" matches the end of a line. ret = regnode(NEWL); *flagp |= HASWIDTH | HASNL; } break; case Magic('('): if (one_exactly) { EMSG_ONE_RET_NULL; } ret = reg(REG_PAREN, &flags); if (ret == NULL) { return NULL; } *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; case NUL: case Magic('|'): case Magic('&'): case Magic(')'): if (one_exactly) { EMSG_ONE_RET_NULL; } IEMSG_RET_NULL(_(e_internal)); // Supposed to be caught earlier. // NOTREACHED case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('{'): case Magic('*'): c = no_Magic(c); EMSG3_RET_NULL(_("E64: %s%c follows nothing"), (c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c); // NOTREACHED case Magic('~'): // previous substitute pattern if (reg_prev_sub != NULL) { uint8_t *lp; ret = regnode(EXACTLY); lp = (uint8_t *)reg_prev_sub; while (*lp != NUL) { regc(*lp++); } regc(NUL); if (*reg_prev_sub != NUL) { *flagp |= HASWIDTH; if ((lp - (uint8_t *)reg_prev_sub) == 1) { *flagp |= SIMPLE; } } } else { EMSG_RET_NULL(_(e_nopresub)); } break; case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): { int refnum; refnum = c - Magic('0'); if (!seen_endbrace(refnum)) { return NULL; } ret = regnode(BACKREF + refnum); } break; case Magic('z'): c = no_Magic(getchr()); switch (c) { case '(': if ((reg_do_extmatch & REX_SET) == 0) { EMSG_RET_NULL(_(e_z_not_allowed)); } if (one_exactly) { EMSG_ONE_RET_NULL; } ret = reg(REG_ZPAREN, &flags); if (ret == NULL) { return NULL; } *flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH); re_has_z = REX_SET; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if ((reg_do_extmatch & REX_USE) == 0) { EMSG_RET_NULL(_(e_z1_not_allowed)); } ret = regnode(ZREF + c - '0'); re_has_z = REX_USE; break; case 's': ret = regnode(MOPEN + 0); if (!re_mult_next("\\zs")) { return NULL; } break; case 'e': ret = regnode(MCLOSE + 0); if (!re_mult_next("\\ze")) { return NULL; } break; default: EMSG_RET_NULL(_("E68: Invalid character after \\z")); } break; case Magic('%'): c = no_Magic(getchr()); switch (c) { // () without a back reference case '(': if (one_exactly) { EMSG_ONE_RET_NULL; } ret = reg(REG_NPAREN, &flags); if (ret == NULL) { return NULL; } *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; // Catch \%^ and \%$ regardless of where they appear in the // pattern -- regardless of whether or not it makes sense. case '^': ret = regnode(RE_BOF); break; case '$': ret = regnode(RE_EOF); break; case '#': if (regparse[0] == '=' && regparse[1] >= 48 && regparse[1] <= 50) { // misplaced \%#=1 semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]); return FAIL; } ret = regnode(CURSOR); break; case 'V': ret = regnode(RE_VISUAL); break; case 'C': ret = regnode(RE_COMPOSING); break; // \%[abc]: Emit as a list of branches, all ending at the last // branch which matches nothing. case '[': if (one_exactly) { // doesn't nest EMSG_ONE_RET_NULL; } { uint8_t *lastbranch; uint8_t *lastnode = NULL; uint8_t *br; ret = NULL; while ((c = getchr()) != ']') { if (c == NUL) { EMSG2_RET_NULL(_(e_missing_sb), reg_magic == MAGIC_ALL); } br = regnode(BRANCH); if (ret == NULL) { ret = br; } else { regtail(lastnode, br); if (reg_toolong) { return NULL; } } ungetchr(); one_exactly = true; lastnode = regatom(flagp); one_exactly = false; if (lastnode == NULL) { return NULL; } } if (ret == NULL) { EMSG2_RET_NULL(_(e_empty_sb), reg_magic == MAGIC_ALL); } lastbranch = regnode(BRANCH); br = regnode(NOTHING); if (ret != JUST_CALC_SIZE) { regtail(lastnode, br); regtail(lastbranch, br); // connect all branches to the NOTHING // branch at the end for (br = ret; br != lastnode;) { if (OP(br) == BRANCH) { regtail(br, lastbranch); if (reg_toolong) { return NULL; } br = OPERAND(br); } else { br = regnext(br); } } } *flagp &= ~(HASWIDTH | SIMPLE); break; } case 'd': // %d123 decimal case 'o': // %o123 octal case 'x': // %xab hex 2 case 'u': // %uabcd hex 4 case 'U': // %U1234abcd hex 8 { int64_t i; switch (c) { case 'd': i = getdecchrs(); break; case 'o': i = getoctchrs(); break; case 'x': i = gethexchrs(2); break; case 'u': i = gethexchrs(4); break; case 'U': i = gethexchrs(8); break; default: i = -1; break; } if (i < 0 || i > INT_MAX) { EMSG2_RET_NULL(_("E678: Invalid character after %s%%[dxouU]"), reg_magic == MAGIC_ALL); } if (use_multibytecode((int)i)) { ret = regnode(MULTIBYTECODE); } else { ret = regnode(EXACTLY); } if (i == 0) { regc(0x0a); } else { regmbc((int)i); } regc(NUL); *flagp |= HASWIDTH; break; } default: if (ascii_isdigit(c) || c == '<' || c == '>' || c == '\'' || c == '.') { uint32_t n = 0; int cmp; bool cur = false; bool got_digit = false; cmp = c; if (cmp == '<' || cmp == '>') { c = getchr(); } if (no_Magic(c) == '.') { cur = true; c = getchr(); } while (ascii_isdigit(c)) { got_digit = true; n = n * 10 + (uint32_t)(c - '0'); c = getchr(); } if (c == '\'' && n == 0) { // "\%'m", "\%<'m" and "\%>'m": Mark c = getchr(); ret = regnode(RE_MARK); if (ret == JUST_CALC_SIZE) { regsize += 2; } else { *regcode++ = (uint8_t)c; *regcode++ = (uint8_t)cmp; } break; } else if ((c == 'l' || c == 'c' || c == 'v') && (cur || got_digit)) { if (cur && n) { semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c)); rc_did_emsg = true; return NULL; } if (c == 'l') { if (cur) { n = (uint32_t)curwin->w_cursor.lnum; } ret = regnode(RE_LNUM); if (save_prev_at_start) { at_start = true; } } else if (c == 'c') { if (cur) { n = (uint32_t)curwin->w_cursor.col; n++; } ret = regnode(RE_COL); } else { if (cur) { colnr_T vcol = 0; getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol); n = (uint32_t)(++vcol); } ret = regnode(RE_VCOL); } if (ret == JUST_CALC_SIZE) { regsize += 5; } else { // put the number and the optional // comparator after the opcode regcode = re_put_uint32(regcode, n); *regcode++ = (uint8_t)cmp; } break; } } EMSG2_RET_NULL(_("E71: Invalid character after %s%%"), reg_magic == MAGIC_ALL); } break; case Magic('['): collection: { uint8_t *lp; // If there is no matching ']', we assume the '[' is a normal // character. This makes 'incsearch' and ":help [" work. lp = (uint8_t *)skip_anyof(regparse); if (*lp == ']') { // there is a matching ']' int startc = -1; // > 0 when next '-' is a range int endc; // In a character class, different parsing rules apply. // Not even \ is special anymore, nothing is. if (*regparse == '^') { // Complement of range. ret = regnode(ANYBUT + extra); regparse++; } else { ret = regnode(ANYOF + extra); } // At the start ']' and '-' mean the literal character. if (*regparse == ']' || *regparse == '-') { startc = *regparse; regc(*regparse++); } while (*regparse != NUL && *regparse != ']') { if (*regparse == '-') { regparse++; // The '-' is not used for a range at the end and // after or before a '\n'. if (*regparse == ']' || *regparse == NUL || startc == -1 || (regparse[0] == '\\' && regparse[1] == 'n')) { regc('-'); startc = '-'; // [--x] is a range } else { // Also accept "a-[.z.]" endc = 0; if (*regparse == '[') { endc = get_coll_element(®parse); } if (endc == 0) { endc = mb_ptr2char_adv((const char **)®parse); } // Handle \o40, \x20 and \u20AC style sequences if (endc == '\\' && !reg_cpo_lit) { endc = coll_get_char(); } if (startc > endc) { EMSG_RET_NULL(_(e_reverse_range)); } if (utf_char2len(startc) > 1 || utf_char2len(endc) > 1) { // Limit to a range of 256 chars if (endc > startc + 256) { EMSG_RET_NULL(_(e_large_class)); } while (++startc <= endc) { regmbc(startc); } } else { while (++startc <= endc) { regc(startc); } } startc = -1; } } // Only "\]", "\^", "\]" and "\\" are special in Vi. Vim // accepts "\t", "\e", etc., but only when the 'l' flag in // 'cpoptions' is not included. else if (*regparse == '\\' && (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, (uint8_t)regparse[1]) != NULL))) { regparse++; if (*regparse == 'n') { // '\n' in range: also match NL if (ret != JUST_CALC_SIZE) { // Using \n inside [^] does not change what // matches. "[^\n]" is the same as ".". if (*ret == ANYOF) { *ret = ANYOF + ADD_NL; *flagp |= HASNL; } // else: must have had a \n already } regparse++; startc = -1; } else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U') { startc = coll_get_char(); if (startc == 0) { regc(0x0a); } else { regmbc(startc); } } else { startc = backslash_trans(*regparse++); regc(startc); } } else if (*regparse == '[') { int c_class; int cu; c_class = get_char_class(®parse); startc = -1; // Characters assumed to be 8 bits! switch (c_class) { case CLASS_NONE: c_class = get_equi_class(®parse); if (c_class != 0) { // produce equivalence class reg_equi_class(c_class); } else if ((c_class = get_coll_element(®parse)) != 0) { // produce a collating element regmbc(c_class); } else { // literal '[', allow [[-x] as a range startc = *regparse++; regc(startc); } break; case CLASS_ALNUM: for (cu = 1; cu < 128; cu++) { if (isalnum(cu)) { regmbc(cu); } } break; case CLASS_ALPHA: for (cu = 1; cu < 128; cu++) { if (isalpha(cu)) { regmbc(cu); } } break; case CLASS_BLANK: regc(' '); regc('\t'); break; case CLASS_CNTRL: for (cu = 1; cu <= 127; cu++) { if (iscntrl(cu)) { regmbc(cu); } } break; case CLASS_DIGIT: for (cu = 1; cu <= 127; cu++) { if (ascii_isdigit(cu)) { regmbc(cu); } } break; case CLASS_GRAPH: for (cu = 1; cu <= 127; cu++) { if (isgraph(cu)) { regmbc(cu); } } break; case CLASS_LOWER: for (cu = 1; cu <= 255; cu++) { if (mb_islower(cu) && cu != 170 && cu != 186) { regmbc(cu); } } break; case CLASS_PRINT: for (cu = 1; cu <= 255; cu++) { if (vim_isprintc(cu)) { regmbc(cu); } } break; case CLASS_PUNCT: for (cu = 1; cu < 128; cu++) { if (ispunct(cu)) { regmbc(cu); } } break; case CLASS_SPACE: for (cu = 9; cu <= 13; cu++) { regc(cu); } regc(' '); break; case CLASS_UPPER: for (cu = 1; cu <= 255; cu++) { if (mb_isupper(cu)) { regmbc(cu); } } break; case CLASS_XDIGIT: for (cu = 1; cu <= 255; cu++) { if (ascii_isxdigit(cu)) { regmbc(cu); } } break; case CLASS_TAB: regc('\t'); break; case CLASS_RETURN: regc('\r'); break; case CLASS_BACKSPACE: regc('\b'); break; case CLASS_ESCAPE: regc(ESC); break; case CLASS_IDENT: for (cu = 1; cu <= 255; cu++) { if (vim_isIDc(cu)) { regmbc(cu); } } break; case CLASS_KEYWORD: for (cu = 1; cu <= 255; cu++) { if (reg_iswordc(cu)) { regmbc(cu); } } break; case CLASS_FNAME: for (cu = 1; cu <= 255; cu++) { if (vim_isfilec(cu)) { regmbc(cu); } } break; } } else { // produce a multibyte character, including any // following composing characters. startc = utf_ptr2char((char *)regparse); int len = utfc_ptr2len((char *)regparse); if (utf_char2len(startc) != len) { // composing chars startc = -1; } while (--len >= 0) { regc(*regparse++); } } } regc(NUL); prevchr_len = 1; // last char was the ']' if (*regparse != ']') { EMSG_RET_NULL(_(e_toomsbra)); // Cannot happen? } skipchr(); // let's be friends with the lexer again *flagp |= HASWIDTH | SIMPLE; break; } else if (reg_strict) { EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF); } } FALLTHROUGH; default: { int len; // A multi-byte character is handled as a separate atom if it's // before a multi and when it's a composing char. if (use_multibytecode(c)) { do_multibyte: ret = regnode(MULTIBYTECODE); regmbc(c); *flagp |= HASWIDTH | SIMPLE; break; } ret = regnode(EXACTLY); // Append characters as long as: // - there is no following multi, we then need the character in // front of it as a single character operand // - not running into a Magic character // - "one_exactly" is not set // But always emit at least one character. Might be a Multi, // e.g., a "[" without matching "]". for (len = 0; c != NUL && (len == 0 || (re_multi_type(peekchr()) == NOT_MULTI && !one_exactly && !is_Magic(c))); len++) { c = no_Magic(c); { regmbc(c); { int l; // Need to get composing character too. for (;;) { l = utf_ptr2len((char *)regparse); if (!utf_composinglike(regparse, regparse + l)) { break; } regmbc(utf_ptr2char((char *)regparse)); skipchr(); } } } c = getchr(); } ungetchr(); regc(NUL); *flagp |= HASWIDTH; if (len == 1) { *flagp |= SIMPLE; } } break; } return ret; } // Parse something followed by possible [*+=]. // // Note that the branching code sequences used for = and the general cases // of * and + are somewhat optimized: they use the same NOTHING node as // both the endmarker for their branch list and the body of the last branch. // It might seem that this node could be dispensed with entirely, but the // endmarker role is not redundant. static uint8_t *regpiece(int *flagp) { uint8_t *ret; int op; uint8_t *next; int flags; long minval; long maxval; ret = regatom(&flags); if (ret == NULL) { return NULL; } op = peekchr(); if (re_multi_type(op) == NOT_MULTI) { *flagp = flags; return ret; } // default flags *flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH))); skipchr(); switch (op) { case Magic('*'): if (flags & SIMPLE) { reginsert(STAR, ret); } else { // Emit x* as (x&|), where & means "self". reginsert(BRANCH, ret); // Either x regoptail(ret, regnode(BACK)); // and loop regoptail(ret, ret); // back regtail(ret, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } break; case Magic('+'): if (flags & SIMPLE) { reginsert(PLUS, ret); } else { // Emit x+ as x(&|), where & means "self". next = regnode(BRANCH); // Either regtail(ret, next); regtail(regnode(BACK), ret); // loop back regtail(next, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } *flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; case Magic('@'): { int lop = END; int64_t nr = getdecchrs(); switch (no_Magic(getchr())) { case '=': lop = MATCH; break; // \@= case '!': lop = NOMATCH; break; // \@! case '>': lop = SUBPAT; break; // \@> case '<': switch (no_Magic(getchr())) { case '=': lop = BEHIND; break; // \@<= case '!': lop = NOBEHIND; break; // \@= 10) { EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"), reg_magic == MAGIC_ALL); } reginsert(BRACE_COMPLEX + num_complex_braces, ret); regoptail(ret, regnode(BACK)); regoptail(ret, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); num_complex_braces++; } if (minval > 0 && maxval > 0) { *flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH))); } break; } if (re_multi_type(peekchr()) != NOT_MULTI) { // Can't have a multi follow a multi. if (peekchr() == Magic('*')) { EMSG2_RET_NULL(_("E61: Nested %s*"), reg_magic >= MAGIC_ON); } EMSG3_RET_NULL(_("E62: Nested %s%c"), reg_magic == MAGIC_ALL, no_Magic(peekchr())); } return ret; } // Parse one alternative of an | or & operator. // Implements the concatenation operator. static uint8_t *regconcat(int *flagp) { uint8_t *first = NULL; uint8_t *chain = NULL; uint8_t *latest; int flags; int cont = true; *flagp = WORST; // Tentatively. while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = false; break; case Magic('Z'): regflags |= RF_ICOMBINE; skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: latest = regpiece(&flags); if (latest == NULL || reg_toolong) { return NULL; } *flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH); if (chain == NULL) { // First piece. *flagp |= flags & SPSTART; } else { regtail(chain, latest); } chain = latest; if (first == NULL) { first = latest; } break; } } if (first == NULL) { // Loop ran zero times. first = regnode(NOTHING); } return first; } // Parse one alternative of an | operator. // Implements the & operator. static uint8_t *regbranch(int *flagp) { uint8_t *ret; uint8_t *chain = NULL; uint8_t *latest; int flags; *flagp = WORST | HASNL; // Tentatively. ret = regnode(BRANCH); for (;;) { latest = regconcat(&flags); if (latest == NULL) { return NULL; } // If one of the branches has width, the whole thing has. If one of // the branches anchors at start-of-line, the whole thing does. // If one of the branches uses look-behind, the whole thing does. *flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH); // If one of the branches doesn't match a line-break, the whole thing // doesn't. *flagp &= ~HASNL | (flags & HASNL); if (chain != NULL) { regtail(chain, latest); } if (peekchr() != Magic('&')) { break; } skipchr(); regtail(latest, regnode(END)); // operand ends if (reg_toolong) { break; } reginsert(MATCH, latest); chain = latest; } return ret; } /// Parse regular expression, i.e. main body or parenthesized thing. /// /// Caller must absorb opening parenthesis. /// /// Combining parenthesis handling with the base level of regular expression /// is a trifle forced, but the need to tie the tails of the branches to what /// follows makes it hard to avoid. /// /// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN static uint8_t *reg(int paren, int *flagp) { uint8_t *ret; uint8_t *br; uint8_t *ender; int parno = 0; int flags; *flagp = HASWIDTH; // Tentatively. if (paren == REG_ZPAREN) { // Make a ZOPEN node. if (regnzpar >= NSUBEXP) { EMSG_RET_NULL(_("E50: Too many \\z(")); } parno = regnzpar; regnzpar++; ret = regnode(ZOPEN + parno); } else if (paren == REG_PAREN) { // Make a MOPEN node. if (regnpar >= NSUBEXP) { EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL); } parno = regnpar; regnpar++; ret = regnode(MOPEN + parno); } else if (paren == REG_NPAREN) { // Make a NOPEN node. ret = regnode(NOPEN); } else { ret = NULL; } // Pick up the branches, linking them together. br = regbranch(&flags); if (br == NULL) { return NULL; } if (ret != NULL) { regtail(ret, br); // [MZ]OPEN -> first. } else { ret = br; } // If one of the branches can be zero-width, the whole thing can. // If one of the branches has * at start or matches a line-break, the // whole thing can. if (!(flags & HASWIDTH)) { *flagp &= ~HASWIDTH; } *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); while (peekchr() == Magic('|')) { skipchr(); br = regbranch(&flags); if (br == NULL || reg_toolong) { return NULL; } regtail(ret, br); // BRANCH -> BRANCH. if (!(flags & HASWIDTH)) { *flagp &= ~HASWIDTH; } *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); } // Make a closing node, and hook it on the end. ender = regnode(paren == REG_ZPAREN ? ZCLOSE + parno : paren == REG_PAREN ? MCLOSE + parno : paren == REG_NPAREN ? NCLOSE : END); regtail(ret, ender); // Hook the tails of the branches to the closing node. for (br = ret; br != NULL; br = regnext(br)) { regoptail(br, ender); } // Check for proper termination. if (paren != REG_NOPAREN && getchr() != Magic(')')) { if (paren == REG_ZPAREN) { EMSG_RET_NULL(_("E52: Unmatched \\z(")); } else if (paren == REG_NPAREN) { EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL); } else { EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL); } } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (curchr == Magic(')')) { EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL); } else { EMSG_RET_NULL(_(e_trailing)); // "Can't happen". } // NOTREACHED } // Here we set the flag allowing back references to this set of // parentheses. if (paren == REG_PAREN) { had_endbrace[parno] = true; // have seen the close paren } return ret; } // bt_regcomp() - compile a regular expression into internal code for the // traditional back track matcher. // Returns the program in allocated space. Returns NULL for an error. // // We can't allocate space until we know how big the compiled form will be, // but we can't compile it (and thus know how big it is) until we've got a // place to put the code. So we cheat: we compile it twice, once with code // generation turned off and size counting turned on, and once "for real". // This also means that we don't allocate space until we are sure that the // thing really will compile successfully, and we never have to move the // code and thus invalidate pointers into it. (Note that it has to be in // one piece because free() must be able to free it all.) // // Whether upper/lower case is to be ignored is decided when executing the // program, it does not matter here. // // Beware that the optimization-preparation code in here knows about some // of the structure of the compiled regexp. // "re_flags": RE_MAGIC and/or RE_STRING. static regprog_T *bt_regcomp(uint8_t *expr, int re_flags) { uint8_t *scan; uint8_t *longest; int len; int flags; if (expr == NULL) { IEMSG_RET_NULL(_(e_null)); } init_class_tab(); // First pass: determine size, legality. regcomp_start(expr, re_flags); regcode = JUST_CALC_SIZE; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL) { return NULL; } // Allocate space. bt_regprog_T *r = xmalloc(offsetof(bt_regprog_T, program) + (size_t)regsize); r->re_in_use = false; // Second pass: emit code. regcomp_start(expr, re_flags); regcode = r->program; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) { xfree(r); if (reg_toolong) { EMSG_RET_NULL(_("E339: Pattern too long")); } return NULL; } // Dig out information for optimizations. r->regstart = NUL; // Worst-case defaults. r->reganch = 0; r->regmust = NULL; r->regmlen = 0; r->regflags = regflags; if (flags & HASNL) { r->regflags |= RF_HASNL; } if (flags & HASLOOKBH) { r->regflags |= RF_LOOKBH; } // Remember whether this pattern has any \z specials in it. r->reghasz = (uint8_t)re_has_z; scan = r->program + 1; // First BRANCH. if (OP(regnext(scan)) == END) { // Only one top-level choice. scan = OPERAND(scan); // Starting-point info. if (OP(scan) == BOL || OP(scan) == RE_BOF) { r->reganch++; scan = regnext(scan); } if (OP(scan) == EXACTLY) { r->regstart = utf_ptr2char((char *)OPERAND(scan)); } else if (OP(scan) == BOW || OP(scan) == EOW || OP(scan) == NOTHING || OP(scan) == MOPEN + 0 || OP(scan) == NOPEN || OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) { uint8_t *regnext_scan = regnext(scan); if (OP(regnext_scan) == EXACTLY) { r->regstart = utf_ptr2char((char *)OPERAND(regnext_scan)); } } // If there's something expensive in the r.e., find the longest // literal string that must appear and make it the regmust. Resolve // ties in favor of later strings, since the regstart check works // with the beginning of the r.e. and avoiding duplication // strengthens checking. Not a strong reason, but sufficient in the // absence of others. // When the r.e. starts with BOW, it is faster to look for a regmust // first. Used a lot for "#" and "*" commands. (Added by mool). if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW) && !(flags & HASNL)) { longest = NULL; len = 0; for (; scan != NULL; scan = regnext(scan)) { if (OP(scan) == EXACTLY && strlen((char *)OPERAND(scan)) >= (size_t)len) { longest = OPERAND(scan); len = (int)strlen((char *)OPERAND(scan)); } } r->regmust = longest; r->regmlen = len; } } #ifdef BT_REGEXP_DUMP regdump(expr, r); #endif r->engine = &bt_regengine; return (regprog_T *)r; } // Check if during the previous call to vim_regcomp the EOL item "$" has been // found. This is messy, but it works fine. int vim_regcomp_had_eol(void) { return had_eol; } // Get a number after a backslash that is inside []. // When nothing is recognized return a backslash. static int coll_get_char(void) { int64_t nr = -1; switch (*regparse++) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; } if (nr < 0 || nr > INT_MAX) { // If getting the number fails be backwards compatible: the character // is a backslash. regparse--; nr = '\\'; } return (int)nr; } // Free a compiled regexp program, returned by bt_regcomp(). static void bt_regfree(regprog_T *prog) { xfree(prog); } #define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input) // The arguments from BRACE_LIMITS are stored here. They are actually local // to regmatch(), but they are here to reduce the amount of stack space used // (it can be called recursively many times). static long bl_minval; static long bl_maxval; // Save the input line and position in a regsave_T. static void reg_save(regsave_T *save, garray_T *gap) FUNC_ATTR_NONNULL_ALL { if (REG_MULTI) { save->rs_u.pos.col = (colnr_T)(rex.input - rex.line); save->rs_u.pos.lnum = rex.lnum; } else { save->rs_u.ptr = rex.input; } save->rs_len = gap->ga_len; } // Restore the input line and position from a regsave_T. static void reg_restore(regsave_T *save, garray_T *gap) FUNC_ATTR_NONNULL_ALL { if (REG_MULTI) { if (rex.lnum != save->rs_u.pos.lnum) { // only call reg_getline() when the line number changed to save // a bit of time rex.lnum = save->rs_u.pos.lnum; rex.line = (uint8_t *)reg_getline(rex.lnum); } rex.input = rex.line + save->rs_u.pos.col; } else { rex.input = save->rs_u.ptr; } gap->ga_len = save->rs_len; } // Return true if current position is equal to saved position. static bool reg_save_equal(const regsave_T *save) FUNC_ATTR_NONNULL_ALL { if (REG_MULTI) { return rex.lnum == save->rs_u.pos.lnum && rex.input == rex.line + save->rs_u.pos.col; } return rex.input == save->rs_u.ptr; } // Save the sub-expressions before attempting a match. #define save_se(savep, posp, pp) \ REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp)) // After a failed match restore the sub-expressions. #define restore_se(savep, posp, pp) { \ if (REG_MULTI) /* NOLINT(readability/braces) */ \ *(posp) = (savep)->se_u.pos; \ else /* NOLINT */ \ *(pp) = (savep)->se_u.ptr; } // Tentatively set the sub-expression start to the current position (after // calling regmatch() they will have changed). Need to save the existing // values for when there is no match. // Use se_save() to use pointer (save_se_multi()) or position (save_se_one()), // depending on REG_MULTI. static void save_se_multi(save_se_T *savep, lpos_T *posp) { savep->se_u.pos = *posp; posp->lnum = rex.lnum; posp->col = (colnr_T)(rex.input - rex.line); } static void save_se_one(save_se_T *savep, uint8_t **pp) { savep->se_u.ptr = *pp; *pp = rex.input; } /// regrepeat - repeatedly match something simple, return how many. /// Advances rex.input (and rex.lnum) to just after the matched chars. /// /// @param maxcount maximum number of matches allowed static int regrepeat(uint8_t *p, long maxcount) { long count = 0; uint8_t *opnd; int mask; int testval = 0; uint8_t *scan = rex.input; // Make local copy of rex.input for speed. opnd = OPERAND(p); switch (OP(p)) { case ANY: case ANY + ADD_NL: while (count < maxcount) { // Matching anything means we continue until end-of-line (or // end-of-file for ANY + ADD_NL), only limited by maxcount. while (*scan != NUL && count < maxcount) { count++; MB_PTR_ADV(scan); } if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr || count == maxcount) { break; } count++; // count the line-break reg_nextline(); scan = rex.input; if (got_int) { break; } } break; case IDENT: case IDENT + ADD_NL: testval = 1; FALLTHROUGH; case SIDENT: case SIDENT + ADD_NL: while (count < maxcount) { if (vim_isIDc(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case KWORD: case KWORD + ADD_NL: testval = 1; FALLTHROUGH; case SKWORD: case SKWORD + ADD_NL: while (count < maxcount) { if (vim_iswordp_buf((char *)scan, rex.reg_buf) && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case FNAME: case FNAME + ADD_NL: testval = 1; FALLTHROUGH; case SFNAME: case SFNAME + ADD_NL: while (count < maxcount) { if (vim_isfilec(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case PRINT: case PRINT + ADD_NL: testval = 1; FALLTHROUGH; case SPRINT: case SPRINT + ADD_NL: while (count < maxcount) { if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (vim_isprintc(utf_ptr2char((char *)scan)) == 1 && (testval || !ascii_isdigit(*scan))) { MB_PTR_ADV(scan); } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case WHITE: case WHITE + ADD_NL: testval = mask = RI_WHITE; do_class: while (count < maxcount) { int l; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if ((l = utfc_ptr2len((char *)scan)) > 1) { if (testval != 0) { break; } scan += l; } else if ((class_tab[*scan] & mask) == testval) { scan++; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else { break; } count++; } break; case NWHITE: case NWHITE + ADD_NL: mask = RI_WHITE; goto do_class; case DIGIT: case DIGIT + ADD_NL: testval = mask = RI_DIGIT; goto do_class; case NDIGIT: case NDIGIT + ADD_NL: mask = RI_DIGIT; goto do_class; case HEX: case HEX + ADD_NL: testval = mask = RI_HEX; goto do_class; case NHEX: case NHEX + ADD_NL: mask = RI_HEX; goto do_class; case OCTAL: case OCTAL + ADD_NL: testval = mask = RI_OCTAL; goto do_class; case NOCTAL: case NOCTAL + ADD_NL: mask = RI_OCTAL; goto do_class; case WORD: case WORD + ADD_NL: testval = mask = RI_WORD; goto do_class; case NWORD: case NWORD + ADD_NL: mask = RI_WORD; goto do_class; case HEAD: case HEAD + ADD_NL: testval = mask = RI_HEAD; goto do_class; case NHEAD: case NHEAD + ADD_NL: mask = RI_HEAD; goto do_class; case ALPHA: case ALPHA + ADD_NL: testval = mask = RI_ALPHA; goto do_class; case NALPHA: case NALPHA + ADD_NL: mask = RI_ALPHA; goto do_class; case LOWER: case LOWER + ADD_NL: testval = mask = RI_LOWER; goto do_class; case NLOWER: case NLOWER + ADD_NL: mask = RI_LOWER; goto do_class; case UPPER: case UPPER + ADD_NL: testval = mask = RI_UPPER; goto do_class; case NUPPER: case NUPPER + ADD_NL: mask = RI_UPPER; goto do_class; case EXACTLY: { int cu, cl; // This doesn't do a multi-byte character, because a MULTIBYTECODE // would have been used for it. It does handle single-byte // characters, such as latin1. if (rex.reg_ic) { cu = mb_toupper(*opnd); cl = mb_tolower(*opnd); while (count < maxcount && (*scan == cu || *scan == cl)) { count++; scan++; } } else { cu = *opnd; while (count < maxcount && *scan == cu) { count++; scan++; } } break; } case MULTIBYTECODE: { int i, len, cf = 0; // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = utfc_ptr2len((char *)opnd)) > 1) { if (rex.reg_ic) { cf = utf_fold(utf_ptr2char((char *)opnd)); } while (count < maxcount && utfc_ptr2len((char *)scan) >= len) { for (i = 0; i < len; i++) { if (opnd[i] != scan[i]) { break; } } if (i < len && (!rex.reg_ic || utf_fold(utf_ptr2char((char *)scan)) != cf)) { break; } scan += len; count++; } } } break; case ANYOF: case ANYOF + ADD_NL: testval = 1; FALLTHROUGH; case ANYBUT: case ANYBUT + ADD_NL: while (count < maxcount) { int len; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) { break; } reg_nextline(); scan = rex.input; if (got_int) { break; } } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) { scan++; } else if ((len = utfc_ptr2len((char *)scan)) > 1) { if ((cstrchr((char *)opnd, utf_ptr2char((char *)scan)) == NULL) == testval) { break; } scan += len; } else { if ((cstrchr((char *)opnd, *scan) == NULL) == testval) { break; } scan++; } count++; } break; case NEWL: while (count < maxcount && ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr && REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) { count++; if (rex.reg_line_lbr) { ADVANCE_REGINPUT(); } else { reg_nextline(); } scan = rex.input; if (got_int) { break; } } break; default: // Oh dear. Called inappropriately. iemsg(_(e_re_corr)); #ifdef REGEXP_DEBUG printf("Called regrepeat with op code %d\n", OP(p)); #endif break; } rex.input = scan; return (int)count; } // Push an item onto the regstack. // Returns pointer to new item. Returns NULL when out of memory. static regitem_T *regstack_push(regstate_T state, uint8_t *scan) { regitem_T *rp; if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_maxmempat)); return NULL; } ga_grow(®stack, sizeof(regitem_T)); rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len); rp->rs_state = state; rp->rs_scan = scan; regstack.ga_len += (int)sizeof(regitem_T); return rp; } // Pop an item from the regstack. static void regstack_pop(uint8_t **scan) { regitem_T *rp; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; *scan = rp->rs_scan; regstack.ga_len -= (int)sizeof(regitem_T); } // Save the current subexpr to "bp", so that they can be restored // later by restore_subexpr(). static void save_subexpr(regbehind_T *bp) FUNC_ATTR_NONNULL_ALL { // When "rex.need_clear_subexpr" is set we don't need to save the values, only // remember that this flag needs to be set again when restoring. bp->save_need_clear_subexpr = rex.need_clear_subexpr; if (rex.need_clear_subexpr) { return; } for (int i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { bp->save_start[i].se_u.pos = rex.reg_startpos[i]; bp->save_end[i].se_u.pos = rex.reg_endpos[i]; } else { bp->save_start[i].se_u.ptr = rex.reg_startp[i]; bp->save_end[i].se_u.ptr = rex.reg_endp[i]; } } } // Restore the subexpr from "bp". static void restore_subexpr(regbehind_T *bp) FUNC_ATTR_NONNULL_ALL { // Only need to restore saved values when they are not to be cleared. rex.need_clear_subexpr = bp->save_need_clear_subexpr; if (rex.need_clear_subexpr) { return; } for (int i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { rex.reg_startpos[i] = bp->save_start[i].se_u.pos; rex.reg_endpos[i] = bp->save_end[i].se_u.pos; } else { rex.reg_startp[i] = bp->save_start[i].se_u.ptr; rex.reg_endp[i] = bp->save_end[i].se_u.ptr; } } } /// Main matching routine /// /// Conceptually the strategy is simple: Check to see whether the current node /// matches, push an item onto the regstack and loop to see whether the rest /// matches, and then act accordingly. In practice we make some effort to /// avoid using the regstack, in particular by going through "ordinary" nodes /// (that don't need to know whether the rest of the match failed) by a nested /// loop. /// /// @param scan Current node. /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return - true when there is a match. Leaves rex.input and rex.lnum /// just after the last matched character. /// - false when there is no match. Leaves rex.input and rex.lnum in an /// undefined state! static bool regmatch(uint8_t *scan, proftime_T *tm, int *timed_out) { uint8_t *next; // Next node. int op; int c; regitem_T *rp; int no; int status; // one of the RA_ values: int tm_count = 0; // Make "regstack" and "backpos" empty. They are allocated and freed in // bt_regexec_both() to reduce malloc()/free() calls. regstack.ga_len = 0; backpos.ga_len = 0; // Repeat until "regstack" is empty. for (;;) { // Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q". // Allow interrupting them with CTRL-C. fast_breakcheck(); #ifdef REGEXP_DEBUG if (scan != NULL && regnarrate) { os_errmsg((char *)regprop(scan)); os_errmsg("(\n"); } #endif // Repeat for items that can be matched sequentially, without using the // regstack. for (;;) { if (got_int || scan == NULL) { status = RA_FAIL; break; } // Check for timeout once in a 100 times to avoid overhead. if (tm != NULL && ++tm_count == 100) { tm_count = 0; if (profile_passed_limit(*tm)) { if (timed_out != NULL) { *timed_out = true; } status = RA_FAIL; break; } } status = RA_CONT; #ifdef REGEXP_DEBUG if (regnarrate) { os_errmsg((char *)regprop(scan)); os_errmsg("...\n"); if (re_extmatch_in != NULL) { int i; os_errmsg(_("External submatches:\n")); for (i = 0; i < NSUBEXP; i++) { os_errmsg(" \""); if (re_extmatch_in->matches[i] != NULL) { os_errmsg((char *)re_extmatch_in->matches[i]); } os_errmsg("\"\n"); } } } #endif next = regnext(scan); op = OP(scan); // Check for character class with NL added. if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI && *rex.input == NUL && rex.lnum <= rex.reg_maxline) { reg_nextline(); } else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') { ADVANCE_REGINPUT(); } else { if (WITH_NL(op)) { op -= ADD_NL; } c = utf_ptr2char((char *)rex.input); switch (op) { case BOL: if (rex.input != rex.line) { status = RA_NOMATCH; } break; case EOL: if (c != NUL) { status = RA_NOMATCH; } break; case RE_BOF: // We're not at the beginning of the file when below the first // line where we started, not at the start of the line or we // didn't start at the first line of the buffer. if (rex.lnum != 0 || rex.input != rex.line || (REG_MULTI && rex.reg_firstlnum > 1)) { status = RA_NOMATCH; } break; case RE_EOF: if (rex.lnum != rex.reg_maxline || c != NUL) { status = RA_NOMATCH; } break; case CURSOR: // Check if the buffer is in a window and compare the // rex.reg_win->w_cursor position to the match position. if (rex.reg_win == NULL || (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum) || ((colnr_T)(rex.input - rex.line) != rex.reg_win->w_cursor.col)) { status = RA_NOMATCH; } break; case RE_MARK: // Compare the mark position to the match position. { int mark = OPERAND(scan)[0]; int cmp = OPERAND(scan)[1]; pos_T *pos; size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0; fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, mark); // Line may have been freed, get it again. if (REG_MULTI) { rex.line = (uint8_t *)reg_getline(rex.lnum); rex.input = rex.line + col; } if (fm == NULL // mark doesn't exist || fm->mark.lnum <= 0) { // mark isn't set in reg_buf status = RA_NOMATCH; } else { pos = &fm->mark; const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum && pos->col == MAXCOL ? (colnr_T)strlen((char *)reg_getline(pos->lnum - rex.reg_firstlnum)) : pos->col; if (pos->lnum == rex.lnum + rex.reg_firstlnum ? (pos_col == (colnr_T)(rex.input - rex.line) ? (cmp == '<' || cmp == '>') : (pos_col < (colnr_T)(rex.input - rex.line) ? cmp != '>' : cmp != '<')) : (pos->lnum < rex.lnum + rex.reg_firstlnum ? cmp != '>' : cmp != '<')) { status = RA_NOMATCH; } } } break; case RE_VISUAL: if (!reg_match_visual()) { status = RA_NOMATCH; } break; case RE_LNUM: assert(rex.lnum + rex.reg_firstlnum >= 0 && (uintmax_t)(rex.lnum + rex.reg_firstlnum) <= UINT32_MAX); if (!REG_MULTI || !re_num_cmp((uint32_t)(rex.lnum + rex.reg_firstlnum), scan)) { status = RA_NOMATCH; } break; case RE_COL: assert(rex.input - rex.line + 1 >= 0 && (uintmax_t)(rex.input - rex.line + 1) <= UINT32_MAX); if (!re_num_cmp((uint32_t)(rex.input - rex.line + 1), scan)) { status = RA_NOMATCH; } break; case RE_VCOL: if (!re_num_cmp(win_linetabsize(rex.reg_win == NULL ? curwin : rex.reg_win, rex.reg_firstlnum + rex.lnum, (char *)rex.line, (colnr_T)(rex.input - rex.line)) + 1, scan)) { status = RA_NOMATCH; } break; case BOW: // \b_chartab); if (this_class <= 1) { status = RA_NOMATCH; // Not on a word at all. } else if (reg_prev_class() == this_class) { status = RA_NOMATCH; // Previous char is in same word. } } break; case EOW: // word\>; rex.input points after d if (rex.input == rex.line) { // Can't match at start of line status = RA_NOMATCH; } else { int this_class, prev_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) { status = RA_NOMATCH; } } break; // Matched with EOW case ANY: // ANY does not match new lines. if (c == NUL) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case IDENT: if (!vim_isIDc(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SIDENT: if (ascii_isdigit(*rex.input) || !vim_isIDc(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case KWORD: if (!vim_iswordp_buf((char *)rex.input, rex.reg_buf)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SKWORD: if (ascii_isdigit(*rex.input) || !vim_iswordp_buf((char *)rex.input, rex.reg_buf)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case FNAME: if (!vim_isfilec(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SFNAME: if (ascii_isdigit(*rex.input) || !vim_isfilec(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case PRINT: if (!vim_isprintc(utf_ptr2char((char *)rex.input))) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case SPRINT: if (ascii_isdigit(*rex.input) || !vim_isprintc(utf_ptr2char((char *)rex.input))) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case WHITE: if (!ascii_iswhite(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NWHITE: if (c == NUL || ascii_iswhite(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case DIGIT: if (!ri_digit(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NDIGIT: if (c == NUL || ri_digit(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case HEX: if (!ri_hex(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NHEX: if (c == NUL || ri_hex(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case OCTAL: if (!ri_octal(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NOCTAL: if (c == NUL || ri_octal(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case WORD: if (!ri_word(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NWORD: if (c == NUL || ri_word(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case HEAD: if (!ri_head(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NHEAD: if (c == NUL || ri_head(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case ALPHA: if (!ri_alpha(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NALPHA: if (c == NUL || ri_alpha(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case LOWER: if (!ri_lower(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NLOWER: if (c == NUL || ri_lower(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case UPPER: if (!ri_upper(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case NUPPER: if (c == NUL || ri_upper(c)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case EXACTLY: { int len; uint8_t *opnd; opnd = OPERAND(scan); // Inline the first byte, for speed. if (*opnd != *rex.input && (!rex.reg_ic)) { status = RA_NOMATCH; } else if (*opnd == NUL) { // match empty string always works; happens when "~" is // empty. } else { if (opnd[1] == NUL && !rex.reg_ic) { len = 1; // matched a single byte above } else { // Need to match first byte again for multi-byte. len = (int)strlen((char *)opnd); if (cstrncmp((char *)opnd, (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } } // Check for following composing character, unless %C // follows (skips over all composing chars). if (status != RA_NOMATCH && utf_composinglike((char *)rex.input, (char *)rex.input + len) && !rex.reg_icombine && OP(next) != RE_COMPOSING) { // raaron: This code makes a composing character get // ignored, which is the correct behavior (sometimes) // for voweled Hebrew texts. status = RA_NOMATCH; } if (status != RA_NOMATCH) { rex.input += len; } } } break; case ANYOF: case ANYBUT: if (c == NUL) { status = RA_NOMATCH; } else if ((cstrchr((char *)OPERAND(scan), c) == NULL) == (op == ANYOF)) { status = RA_NOMATCH; } else { ADVANCE_REGINPUT(); } break; case MULTIBYTECODE: { int i, len; const uint8_t *opnd = OPERAND(scan); // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = utfc_ptr2len((char *)opnd)) < 2) { status = RA_NOMATCH; break; } const int opndc = utf_ptr2char((char *)opnd); if (utf_iscomposing(opndc)) { // When only a composing char is given match at any // position where that composing char appears. status = RA_NOMATCH; for (i = 0; rex.input[i] != NUL; i += utf_ptr2len((char *)rex.input + i)) { const int inpc = utf_ptr2char((char *)rex.input + i); if (!utf_iscomposing(inpc)) { if (i > 0) { break; } } else if (opndc == inpc) { // Include all following composing chars. len = i + utfc_ptr2len((char *)rex.input + i); status = RA_MATCH; break; } } } else { for (i = 0; i < len; i++) { if (opnd[i] != rex.input[i]) { status = RA_NOMATCH; break; } } } rex.input += len; } break; case RE_COMPOSING: // Skip composing characters. while (utf_iscomposing(utf_ptr2char((char *)rex.input))) { MB_CPTR_ADV(rex.input); } break; case NOTHING: break; case BACK: { int i; // When we run into BACK we need to check if we don't keep // looping without matching any input. The second and later // times a BACK is encountered it fails if the input is still // at the same position as the previous time. // The positions are stored in "backpos" and found by the // current value of "scan", the position in the RE program. backpos_T *bp = (backpos_T *)backpos.ga_data; for (i = 0; i < backpos.ga_len; i++) { if (bp[i].bp_scan == scan) { break; } } if (i == backpos.ga_len) { backpos_T *p = GA_APPEND_VIA_PTR(backpos_T, &backpos); p->bp_scan = scan; } else if (reg_save_equal(&bp[i].bp_pos)) { // Still at same position as last time, fail. status = RA_NOMATCH; } assert(status != RA_FAIL); if (status != RA_NOMATCH) { reg_save(&bp[i].bp_pos, &backpos); } } break; case MOPEN + 0: // Match start: \zs case MOPEN + 1: // \( case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: no = op - MOPEN; cleanup_subexpr(); rp = regstack_push(RS_MOPEN, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, &rex.reg_startpos[no], &rex.reg_startp[no]); // We simply continue and handle the result when done. } break; case NOPEN: // \%( case NCLOSE: // \) after \%( if (regstack_push(RS_NOPEN, scan) == NULL) { status = RA_FAIL; } // We simply continue and handle the result when done. break; case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: no = op - ZOPEN; cleanup_zsubexpr(); rp = regstack_push(RS_ZOPEN, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, ®_startzpos[no], ®_startzp[no]); // We simply continue and handle the result when done. } break; case MCLOSE + 0: // Match end: \ze case MCLOSE + 1: // \) case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: no = op - MCLOSE; cleanup_subexpr(); rp = regstack_push(RS_MCLOSE, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]); // We simply continue and handle the result when done. } break; case ZCLOSE + 1: // \) after \z( case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: no = op - ZCLOSE; cleanup_zsubexpr(); rp = regstack_push(RS_ZCLOSE, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; save_se(&rp->rs_un.sesave, ®_endzpos[no], ®_endzp[no]); // We simply continue and handle the result when done. } break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: { int len; no = op - BACKREF; cleanup_subexpr(); if (!REG_MULTI) { // Single-line regexp if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) { // Backref was not set: Match an empty string. len = 0; } else { // Compare current input with back-ref in the same line. len = (int)(rex.reg_endp[no] - rex.reg_startp[no]); if (cstrncmp((char *)rex.reg_startp[no], (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } } } else { // Multi-line regexp if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) { // Backref was not set: Match an empty string. len = 0; } else { if (rex.reg_startpos[no].lnum == rex.lnum && rex.reg_endpos[no].lnum == rex.lnum) { // Compare back-ref within the current line. len = rex.reg_endpos[no].col - rex.reg_startpos[no].col; if (cstrncmp((char *)rex.line + rex.reg_startpos[no].col, (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } } else { // Messy situation: Need to compare between two lines. int r = match_with_backref(rex.reg_startpos[no].lnum, rex.reg_startpos[no].col, rex.reg_endpos[no].lnum, rex.reg_endpos[no].col, &len); if (r != RA_MATCH) { status = r; } } } } // Matched the backref, skip over it. rex.input += len; } break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: cleanup_zsubexpr(); no = op - ZREF; if (re_extmatch_in != NULL && re_extmatch_in->matches[no] != NULL) { int len = (int)strlen((char *)re_extmatch_in->matches[no]); if (cstrncmp((char *)re_extmatch_in->matches[no], (char *)rex.input, &len) != 0) { status = RA_NOMATCH; } else { rex.input += len; } } else { // Backref was not set: Match an empty string. } break; case BRANCH: if (OP(next) != BRANCH) { // No choice. next = OPERAND(scan); // Avoid recursion. } else { rp = regstack_push(RS_BRANCH, scan); if (rp == NULL) { status = RA_FAIL; } else { status = RA_BREAK; // rest is below } } break; case BRACE_LIMITS: if (OP(next) == BRACE_SIMPLE) { bl_minval = OPERAND_MIN(scan); bl_maxval = OPERAND_MAX(scan); } else if (OP(next) >= BRACE_COMPLEX && OP(next) < BRACE_COMPLEX + 10) { no = OP(next) - BRACE_COMPLEX; brace_min[no] = OPERAND_MIN(scan); brace_max[no] = OPERAND_MAX(scan); brace_count[no] = 0; } else { internal_error("BRACE_LIMITS"); status = RA_FAIL; } break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: no = op - BRACE_COMPLEX; brace_count[no]++; // If not matched enough times yet, try one more if (brace_count[no] <= (brace_min[no] <= brace_max[no] ? brace_min[no] : brace_max[no])) { rp = regstack_push(RS_BRCPLX_MORE, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; } // If matched enough times, may try matching some more if (brace_min[no] <= brace_max[no]) { // Range is the normal way around, use longest match if (brace_count[no] <= brace_max[no]) { rp = regstack_push(RS_BRCPLX_LONG, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } } } else { // Range is backwards, use shortest match first if (brace_count[no] <= brace_min[no]) { rp = regstack_push(RS_BRCPLX_SHORT, scan); if (rp == NULL) { status = RA_FAIL; } else { reg_save(&rp->rs_un.regsave, &backpos); // We continue and handle the result when done. } } } break; case BRACE_SIMPLE: case STAR: case PLUS: { regstar_T rst; // Lookahead to avoid useless match attempts when we know // what character comes next. if (OP(next) == EXACTLY) { rst.nextb = *OPERAND(next); if (rex.reg_ic) { if (mb_isupper(rst.nextb)) { rst.nextb_ic = mb_tolower(rst.nextb); } else { rst.nextb_ic = mb_toupper(rst.nextb); } } else { rst.nextb_ic = rst.nextb; } } else { rst.nextb = NUL; rst.nextb_ic = NUL; } if (op != BRACE_SIMPLE) { rst.minval = (op == STAR) ? 0 : 1; rst.maxval = MAX_LIMIT; } else { rst.minval = bl_minval; rst.maxval = bl_maxval; } // When maxval > minval, try matching as much as possible, up // to maxval. When maxval < minval, try matching at least the // minimal number (since the range is backwards, that's also // maxval!). rst.count = regrepeat(OPERAND(scan), rst.maxval); if (got_int) { status = RA_FAIL; break; } if (rst.minval <= rst.maxval ? rst.count >= rst.minval : rst.count >= rst.maxval) { // It could match. Prepare for trying to match what // follows. The code is below. Parameters are stored in // a regstar_T on the regstack. if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_maxmempat)); status = RA_FAIL; } else { ga_grow(®stack, sizeof(regstar_T)); regstack.ga_len += (int)sizeof(regstar_T); rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan); if (rp == NULL) { status = RA_FAIL; } else { *(((regstar_T *)rp) - 1) = rst; status = RA_BREAK; // skip the restore bits } } } else { status = RA_NOMATCH; } } break; case NOMATCH: case MATCH: case SUBPAT: rp = regstack_push(RS_NOMATCH, scan); if (rp == NULL) { status = RA_FAIL; } else { rp->rs_no = (int16_t)op; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; case BEHIND: case NOBEHIND: // Need a bit of room to store extra positions. if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_maxmempat)); status = RA_FAIL; } else { ga_grow(®stack, sizeof(regbehind_T)); regstack.ga_len += (int)sizeof(regbehind_T); rp = regstack_push(RS_BEHIND1, scan); if (rp == NULL) { status = RA_FAIL; } else { // Need to save the subexpr to be able to restore them // when there is a match but we don't use it. save_subexpr(((regbehind_T *)rp) - 1); rp->rs_no = (int16_t)op; reg_save(&rp->rs_un.regsave, &backpos); // First try if what follows matches. If it does then we // check the behind match by looping. } } break; case BHPOS: if (REG_MULTI) { if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line) || behind_pos.rs_u.pos.lnum != rex.lnum) { status = RA_NOMATCH; } } else if (behind_pos.rs_u.ptr != rex.input) { status = RA_NOMATCH; } break; case NEWL: if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) { status = RA_NOMATCH; } else if (rex.reg_line_lbr) { ADVANCE_REGINPUT(); } else { reg_nextline(); } break; case END: status = RA_MATCH; // Success! break; default: iemsg(_(e_re_corr)); #ifdef REGEXP_DEBUG printf("Illegal op code %d\n", op); #endif status = RA_FAIL; break; } } // If we can't continue sequentially, break the inner loop. if (status != RA_CONT) { break; } // Continue in inner loop, advance to next item. scan = next; } // end of inner loop // If there is something on the regstack execute the code for the state. // If the state is popped then loop and use the older state. while (!GA_EMPTY(®stack) && status != RA_FAIL) { rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; switch (rp->rs_state) { case RS_NOPEN: // Result is passed on as-is, simply pop the state. regstack_pop(&scan); break; case RS_MOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no], &rex.reg_startp[rp->rs_no]); } regstack_pop(&scan); break; case RS_ZOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, ®_startzpos[rp->rs_no], ®_startzp[rp->rs_no]); } regstack_pop(&scan); break; case RS_MCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no], &rex.reg_endp[rp->rs_no]); } regstack_pop(&scan); break; case RS_ZCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { restore_se(&rp->rs_un.sesave, ®_endzpos[rp->rs_no], ®_endzp[rp->rs_no]); } regstack_pop(&scan); break; case RS_BRANCH: if (status == RA_MATCH) { // this branch matched, use it regstack_pop(&scan); } else { if (status != RA_BREAK) { // After a non-matching branch: try next one. reg_restore(&rp->rs_un.regsave, &backpos); scan = rp->rs_scan; } if (scan == NULL || OP(scan) != BRANCH) { // no more branches, didn't find a match status = RA_NOMATCH; regstack_pop(&scan); } else { // Prepare to try a branch. rp->rs_scan = regnext(scan); reg_save(&rp->rs_un.regsave, &backpos); scan = OPERAND(scan); } } break; case RS_BRCPLX_MORE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { reg_restore(&rp->rs_un.regsave, &backpos); brace_count[rp->rs_no]--; // decrement match count } regstack_pop(&scan); break; case RS_BRCPLX_LONG: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { // There was no match, but we did find enough matches. reg_restore(&rp->rs_un.regsave, &backpos); brace_count[rp->rs_no]--; // continue with the items after "\{}" status = RA_CONT; } regstack_pop(&scan); if (status == RA_CONT) { scan = regnext(scan); } break; case RS_BRCPLX_SHORT: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { // There was no match, try to match one more item. reg_restore(&rp->rs_un.regsave, &backpos); } regstack_pop(&scan); if (status == RA_NOMATCH) { scan = OPERAND(scan); status = RA_CONT; } break; case RS_NOMATCH: // Pop the state. If the operand matches for NOMATCH or // doesn't match for MATCH/SUBPAT, we fail. Otherwise backup, // except for SUBPAT, and continue with the next item. if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) { status = RA_NOMATCH; } else { status = RA_CONT; if (rp->rs_no != SUBPAT) { // zero-width reg_restore(&rp->rs_un.regsave, &backpos); } } regstack_pop(&scan); if (status == RA_CONT) { scan = regnext(scan); } break; case RS_BEHIND1: if (status == RA_NOMATCH) { regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regbehind_T); } else { // The stuff after BEHIND/NOBEHIND matches. Now try if // the behind part does (not) match before the current // position in the input. This must be done at every // position in the input and checking if the match ends at // the current position. // save the position after the found match for next reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos); // Start looking for a match with operand at the current // position. Go back one character until we find the // result, hitting the start of the line or the previous // line (for multi-line matching). // Set behind_pos to where the match should end, BHPOS // will match it. Save the current value. (((regbehind_T *)rp) - 1)->save_behind = behind_pos; behind_pos = rp->rs_un.regsave; rp->rs_state = RS_BEHIND2; reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; } break; case RS_BEHIND2: // Looping for BEHIND / NOBEHIND match. if (status == RA_MATCH && reg_save_equal(&behind_pos)) { // found a match that ends where "next" started behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == BEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); } else { // But we didn't want a match. Need to restore the // subexpr, because what follows matched, so they have // been set. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regbehind_T); } else { long limit; // No match or a match that doesn't end where we want it: Go // back one character. May go to previous line once. no = OK; limit = OPERAND_MIN(rp->rs_scan); if (REG_MULTI) { if (limit > 0 && ((rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum ? (colnr_T)strlen((char *)rex.line) : behind_pos.rs_u.pos.col) - rp->rs_un.regsave.rs_u.pos.col >= limit)) { no = FAIL; } else if (rp->rs_un.regsave.rs_u.pos.col == 0) { if (rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum || reg_getline(--rp->rs_un.regsave.rs_u.pos.lnum) == NULL) { no = FAIL; } else { reg_restore(&rp->rs_un.regsave, &backpos); rp->rs_un.regsave.rs_u.pos.col = (colnr_T)strlen((char *)rex.line); } } else { const uint8_t *const line = (uint8_t *)reg_getline(rp->rs_un.regsave.rs_u.pos.lnum); rp->rs_un.regsave.rs_u.pos.col -= utf_head_off((char *)line, (char *)line + rp->rs_un.regsave.rs_u.pos.col - 1) + 1; } } else { if (rp->rs_un.regsave.rs_u.ptr == rex.line) { no = FAIL; } else { MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr); if (limit > 0 && (behind_pos.rs_u.ptr - rp->rs_un.regsave.rs_u.ptr) > (ptrdiff_t)limit) { no = FAIL; } } } if (no == OK) { // Advanced, prepare for finding match again. reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; if (status == RA_MATCH) { // We did match, so subexpr may have been changed, // need to restore them for the next try. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } else { // Can't advance. For NOBEHIND that's a match. behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == NOBEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); status = RA_MATCH; } else { // We do want a proper match. Need to restore the // subexpr if we had a match, because they may have // been set. if (status == RA_MATCH) { status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regbehind_T); } } break; case RS_STAR_LONG: case RS_STAR_SHORT: { regstar_T *rst = ((regstar_T *)rp) - 1; if (status == RA_MATCH) { regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regstar_T); break; } // Tried once already, restore input pointers. if (status != RA_BREAK) { reg_restore(&rp->rs_un.regsave, &backpos); } // Repeat until we found a position where it could match. for (;;) { if (status != RA_BREAK) { // Tried first position already, advance. if (rp->rs_state == RS_STAR_LONG) { // Trying for longest match, but couldn't or // didn't match -- back up one char. if (--rst->count < rst->minval) { break; } if (rex.input == rex.line) { // backup to last char of previous line if (rex.lnum == 0) { status = RA_NOMATCH; break; } rex.lnum--; rex.line = (uint8_t *)reg_getline(rex.lnum); // Just in case regrepeat() didn't count right. if (rex.line == NULL) { break; } rex.input = rex.line + strlen((char *)rex.line); fast_breakcheck(); } else { MB_PTR_BACK(rex.line, rex.input); } } else { // Range is backwards, use shortest match first. // Careful: maxval and minval are exchanged! // Couldn't or didn't match: try advancing one // char. if (rst->count == rst->minval || regrepeat(OPERAND(rp->rs_scan), 1L) == 0) { break; } rst->count++; } if (got_int) { break; } } else { status = RA_NOMATCH; } // If it could match, try it. if (rst->nextb == NUL || *rex.input == rst->nextb || *rex.input == rst->nextb_ic) { reg_save(&rp->rs_un.regsave, &backpos); scan = regnext(rp->rs_scan); status = RA_CONT; break; } } if (status != RA_CONT) { // Failed. regstack_pop(&scan); regstack.ga_len -= (int)sizeof(regstar_T); status = RA_NOMATCH; } } break; } // If we want to continue the inner loop or didn't pop a state // continue matching loop if (status == RA_CONT || rp == (regitem_T *) ((char *)regstack.ga_data + regstack.ga_len) - 1) { break; } } // May need to continue with the inner loop, starting at "scan". if (status == RA_CONT) { continue; } // If the regstack is empty or something failed we are done. if (GA_EMPTY(®stack) || status == RA_FAIL) { if (scan == NULL) { // We get here only if there's trouble -- normally "case END" is // the terminating point. iemsg(_(e_re_corr)); #ifdef REGEXP_DEBUG printf("Premature EOL\n"); #endif } return status == RA_MATCH; } } // End of loop until the regstack is empty. // NOTREACHED } /// Try match of "prog" with at rex.line["col"]. /// /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return 0 for failure, or number of lines contained in the match. static long regtry(bt_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out) { rex.input = rex.line + col; rex.need_clear_subexpr = true; // Clear the external match subpointers if necessaey. rex.need_clear_zsubexpr = (prog->reghasz == REX_SET); if (regmatch(prog->program + 1, tm, timed_out) == 0) { return 0; } cleanup_subexpr(); if (REG_MULTI) { if (rex.reg_startpos[0].lnum < 0) { rex.reg_startpos[0].lnum = 0; rex.reg_startpos[0].col = col; } if (rex.reg_endpos[0].lnum < 0) { rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = (int)(rex.input - rex.line); } else { // Use line number of "\ze". rex.lnum = rex.reg_endpos[0].lnum; } } else { if (rex.reg_startp[0] == NULL) { rex.reg_startp[0] = rex.line + col; } if (rex.reg_endp[0] == NULL) { rex.reg_endp[0] = rex.input; } } // Package any found \z(...\) matches for export. Default is none. unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { int i; cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); for (i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { // Only accept single line matches. if (reg_startzpos[i].lnum >= 0 && reg_endzpos[i].lnum == reg_startzpos[i].lnum && reg_endzpos[i].col >= reg_startzpos[i].col) { re_extmatch_out->matches[i] = (uint8_t *)xstrnsave((char *)reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col, (size_t)(reg_endzpos[i].col - reg_startzpos[i].col)); } } else { if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) { re_extmatch_out->matches[i] = (uint8_t *)xstrnsave((char *)reg_startzp[i], (size_t)(reg_endzp[i] - reg_startzp[i])); } } } } return 1 + rex.lnum; } /// Match a regexp against a string ("line" points to the string) or multiple /// lines (if "line" is NULL, use reg_getline()). /// /// @param startcol column to start looking for match /// @param tm timeout limit or NULL /// @param timed_out flag set on timeout or NULL /// /// @return 0 for failure, or number of lines contained in the match. static long bt_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out) { bt_regprog_T *prog; uint8_t *s; colnr_T col = startcol; long retval = 0L; // Create "regstack" and "backpos" if they are not allocated yet. // We allocate *_INITIAL amount of bytes first and then set the grow size // to much bigger value to avoid many malloc calls in case of deep regular // expressions. if (regstack.ga_data == NULL) { // Use an item size of 1 byte, since we push different things // onto the regstack. ga_init(®stack, 1, REGSTACK_INITIAL); ga_grow(®stack, REGSTACK_INITIAL); ga_set_growsize(®stack, REGSTACK_INITIAL * 8); } if (backpos.ga_data == NULL) { ga_init(&backpos, sizeof(backpos_T), BACKPOS_INITIAL); ga_grow(&backpos, BACKPOS_INITIAL); ga_set_growsize(&backpos, BACKPOS_INITIAL * 8); } if (REG_MULTI) { prog = (bt_regprog_T *)rex.reg_mmatch->regprog; line = (uint8_t *)reg_getline((linenr_T)0); rex.reg_startpos = rex.reg_mmatch->startpos; rex.reg_endpos = rex.reg_mmatch->endpos; } else { prog = (bt_regprog_T *)rex.reg_match->regprog; rex.reg_startp = (uint8_t **)rex.reg_match->startp; rex.reg_endp = (uint8_t **)rex.reg_match->endp; } // Be paranoid... if (prog == NULL || line == NULL) { iemsg(_(e_null)); goto theend; } // Check validity of program. if (prog_magic_wrong()) { goto theend; } // If the start column is past the maximum column: no need to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { goto theend; } // If pattern contains "\c" or "\C": overrule value of rex.reg_ic if (prog->regflags & RF_ICASE) { rex.reg_ic = true; } else if (prog->regflags & RF_NOICASE) { rex.reg_ic = false; } // If pattern contains "\Z" overrule value of rex.reg_icombine if (prog->regflags & RF_ICOMBINE) { rex.reg_icombine = true; } // If there is a "must appear" string, look for it. if (prog->regmust != NULL) { int c = utf_ptr2char((char *)prog->regmust); s = line + col; // This is used very often, esp. for ":global". Use two versions of // the loop to avoid overhead of conditions. if (!rex.reg_ic) { while ((s = (uint8_t *)vim_strchr((char *)s, c)) != NULL) { if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) { break; // Found it. } MB_PTR_ADV(s); } } else { while ((s = (uint8_t *)cstrchr((char *)s, c)) != NULL) { if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) { break; // Found it. } MB_PTR_ADV(s); } } if (s == NULL) { // Not present. goto theend; } } rex.line = line; rex.lnum = 0; reg_toolong = false; // Simplest case: Anchored match need be tried only once. if (prog->reganch) { int c = utf_ptr2char((char *)rex.line + col); if (prog->regstart == NUL || prog->regstart == c || (rex.reg_ic && (utf_fold(prog->regstart) == utf_fold(c) || (c < 255 && prog->regstart < 255 && mb_tolower(prog->regstart) == mb_tolower(c))))) { retval = regtry(prog, col, tm, timed_out); } else { retval = 0; } } else { int tm_count = 0; // Messy cases: unanchored match. while (!got_int) { if (prog->regstart != NUL) { // Skip until the char we know it must start with. s = (uint8_t *)cstrchr((char *)rex.line + col, prog->regstart); if (s == NULL) { retval = 0; break; } col = (int)(s - rex.line); } // Check for maximum column to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { retval = 0; break; } retval = regtry(prog, col, tm, timed_out); if (retval > 0) { break; } // if not currently on the first line, get it again if (rex.lnum != 0) { rex.lnum = 0; rex.line = (uint8_t *)reg_getline((linenr_T)0); } if (rex.line[col] == NUL) { break; } col += utfc_ptr2len((char *)rex.line + col); // Check for timeout once in a twenty times to avoid overhead. if (tm != NULL && ++tm_count == 20) { tm_count = 0; if (profile_passed_limit(*tm)) { if (timed_out != NULL) { *timed_out = true; } break; } } } } theend: // Free "reg_tofree" when it's a bit big. // Free regstack and backpos if they are bigger than their initial size. if (reg_tofreelen > 400) { XFREE_CLEAR(reg_tofree); } if (regstack.ga_maxlen > REGSTACK_INITIAL) { ga_clear(®stack); } if (backpos.ga_maxlen > BACKPOS_INITIAL) { ga_clear(&backpos); } if (retval > 0) { // Make sure the end is never before the start. Can happen when \zs // and \ze are used. if (REG_MULTI) { const lpos_T *const start = &rex.reg_mmatch->startpos[0]; const lpos_T *const end = &rex.reg_mmatch->endpos[0]; if (end->lnum < start->lnum || (end->lnum == start->lnum && end->col < start->col)) { rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0]; } // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_mmatch->rmm_matchcol = col; } else { if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) { rex.reg_match->endp[0] = rex.reg_match->startp[0]; } // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_match->rm_matchcol = col; } } return retval; } /// Match a regexp against a string. /// "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). /// Uses curbuf for line count and 'iskeyword'. /// If "line_lbr" is true, consider a "\n" in "line" to be a line break. /// /// @param line string to match against /// @param col column to start looking for match /// /// @return 0 for failure, number of lines contained in the match otherwise. static int bt_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr) { rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_line_lbr = line_lbr; rex.reg_buf = curbuf; rex.reg_win = NULL; rex.reg_ic = rmp->rm_ic; rex.reg_icombine = false; rex.reg_maxcol = 0; long r = bt_regexec_both(line, col, NULL, NULL); assert(r <= INT_MAX); return (int)r; } /// Matches a regexp against multiple lines. /// "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). /// Uses curbuf for line count and 'iskeyword'. /// /// @param win Window in which to search or NULL /// @param buf Buffer in which to search /// @param lnum Number of line to start looking for match /// @param col Column to start looking for match /// @param tm Timeout limit or NULL /// /// @return zero if there is no match and number of lines contained in the match /// otherwise. static long bt_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm, int *timed_out) { init_regexec_multi(rmp, win, buf, lnum); return bt_regexec_both(NULL, col, tm, timed_out); } // Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL. static int re_num_cmp(uint32_t val, uint8_t *scan) { uint32_t n = (uint32_t)OPERAND_MIN(scan); if (OPERAND_CMP(scan) == '>') { return val > n; } if (OPERAND_CMP(scan) == '<') { return val < n; } return val == n; } #ifdef BT_REGEXP_DUMP // regdump - dump a regexp onto stdout in vaguely comprehensible form static void regdump(uint8_t *pattern, bt_regprog_T *r) { uint8_t *s; int op = EXACTLY; // Arbitrary non-END op. uint8_t *next; uint8_t *end = NULL; FILE *f; # ifdef BT_REGEXP_LOG f = fopen("bt_regexp_log.log", "a"); # else f = stdout; # endif if (f == NULL) { return; } fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n", pattern); s = r->program + 1; // Loop until we find the END that isn't before a referred next (an END // can also appear in a NOMATCH operand). while (op != END || s <= end) { op = OP(s); fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what. next = regnext(s); if (next == NULL) { // Next ptr. fprintf(f, "(0)"); } else { fprintf(f, "(%d)", (int)((s - r->program) + (next - s))); } if (end < next) { end = next; } if (op == BRACE_LIMITS) { // Two ints fprintf(f, " minval %" PRId64 ", maxval %" PRId64, (int64_t)OPERAND_MIN(s), (int64_t)OPERAND_MAX(s)); s += 8; } else if (op == BEHIND || op == NOBEHIND) { // one int fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s)); s += 4; } else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) { // one int plus comparator fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s)); s += 5; } s += 3; if (op == ANYOF || op == ANYOF + ADD_NL || op == ANYBUT || op == ANYBUT + ADD_NL || op == EXACTLY) { // Literal string, where present. fprintf(f, "\nxxxxxxxxx\n"); while (*s != NUL) { fprintf(f, "%c", *s++); } fprintf(f, "\nxxxxxxxxx\n"); s++; } fprintf(f, "\r\n"); } // Header fields of interest. if (r->regstart != NUL) { fprintf(f, "start `%s' 0x%x; ", r->regstart < 256 ? (char *)transchar(r->regstart) : "multibyte", r->regstart); } if (r->reganch) { fprintf(f, "anchored; "); } if (r->regmust != NULL) { fprintf(f, "must have \"%s\"", r->regmust); } fprintf(f, "\r\n"); # ifdef BT_REGEXP_LOG fclose(f); # endif } #endif // BT_REGEXP_DUMP #ifdef REGEXP_DEBUG // regprop - printable representation of opcode static uint8_t *regprop(uint8_t *op) { char *p; static char buf[50]; STRCPY(buf, ":"); switch ((int)OP(op)) { case BOL: p = "BOL"; break; case EOL: p = "EOL"; break; case RE_BOF: p = "BOF"; break; case RE_EOF: p = "EOF"; break; case CURSOR: p = "CURSOR"; break; case RE_VISUAL: p = "RE_VISUAL"; break; case RE_LNUM: p = "RE_LNUM"; break; case RE_MARK: p = "RE_MARK"; break; case RE_COL: p = "RE_COL"; break; case RE_VCOL: p = "RE_VCOL"; break; case BOW: p = "BOW"; break; case EOW: p = "EOW"; break; case ANY: p = "ANY"; break; case ANY + ADD_NL: p = "ANY+NL"; break; case ANYOF: p = "ANYOF"; break; case ANYOF + ADD_NL: p = "ANYOF+NL"; break; case ANYBUT: p = "ANYBUT"; break; case ANYBUT + ADD_NL: p = "ANYBUT+NL"; break; case IDENT: p = "IDENT"; break; case IDENT + ADD_NL: p = "IDENT+NL"; break; case SIDENT: p = "SIDENT"; break; case SIDENT + ADD_NL: p = "SIDENT+NL"; break; case KWORD: p = "KWORD"; break; case KWORD + ADD_NL: p = "KWORD+NL"; break; case SKWORD: p = "SKWORD"; break; case SKWORD + ADD_NL: p = "SKWORD+NL"; break; case FNAME: p = "FNAME"; break; case FNAME + ADD_NL: p = "FNAME+NL"; break; case SFNAME: p = "SFNAME"; break; case SFNAME + ADD_NL: p = "SFNAME+NL"; break; case PRINT: p = "PRINT"; break; case PRINT + ADD_NL: p = "PRINT+NL"; break; case SPRINT: p = "SPRINT"; break; case SPRINT + ADD_NL: p = "SPRINT+NL"; break; case WHITE: p = "WHITE"; break; case WHITE + ADD_NL: p = "WHITE+NL"; break; case NWHITE: p = "NWHITE"; break; case NWHITE + ADD_NL: p = "NWHITE+NL"; break; case DIGIT: p = "DIGIT"; break; case DIGIT + ADD_NL: p = "DIGIT+NL"; break; case NDIGIT: p = "NDIGIT"; break; case NDIGIT + ADD_NL: p = "NDIGIT+NL"; break; case HEX: p = "HEX"; break; case HEX + ADD_NL: p = "HEX+NL"; break; case NHEX: p = "NHEX"; break; case NHEX + ADD_NL: p = "NHEX+NL"; break; case OCTAL: p = "OCTAL"; break; case OCTAL + ADD_NL: p = "OCTAL+NL"; break; case NOCTAL: p = "NOCTAL"; break; case NOCTAL + ADD_NL: p = "NOCTAL+NL"; break; case WORD: p = "WORD"; break; case WORD + ADD_NL: p = "WORD+NL"; break; case NWORD: p = "NWORD"; break; case NWORD + ADD_NL: p = "NWORD+NL"; break; case HEAD: p = "HEAD"; break; case HEAD + ADD_NL: p = "HEAD+NL"; break; case NHEAD: p = "NHEAD"; break; case NHEAD + ADD_NL: p = "NHEAD+NL"; break; case ALPHA: p = "ALPHA"; break; case ALPHA + ADD_NL: p = "ALPHA+NL"; break; case NALPHA: p = "NALPHA"; break; case NALPHA + ADD_NL: p = "NALPHA+NL"; break; case LOWER: p = "LOWER"; break; case LOWER + ADD_NL: p = "LOWER+NL"; break; case NLOWER: p = "NLOWER"; break; case NLOWER + ADD_NL: p = "NLOWER+NL"; break; case UPPER: p = "UPPER"; break; case UPPER + ADD_NL: p = "UPPER+NL"; break; case NUPPER: p = "NUPPER"; break; case NUPPER + ADD_NL: p = "NUPPER+NL"; break; case BRANCH: p = "BRANCH"; break; case EXACTLY: p = "EXACTLY"; break; case NOTHING: p = "NOTHING"; break; case BACK: p = "BACK"; break; case END: p = "END"; break; case MOPEN + 0: p = "MATCH START"; break; case MOPEN + 1: case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "MOPEN%d", OP(op) - MOPEN); p = NULL; break; case MCLOSE + 0: p = "MATCH END"; break; case MCLOSE + 1: case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "MCLOSE%d", OP(op) - MCLOSE); p = NULL; break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "BACKREF%d", OP(op) - BACKREF); p = NULL; break; case NOPEN: p = "NOPEN"; break; case NCLOSE: p = "NCLOSE"; break; case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZOPEN%d", OP(op) - ZOPEN); p = NULL; break; case ZCLOSE + 1: case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZCLOSE%d", OP(op) - ZCLOSE); p = NULL; break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZREF%d", OP(op) - ZREF); p = NULL; break; case STAR: p = "STAR"; break; case PLUS: p = "PLUS"; break; case NOMATCH: p = "NOMATCH"; break; case MATCH: p = "MATCH"; break; case BEHIND: p = "BEHIND"; break; case NOBEHIND: p = "NOBEHIND"; break; case SUBPAT: p = "SUBPAT"; break; case BRACE_LIMITS: p = "BRACE_LIMITS"; break; case BRACE_SIMPLE: p = "BRACE_SIMPLE"; break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX); p = NULL; break; case MULTIBYTECODE: p = "MULTIBYTECODE"; break; case NEWL: p = "NEWL"; break; default: snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "corrupt %d", OP(op)); p = NULL; break; } if (p != NULL) { STRCAT(buf, p); } return (uint8_t *)buf; } #endif // REGEXP_DEBUG