// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com // spell.c: code for spell checking // // See spellfile.c for the Vim spell file format. // // The spell checking mechanism uses a tree (aka trie). Each node in the tree // has a list of bytes that can appear (siblings). For each byte there is a // pointer to the node with the byte that follows in the word (child). // // A NUL byte is used where the word may end. The bytes are sorted, so that // binary searching can be used and the NUL bytes are at the start. The // number of possible bytes is stored before the list of bytes. // // The tree uses two arrays: "byts" stores the characters, "idxs" stores // either the next index or flags. The tree starts at index 0. For example, // to lookup "vi" this sequence is followed: // i = 0 // len = byts[i] // n = where "v" appears in byts[i + 1] to byts[i + len] // i = idxs[n] // len = byts[i] // n = where "i" appears in byts[i + 1] to byts[i + len] // i = idxs[n] // len = byts[i] // find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi". // // There are two word trees: one with case-folded words and one with words in // original case. The second one is only used for keep-case words and is // usually small. // // There is one additional tree for when not all prefixes are applied when // generating the .spl file. This tree stores all the possible prefixes, as // if they were words. At each word (prefix) end the prefix nr is stored, the // following word must support this prefix nr. And the condition nr is // stored, used to lookup the condition that the word must match with. // // Thanks to Olaf Seibert for providing an example implementation of this tree // and the compression mechanism. // LZ trie ideas: // http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf // More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html // // Matching involves checking the caps type: Onecap ALLCAP KeepCap. // // Why doesn't Vim use aspell/ispell/myspell/etc.? // See ":help develop-spell". // Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word. // Only use it for small word lists! // Use SPELL_COMPRESS_ALLWAYS for debugging: compress the word tree after // adding a word. Only use it for small word lists! // Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a // specific word. // Use this to adjust the score after finding suggestions, based on the // suggested word sounding like the bad word. This is much faster than doing // it for every possible suggestion. // Disadvantage: When "the" is typed as "hte" it sounds quite different ("@" // vs "ht") and goes down in the list. // Used when 'spellsuggest' is set to "best". #define RESCORE(word_score, sound_score) ((3 * word_score + sound_score) / 4) // Do the opposite: based on a maximum end score and a known sound score, // compute the maximum word score that can be used. #define MAXSCORE(word_score, sound_score) ((4 * word_score - sound_score) / 3) #include #include #include #include #include #include #include /* for offsetof() */ #include #include "nvim/ascii.h" #include "nvim/spell.h" #include "nvim/buffer.h" #include "nvim/change.h" #include "nvim/charset.h" #include "nvim/cursor.h" #include "nvim/edit.h" #include "nvim/eval.h" #include "nvim/ex_cmds.h" #include "nvim/ex_cmds2.h" #include "nvim/ex_docmd.h" #include "nvim/fileio.h" #include "nvim/func_attr.h" #include "nvim/getchar.h" #include "nvim/hashtab.h" #include "nvim/mark.h" #include "nvim/mbyte.h" #include "nvim/memline.h" #include "nvim/memory.h" #include "nvim/message.h" #include "nvim/misc1.h" #include "nvim/garray.h" #include "nvim/normal.h" #include "nvim/option.h" #include "nvim/os_unix.h" #include "nvim/path.h" #include "nvim/regexp.h" #include "nvim/screen.h" #include "nvim/search.h" #include "nvim/spellfile.h" #include "nvim/strings.h" #include "nvim/syntax.h" #include "nvim/undo.h" #include "nvim/ui.h" #include "nvim/os/os.h" #include "nvim/os/input.h" // only used for su_badflags #define WF_MIXCAP 0x20 // mix of upper and lower case: macaRONI #define WF_CAPMASK (WF_ONECAP | WF_ALLCAP | WF_KEEPCAP | WF_FIXCAP) // Result values. Lower number is accepted over higher one. #define SP_BANNED -1 #define SP_RARE 0 #define SP_OK 1 #define SP_LOCAL 2 #define SP_BAD 3 // First language that is loaded, start of the linked list of loaded // languages. slang_T *first_lang = NULL; // file used for "zG" and "zW" char_u *int_wordlist = NULL; typedef struct wordcount_S { uint16_t wc_count; // nr of times word was seen char_u wc_word[1]; // word, actually longer } wordcount_T; #define WC_KEY_OFF offsetof(wordcount_T, wc_word) #define HI2WC(hi) ((wordcount_T *)((hi)->hi_key - WC_KEY_OFF)) #define MAXWORDCOUNT 0xffff // Information used when looking for suggestions. typedef struct suginfo_S { garray_T su_ga; // suggestions, contains "suggest_T" int su_maxcount; // max. number of suggestions displayed int su_maxscore; // maximum score for adding to su_ga int su_sfmaxscore; // idem, for when doing soundfold words garray_T su_sga; // like su_ga, sound-folded scoring char_u *su_badptr; // start of bad word in line int su_badlen; // length of detected bad word in line int su_badflags; // caps flags for bad word char_u su_badword[MAXWLEN]; // bad word truncated at su_badlen char_u su_fbadword[MAXWLEN]; // su_badword case-folded char_u su_sal_badword[MAXWLEN]; // su_badword soundfolded hashtab_T su_banned; // table with banned words slang_T *su_sallang; // default language for sound folding } suginfo_T; // One word suggestion. Used in "si_ga". typedef struct { char_u *st_word; // suggested word, allocated string int st_wordlen; // STRLEN(st_word) int st_orglen; // length of replaced text int st_score; // lower is better int st_altscore; // used when st_score compares equal bool st_salscore; // st_score is for soundalike bool st_had_bonus; // bonus already included in score slang_T *st_slang; // language used for sound folding } suggest_T; #define SUG(ga, i) (((suggest_T *)(ga).ga_data)[i]) // True if a word appears in the list of banned words. #define WAS_BANNED(su, word) (!HASHITEM_EMPTY(hash_find(&su->su_banned, word))) // Number of suggestions kept when cleaning up. We need to keep more than // what is displayed, because when rescore_suggestions() is called the score // may change and wrong suggestions may be removed later. #define SUG_CLEAN_COUNT(su) ((su)->su_maxcount < \ 130 ? 150 : (su)->su_maxcount + 20) // Threshold for sorting and cleaning up suggestions. Don't want to keep lots // of suggestions that are not going to be displayed. #define SUG_MAX_COUNT(su) (SUG_CLEAN_COUNT(su) + 50) // score for various changes #define SCORE_SPLIT 149 // split bad word #define SCORE_SPLIT_NO 249 // split bad word with NOSPLITSUGS #define SCORE_ICASE 52 // slightly different case #define SCORE_REGION 200 // word is for different region #define SCORE_RARE 180 // rare word #define SCORE_SWAP 75 // swap two characters #define SCORE_SWAP3 110 // swap two characters in three #define SCORE_REP 65 // REP replacement #define SCORE_SUBST 93 // substitute a character #define SCORE_SIMILAR 33 // substitute a similar character #define SCORE_SUBCOMP 33 // substitute a composing character #define SCORE_DEL 94 // delete a character #define SCORE_DELDUP 66 // delete a duplicated character #define SCORE_DELCOMP 28 // delete a composing character #define SCORE_INS 96 // insert a character #define SCORE_INSDUP 67 // insert a duplicate character #define SCORE_INSCOMP 30 // insert a composing character #define SCORE_NONWORD 103 // change non-word to word char #define SCORE_FILE 30 // suggestion from a file #define SCORE_MAXINIT 350 // Initial maximum score: higher == slower. // 350 allows for about three changes. #define SCORE_COMMON1 30 // subtracted for words seen before #define SCORE_COMMON2 40 // subtracted for words often seen #define SCORE_COMMON3 50 // subtracted for words very often seen #define SCORE_THRES2 10 // word count threshold for COMMON2 #define SCORE_THRES3 100 // word count threshold for COMMON3 // When trying changed soundfold words it becomes slow when trying more than // two changes. With less then two changes it's slightly faster but we miss a // few good suggestions. In rare cases we need to try three of four changes. #define SCORE_SFMAX1 200 // maximum score for first try #define SCORE_SFMAX2 300 // maximum score for second try #define SCORE_SFMAX3 400 // maximum score for third try #define SCORE_BIG SCORE_INS * 3 // big difference #define SCORE_MAXMAX 999999 // accept any score #define SCORE_LIMITMAX 350 // for spell_edit_score_limit() // for spell_edit_score_limit() we need to know the minimum value of // SCORE_ICASE, SCORE_SWAP, SCORE_DEL, SCORE_SIMILAR and SCORE_INS #define SCORE_EDIT_MIN SCORE_SIMILAR // Structure to store info for word matching. typedef struct matchinf_S { langp_T *mi_lp; // info for language and region // pointers to original text to be checked char_u *mi_word; // start of word being checked char_u *mi_end; // end of matching word so far char_u *mi_fend; // next char to be added to mi_fword char_u *mi_cend; // char after what was used for // mi_capflags // case-folded text char_u mi_fword[MAXWLEN + 1]; // mi_word case-folded int mi_fwordlen; // nr of valid bytes in mi_fword // for when checking word after a prefix int mi_prefarridx; // index in sl_pidxs with list of // affixID/condition int mi_prefcnt; // number of entries at mi_prefarridx int mi_prefixlen; // byte length of prefix int mi_cprefixlen; // byte length of prefix in original // case // for when checking a compound word int mi_compoff; // start of following word offset char_u mi_compflags[MAXWLEN]; // flags for compound words used int mi_complen; // nr of compound words used int mi_compextra; // nr of COMPOUNDROOT words // others int mi_result; // result so far: SP_BAD, SP_OK, etc. int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP win_T *mi_win; // buffer being checked // for NOBREAK int mi_result2; // "mi_resul" without following word char_u *mi_end2; // "mi_end" without following word } matchinf_T; // Structure used for the cookie argument of do_in_runtimepath(). typedef struct spelload_S { char_u sl_lang[MAXWLEN + 1]; // language name slang_T *sl_slang; // resulting slang_T struct int sl_nobreak; // NOBREAK language found } spelload_T; #define SY_MAXLEN 30 typedef struct syl_item_S { char_u sy_chars[SY_MAXLEN]; // the sequence of chars int sy_len; } syl_item_T; spelltab_T spelltab; int did_set_spelltab; // structure used to store soundfolded words that add_sound_suggest() has // handled already. typedef struct { short sft_score; // lowest score used char_u sft_word[1]; // soundfolded word, actually longer } sftword_T; typedef struct { int badi; int goodi; int score; } limitscore_T; #ifdef INCLUDE_GENERATED_DECLARATIONS # include "spell.c.generated.h" #endif // values for ts_isdiff #define DIFF_NONE 0 // no different byte (yet) #define DIFF_YES 1 // different byte found #define DIFF_INSERT 2 // inserting character // values for ts_flags #define TSF_PREFIXOK 1 // already checked that prefix is OK #define TSF_DIDSPLIT 2 // tried split at this point #define TSF_DIDDEL 4 // did a delete, "ts_delidx" has index // special values ts_prefixdepth #define PFD_NOPREFIX 0xff // not using prefixes #define PFD_PREFIXTREE 0xfe // walking through the prefix tree #define PFD_NOTSPECIAL 0xfd // highest value that's not special // mode values for find_word #define FIND_FOLDWORD 0 // find word case-folded #define FIND_KEEPWORD 1 // find keep-case word #define FIND_PREFIX 2 // find word after prefix #define FIND_COMPOUND 3 // find case-folded compound word #define FIND_KEEPCOMPOUND 4 // find keep-case compound word char *e_format = N_("E759: Format error in spell file"); // Remember what "z?" replaced. static char_u *repl_from = NULL; static char_u *repl_to = NULL; // Main spell-checking function. // "ptr" points to a character that could be the start of a word. // "*attrp" is set to the highlight index for a badly spelled word. For a // non-word or when it's OK it remains unchanged. // This must only be called when 'spelllang' is not empty. // // "capcol" is used to check for a Capitalised word after the end of a // sentence. If it's zero then perform the check. Return the column where to // check next, or -1 when no sentence end was found. If it's NULL then don't // worry. // // Returns the length of the word in bytes, also when it's OK, so that the // caller can skip over the word. size_t spell_check( win_T *wp, // current window char_u *ptr, hlf_T *attrp, int *capcol, // column to check for Capital bool docount // count good words ) { matchinf_T mi; // Most things are put in "mi" so that it can // be passed to functions quickly. size_t nrlen = 0; // found a number first int c; size_t wrongcaplen = 0; int lpi; bool count_word = docount; bool use_camel_case = *wp->w_s->b_p_spo != NUL; bool camel_case = false; // A word never starts at a space or a control character. Return quickly // then, skipping over the character. if (*ptr <= ' ') { return 1; } // Return here when loading language files failed. if (GA_EMPTY(&wp->w_s->b_langp)) { return 1; } memset(&mi, 0, sizeof(matchinf_T)); // A number is always OK. Also skip hexadecimal numbers 0xFF99 and // 0X99FF. But always do check spelling to find "3GPP" and "11 // julifeest". if (*ptr >= '0' && *ptr <= '9') { if (*ptr == '0' && (ptr[1] == 'b' || ptr[1] == 'B')) { mi.mi_end = (char_u*) skipbin((char*) ptr + 2); } else if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X')) { mi.mi_end = skiphex(ptr + 2); } else { mi.mi_end = skipdigits(ptr); } nrlen = (size_t)(mi.mi_end - ptr); } // Find the normal end of the word (until the next non-word character). mi.mi_word = ptr; mi.mi_fend = ptr; if (spell_iswordp(mi.mi_fend, wp)) { bool this_upper = false; // init for gcc if (use_camel_case) { c = PTR2CHAR(mi.mi_fend); this_upper = SPELL_ISUPPER(c); } do { MB_PTR_ADV(mi.mi_fend); if (use_camel_case) { const bool prev_upper = this_upper; c = PTR2CHAR(mi.mi_fend); this_upper = SPELL_ISUPPER(c); camel_case = !prev_upper && this_upper; } } while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp) && !camel_case); if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) { // Check word starting with capital letter. c = PTR2CHAR(ptr); if (!SPELL_ISUPPER(c)) { wrongcaplen = (size_t)(mi.mi_fend - ptr); } } } if (capcol != NULL) { *capcol = -1; } // We always use the characters up to the next non-word character, // also for bad words. mi.mi_end = mi.mi_fend; // Check caps type later. mi.mi_capflags = 0; mi.mi_cend = NULL; mi.mi_win = wp; // case-fold the word with one non-word character, so that we can check // for the word end. if (*mi.mi_fend != NUL) { MB_PTR_ADV(mi.mi_fend); } (void)spell_casefold(wp, ptr, (int)(mi.mi_fend - ptr), mi.mi_fword, MAXWLEN + 1); mi.mi_fwordlen = (int)STRLEN(mi.mi_fword); if (camel_case) { // introduce a fake word end space into the folded word. mi.mi_fword[mi.mi_fwordlen - 1] = ' '; } // The word is bad unless we recognize it. mi.mi_result = SP_BAD; mi.mi_result2 = SP_BAD; // Loop over the languages specified in 'spelllang'. // We check them all, because a word may be matched longer in another // language. for (lpi = 0; lpi < wp->w_s->b_langp.ga_len; ++lpi) { mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi); // If reloading fails the language is still in the list but everything // has been cleared. if (mi.mi_lp->lp_slang->sl_fidxs == NULL) { continue; } // Check for a matching word in case-folded words. find_word(&mi, FIND_FOLDWORD); // Check for a matching word in keep-case words. find_word(&mi, FIND_KEEPWORD); // Check for matching prefixes. find_prefix(&mi, FIND_FOLDWORD); // For a NOBREAK language, may want to use a word without a following // word as a backup. if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD && mi.mi_result2 != SP_BAD) { mi.mi_result = mi.mi_result2; mi.mi_end = mi.mi_end2; } // Count the word in the first language where it's found to be OK. if (count_word && mi.mi_result == SP_OK) { count_common_word(mi.mi_lp->lp_slang, ptr, (int)(mi.mi_end - ptr), 1); count_word = false; } } if (mi.mi_result != SP_OK) { // If we found a number skip over it. Allows for "42nd". Do flag // rare and local words, e.g., "3GPP". if (nrlen > 0) { if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) { return nrlen; } } else if (!spell_iswordp_nmw(ptr, wp)) { // When we are at a non-word character there is no error, just // skip over the character (try looking for a word after it). if (capcol != NULL && wp->w_s->b_cap_prog != NULL) { regmatch_T regmatch; // Check for end of sentence. regmatch.regprog = wp->w_s->b_cap_prog; regmatch.rm_ic = false; int r = vim_regexec(®match, ptr, 0); wp->w_s->b_cap_prog = regmatch.regprog; if (r) { *capcol = (int)(regmatch.endp[0] - ptr); } } return (size_t)(utfc_ptr2len(ptr)); } else if (mi.mi_end == ptr) { // Always include at least one character. Required for when there // is a mixup in "midword". MB_PTR_ADV(mi.mi_end); } else if (mi.mi_result == SP_BAD && LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) { char_u *p, *fp; int save_result = mi.mi_result; // First language in 'spelllang' is NOBREAK. Find first position // at which any word would be valid. mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0); if (mi.mi_lp->lp_slang->sl_fidxs != NULL) { p = mi.mi_word; fp = mi.mi_fword; for (;;) { MB_PTR_ADV(p); MB_PTR_ADV(fp); if (p >= mi.mi_end) { break; } mi.mi_compoff = (int)(fp - mi.mi_fword); find_word(&mi, FIND_COMPOUND); if (mi.mi_result != SP_BAD) { mi.mi_end = p; break; } } mi.mi_result = save_result; } } if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) { *attrp = HLF_SPB; } else if (mi.mi_result == SP_RARE) { *attrp = HLF_SPR; } else { *attrp = HLF_SPL; } } if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) { // Report SpellCap only when the word isn't badly spelled. *attrp = HLF_SPC; return wrongcaplen; } return (size_t)(mi.mi_end - ptr); } // Check if the word at "mip->mi_word" is in the tree. // When "mode" is FIND_FOLDWORD check in fold-case word tree. // When "mode" is FIND_KEEPWORD check in keep-case word tree. // When "mode" is FIND_PREFIX check for word after prefix in fold-case word // tree. // // For a match mip->mi_result is updated. static void find_word(matchinf_T *mip, int mode) { int wlen = 0; int flen; char_u *ptr; slang_T *slang = mip->mi_lp->lp_slang; char_u *byts; idx_T *idxs; if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) { // Check for word with matching case in keep-case tree. ptr = mip->mi_word; flen = 9999; // no case folding, always enough bytes byts = slang->sl_kbyts; idxs = slang->sl_kidxs; if (mode == FIND_KEEPCOMPOUND) // Skip over the previously found word(s). wlen += mip->mi_compoff; } else { // Check for case-folded in case-folded tree. ptr = mip->mi_fword; flen = mip->mi_fwordlen; // available case-folded bytes byts = slang->sl_fbyts; idxs = slang->sl_fidxs; if (mode == FIND_PREFIX) { // Skip over the prefix. wlen = mip->mi_prefixlen; flen -= mip->mi_prefixlen; } else if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). wlen = mip->mi_compoff; flen -= mip->mi_compoff; } } if (byts == NULL) return; // array is empty idx_T arridx = 0; int endlen[MAXWLEN]; // length at possible word endings idx_T endidx[MAXWLEN]; // possible word endings int endidxcnt = 0; int len; int c; // Repeat advancing in the tree until: // - there is a byte that doesn't match, // - we reach the end of the tree, // - or we reach the end of the line. for (;; ) { if (flen <= 0 && *mip->mi_fend != NUL) flen = fold_more(mip); len = byts[arridx++]; // If the first possible byte is a zero the word could end here. // Remember this index, we first check for the longest word. if (byts[arridx] == 0) { if (endidxcnt == MAXWLEN) { // Must be a corrupted spell file. EMSG(_(e_format)); return; } endlen[endidxcnt] = wlen; endidx[endidxcnt++] = arridx++; --len; // Skip over the zeros, there can be several flag/region // combinations. while (len > 0 && byts[arridx] == 0) { ++arridx; --len; } if (len == 0) break; // no children, word must end here } // Stop looking at end of the line. if (ptr[wlen] == NUL) break; // Perform a binary search in the list of accepted bytes. c = ptr[wlen]; if (c == TAB) // is handled like c = ' '; idx_T lo = arridx; idx_T hi = arridx + len - 1; while (lo < hi) { idx_T m = (lo + hi) / 2; if (byts[m] > c) hi = m - 1; else if (byts[m] < c) lo = m + 1; else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) break; // Continue at the child (if there is one). arridx = idxs[lo]; ++wlen; --flen; // One space in the good word may stand for several spaces in the // checked word. if (c == ' ') { for (;; ) { if (flen <= 0 && *mip->mi_fend != NUL) flen = fold_more(mip); if (ptr[wlen] != ' ' && ptr[wlen] != TAB) break; ++wlen; --flen; } } } char_u *p; bool word_ends; // Verify that one of the possible endings is valid. Try the longest // first. while (endidxcnt > 0) { --endidxcnt; arridx = endidx[endidxcnt]; wlen = endlen[endidxcnt]; if (utf_head_off(ptr, ptr + wlen) > 0) { continue; // not at first byte of character } if (spell_iswordp(ptr + wlen, mip->mi_win)) { if (slang->sl_compprog == NULL && !slang->sl_nobreak) continue; // next char is a word character word_ends = false; } else word_ends = true; // The prefix flag is before compound flags. Once a valid prefix flag // has been found we try compound flags. bool prefix_found = false; if (mode != FIND_KEEPWORD) { // Compute byte length in original word, length may change // when folding case. This can be slow, take a shortcut when the // case-folded word is equal to the keep-case word. p = mip->mi_word; if (STRNCMP(ptr, p, wlen) != 0) { for (char_u *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) { MB_PTR_ADV(p); } wlen = (int)(p - mip->mi_word); } } // Check flags and region. For FIND_PREFIX check the condition and // prefix ID. // Repeat this if there are more flags/region alternatives until there // is a match. for (len = byts[arridx - 1]; len > 0 && byts[arridx] == 0; --len, ++arridx) { uint32_t flags = idxs[arridx]; // For the fold-case tree check that the case of the checked word // matches with what the word in the tree requires. // For keep-case tree the case is always right. For prefixes we // don't bother to check. if (mode == FIND_FOLDWORD) { if (mip->mi_cend != mip->mi_word + wlen) { // mi_capflags was set for a different word length, need // to do it again. mip->mi_cend = mip->mi_word + wlen; mip->mi_capflags = captype(mip->mi_word, mip->mi_cend); } if (mip->mi_capflags == WF_KEEPCAP || !spell_valid_case(mip->mi_capflags, flags)) continue; } // When mode is FIND_PREFIX the word must support the prefix: // check the prefix ID and the condition. Do that for the list at // mip->mi_prefarridx that find_prefix() filled. else if (mode == FIND_PREFIX && !prefix_found) { c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx, flags, mip->mi_word + mip->mi_cprefixlen, slang, false); if (c == 0) continue; // Use the WF_RARE flag for a rare prefix. if (c & WF_RAREPFX) flags |= WF_RARE; prefix_found = true; } if (slang->sl_nobreak) { if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND) && (flags & WF_BANNED) == 0) { // NOBREAK: found a valid following word. That's all we // need to know, so return. mip->mi_result = SP_OK; break; } } else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND || !word_ends)) { // If there is no compound flag or the word is shorter than // COMPOUNDMIN reject it quickly. // Makes you wonder why someone puts a compound flag on a word // that's too short... Myspell compatibility requires this // anyway. if (((unsigned)flags >> 24) == 0 || wlen - mip->mi_compoff < slang->sl_compminlen) continue; // For multi-byte chars check character length against // COMPOUNDMIN. if (slang->sl_compminlen > 0 && mb_charlen_len(mip->mi_word + mip->mi_compoff, wlen - mip->mi_compoff) < slang->sl_compminlen) { continue; } // Limit the number of compound words to COMPOUNDWORDMAX if no // maximum for syllables is specified. if (!word_ends && mip->mi_complen + mip->mi_compextra + 2 > slang->sl_compmax && slang->sl_compsylmax == MAXWLEN) continue; // Don't allow compounding on a side where an affix was added, // unless COMPOUNDPERMITFLAG was used. if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF)) continue; if (!word_ends && (flags & WF_NOCOMPAFT)) continue; // Quickly check if compounding is possible with this flag. if (!byte_in_str(mip->mi_complen == 0 ? slang->sl_compstartflags : slang->sl_compallflags, ((unsigned)flags >> 24))) continue; // If there is a match with a CHECKCOMPOUNDPATTERN rule // discard the compound word. if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat)) continue; if (mode == FIND_COMPOUND) { int capflags; // Need to check the caps type of the appended compound // word. if (STRNCMP(ptr, mip->mi_word, mip->mi_compoff) != 0) { // case folding may have changed the length p = mip->mi_word; for (char_u *s = ptr; s < ptr + mip->mi_compoff; MB_PTR_ADV(s)) { MB_PTR_ADV(p); } } else { p = mip->mi_word + mip->mi_compoff; } capflags = captype(p, mip->mi_word + wlen); if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP && (flags & WF_FIXCAP) != 0)) continue; if (capflags != WF_ALLCAP) { // When the character before the word is a word // character we do not accept a Onecap word. We do // accept a no-caps word, even when the dictionary // word specifies ONECAP. MB_PTR_BACK(mip->mi_word, p); if (spell_iswordp_nmw(p, mip->mi_win) ? capflags == WF_ONECAP : (flags & WF_ONECAP) != 0 && capflags != WF_ONECAP) { continue; } } } // If the word ends the sequence of compound flags of the // words must match with one of the COMPOUNDRULE items and // the number of syllables must not be too large. mip->mi_compflags[mip->mi_complen] = ((unsigned)flags >> 24); mip->mi_compflags[mip->mi_complen + 1] = NUL; if (word_ends) { char_u fword[MAXWLEN] = { 0 }; if (slang->sl_compsylmax < MAXWLEN) { // "fword" is only needed for checking syllables. if (ptr == mip->mi_word) { (void)spell_casefold(mip->mi_win, ptr, wlen, fword, MAXWLEN); } else { STRLCPY(fword, ptr, endlen[endidxcnt] + 1); } } if (!can_compound(slang, fword, mip->mi_compflags)) continue; } else if (slang->sl_comprules != NULL && !match_compoundrule(slang, mip->mi_compflags)) // The compound flags collected so far do not match any // COMPOUNDRULE, discard the compounded word. continue; } // Check NEEDCOMPOUND: can't use word without compounding. else if (flags & WF_NEEDCOMP) continue; int nobreak_result = SP_OK; if (!word_ends) { int save_result = mip->mi_result; char_u *save_end = mip->mi_end; langp_T *save_lp = mip->mi_lp; // Check that a valid word follows. If there is one and we // are compounding, it will set "mi_result", thus we are // always finished here. For NOBREAK we only check that a // valid word follows. // Recursive! if (slang->sl_nobreak) mip->mi_result = SP_BAD; // Find following word in case-folded tree. mip->mi_compoff = endlen[endidxcnt]; if (mode == FIND_KEEPWORD) { // Compute byte length in case-folded word from "wlen": // byte length in keep-case word. Length may change when // folding case. This can be slow, take a shortcut when // the case-folded word is equal to the keep-case word. p = mip->mi_fword; if (STRNCMP(ptr, p, wlen) != 0) { for (char_u *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) { MB_PTR_ADV(p); } mip->mi_compoff = (int)(p - mip->mi_fword); } } #if 0 c = mip->mi_compoff; #endif ++mip->mi_complen; if (flags & WF_COMPROOT) ++mip->mi_compextra; // For NOBREAK we need to try all NOBREAK languages, at least // to find the ".add" file(s). for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; ++lpi) { if (slang->sl_nobreak) { mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi); if (mip->mi_lp->lp_slang->sl_fidxs == NULL || !mip->mi_lp->lp_slang->sl_nobreak) continue; } find_word(mip, FIND_COMPOUND); // When NOBREAK any word that matches is OK. Otherwise we // need to find the longest match, thus try with keep-case // and prefix too. if (!slang->sl_nobreak || mip->mi_result == SP_BAD) { // Find following word in keep-case tree. mip->mi_compoff = wlen; find_word(mip, FIND_KEEPCOMPOUND); #if 0 // Disabled, a prefix must not appear halfway through a compound // word, unless the COMPOUNDPERMITFLAG is used, in which case it // can't be a postponed prefix. if (!slang->sl_nobreak || mip->mi_result == SP_BAD) { // Check for following word with prefix. mip->mi_compoff = c; find_prefix(mip, FIND_COMPOUND); } #endif } if (!slang->sl_nobreak) break; } --mip->mi_complen; if (flags & WF_COMPROOT) --mip->mi_compextra; mip->mi_lp = save_lp; if (slang->sl_nobreak) { nobreak_result = mip->mi_result; mip->mi_result = save_result; mip->mi_end = save_end; } else { if (mip->mi_result == SP_OK) break; continue; } } int res = SP_BAD; if (flags & WF_BANNED) res = SP_BANNED; else if (flags & WF_REGION) { // Check region. if ((mip->mi_lp->lp_region & (flags >> 16)) != 0) res = SP_OK; else res = SP_LOCAL; } else if (flags & WF_RARE) res = SP_RARE; else res = SP_OK; // Always use the longest match and the best result. For NOBREAK // we separately keep the longest match without a following good // word as a fall-back. if (nobreak_result == SP_BAD) { if (mip->mi_result2 > res) { mip->mi_result2 = res; mip->mi_end2 = mip->mi_word + wlen; } else if (mip->mi_result2 == res && mip->mi_end2 < mip->mi_word + wlen) mip->mi_end2 = mip->mi_word + wlen; } else if (mip->mi_result > res) { mip->mi_result = res; mip->mi_end = mip->mi_word + wlen; } else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen) mip->mi_end = mip->mi_word + wlen; if (mip->mi_result == SP_OK) break; } if (mip->mi_result == SP_OK) break; } } // Returns true if there is a match between the word ptr[wlen] and // CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another // word. // A match means that the first part of CHECKCOMPOUNDPATTERN matches at the // end of ptr[wlen] and the second part matches after it. static bool match_checkcompoundpattern ( char_u *ptr, int wlen, garray_T *gap // &sl_comppat ) { char_u *p; int len; for (int i = 0; i + 1 < gap->ga_len; i += 2) { p = ((char_u **)gap->ga_data)[i + 1]; if (STRNCMP(ptr + wlen, p, STRLEN(p)) == 0) { // Second part matches at start of following compound word, now // check if first part matches at end of previous word. p = ((char_u **)gap->ga_data)[i]; len = (int)STRLEN(p); if (len <= wlen && STRNCMP(ptr + wlen - len, p, len) == 0) return true; } } return false; } // Returns true if "flags" is a valid sequence of compound flags and "word" // does not have too many syllables. static bool can_compound(slang_T *slang, const char_u *word, const char_u *flags) FUNC_ATTR_NONNULL_ALL { char_u uflags[MAXWLEN * 2] = { 0 }; if (slang->sl_compprog == NULL) { return false; } // Need to convert the single byte flags to utf8 characters. char_u *p = uflags; for (int i = 0; flags[i] != NUL; i++) { p += utf_char2bytes(flags[i], p); } *p = NUL; p = uflags; if (!vim_regexec_prog(&slang->sl_compprog, false, p, 0)) { return false; } // Count the number of syllables. This may be slow, do it last. If there // are too many syllables AND the number of compound words is above // COMPOUNDWORDMAX then compounding is not allowed. if (slang->sl_compsylmax < MAXWLEN && count_syllables(slang, word) > slang->sl_compsylmax) return (int)STRLEN(flags) < slang->sl_compmax; return true; } // Returns true when the sequence of flags in "compflags" plus "flag" can // possibly form a valid compounded word. This also checks the COMPOUNDRULE // lines if they don't contain wildcards. static bool can_be_compound(trystate_T *sp, slang_T *slang, char_u *compflags, int flag) { // If the flag doesn't appear in sl_compstartflags or sl_compallflags // then it can't possibly compound. if (!byte_in_str(sp->ts_complen == sp->ts_compsplit ? slang->sl_compstartflags : slang->sl_compallflags, flag)) return false; // If there are no wildcards, we can check if the flags collected so far // possibly can form a match with COMPOUNDRULE patterns. This only // makes sense when we have two or more words. if (slang->sl_comprules != NULL && sp->ts_complen > sp->ts_compsplit) { compflags[sp->ts_complen] = flag; compflags[sp->ts_complen + 1] = NUL; bool v = match_compoundrule(slang, compflags + sp->ts_compsplit); compflags[sp->ts_complen] = NUL; return v; } return true; } // Returns true if the compound flags in compflags[] match the start of any // compound rule. This is used to stop trying a compound if the flags // collected so far can't possibly match any compound rule. // Caller must check that slang->sl_comprules is not NULL. static bool match_compoundrule(slang_T *slang, char_u *compflags) { char_u *p; int i; int c; // loop over all the COMPOUNDRULE entries for (p = slang->sl_comprules; *p != NUL; ++p) { // loop over the flags in the compound word we have made, match // them against the current rule entry for (i = 0;; ++i) { c = compflags[i]; if (c == NUL) // found a rule that matches for the flags we have so far return true; if (*p == '/' || *p == NUL) break; // end of rule, it's too short if (*p == '[') { bool match = false; // compare against all the flags in [] ++p; while (*p != ']' && *p != NUL) if (*p++ == c) match = true; if (!match) break; // none matches } else if (*p != c) break; // flag of word doesn't match flag in pattern ++p; } // Skip to the next "/", where the next pattern starts. p = vim_strchr(p, '/'); if (p == NULL) break; } // Checked all the rules and none of them match the flags, so there // can't possibly be a compound starting with these flags. return false; } // Return non-zero if the prefix indicated by "arridx" matches with the prefix // ID in "flags" for the word "word". // The WF_RAREPFX flag is included in the return value for a rare prefix. static int valid_word_prefix ( int totprefcnt, // nr of prefix IDs int arridx, // idx in sl_pidxs[] int flags, char_u *word, slang_T *slang, bool cond_req // only use prefixes with a condition ) { int prefcnt; int pidx; int prefid; prefid = (unsigned)flags >> 24; for (prefcnt = totprefcnt - 1; prefcnt >= 0; --prefcnt) { pidx = slang->sl_pidxs[arridx + prefcnt]; // Check the prefix ID. if (prefid != (pidx & 0xff)) continue; // Check if the prefix doesn't combine and the word already has a // suffix. if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC)) continue; // Check the condition, if there is one. The condition index is // stored in the two bytes above the prefix ID byte. regprog_T **rp = &slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff]; if (*rp != NULL) { if (!vim_regexec_prog(rp, false, word, 0)) { continue; } } else if (cond_req) continue; // It's a match! Return the WF_ flags. return pidx; } return 0; } // Check if the word at "mip->mi_word" has a matching prefix. // If it does, then check the following word. // // If "mode" is "FIND_COMPOUND" then do the same after another word, find a // prefix in a compound word. // // For a match mip->mi_result is updated. static void find_prefix(matchinf_T *mip, int mode) { idx_T arridx = 0; int len; int wlen = 0; int flen; int c; char_u *ptr; idx_T lo, hi, m; slang_T *slang = mip->mi_lp->lp_slang; char_u *byts; idx_T *idxs; byts = slang->sl_pbyts; if (byts == NULL) return; // array is empty // We use the case-folded word here, since prefixes are always // case-folded. ptr = mip->mi_fword; flen = mip->mi_fwordlen; // available case-folded bytes if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). ptr += mip->mi_compoff; flen -= mip->mi_compoff; } idxs = slang->sl_pidxs; // Repeat advancing in the tree until: // - there is a byte that doesn't match, // - we reach the end of the tree, // - or we reach the end of the line. for (;; ) { if (flen == 0 && *mip->mi_fend != NUL) flen = fold_more(mip); len = byts[arridx++]; // If the first possible byte is a zero the prefix could end here. // Check if the following word matches and supports the prefix. if (byts[arridx] == 0) { // There can be several prefixes with different conditions. We // try them all, since we don't know which one will give the // longest match. The word is the same each time, pass the list // of possible prefixes to find_word(). mip->mi_prefarridx = arridx; mip->mi_prefcnt = len; while (len > 0 && byts[arridx] == 0) { ++arridx; --len; } mip->mi_prefcnt -= len; // Find the word that comes after the prefix. mip->mi_prefixlen = wlen; if (mode == FIND_COMPOUND) // Skip over the previously found word(s). mip->mi_prefixlen += mip->mi_compoff; // Case-folded length may differ from original length. mip->mi_cprefixlen = nofold_len(mip->mi_fword, mip->mi_prefixlen, mip->mi_word); find_word(mip, FIND_PREFIX); if (len == 0) break; // no children, word must end here } // Stop looking at end of the line. if (ptr[wlen] == NUL) break; // Perform a binary search in the list of accepted bytes. c = ptr[wlen]; lo = arridx; hi = arridx + len - 1; while (lo < hi) { m = (lo + hi) / 2; if (byts[m] > c) hi = m - 1; else if (byts[m] < c) lo = m + 1; else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) break; // Continue at the child (if there is one). arridx = idxs[lo]; ++wlen; --flen; } } // Need to fold at least one more character. Do until next non-word character // for efficiency. Include the non-word character too. // Return the length of the folded chars in bytes. static int fold_more(matchinf_T *mip) { int flen; char_u *p; p = mip->mi_fend; do { MB_PTR_ADV(mip->mi_fend); } while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win)); // Include the non-word character so that we can check for the word end. if (*mip->mi_fend != NUL) { MB_PTR_ADV(mip->mi_fend); } (void)spell_casefold(mip->mi_win, p, (int)(mip->mi_fend - p), mip->mi_fword + mip->mi_fwordlen, MAXWLEN - mip->mi_fwordlen); flen = (int)STRLEN(mip->mi_fword + mip->mi_fwordlen); mip->mi_fwordlen += flen; return flen; } /// Checks case flags for a word. Returns true, if the word has the requested /// case. /// /// @param wordflags Flags for the checked word. /// @param treeflags Flags for the word in the spell tree. static bool spell_valid_case(int wordflags, int treeflags) { return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0) || ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0 && ((treeflags & WF_ONECAP) == 0 || (wordflags & WF_ONECAP) != 0)); } // Returns true if spell checking is not enabled. static bool no_spell_checking(win_T *wp) { if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL || GA_EMPTY(&wp->w_s->b_langp)) { EMSG(_(e_no_spell)); return true; } return false; } // Moves to the next spell error. // "curline" is false for "[s", "]s", "[S" and "]S". // "curline" is true to find word under/after cursor in the same line. // For Insert mode completion "dir" is BACKWARD and "curline" is true: move // to after badly spelled word before the cursor. // Return 0 if not found, length of the badly spelled word otherwise. size_t spell_move_to ( win_T *wp, int dir, // FORWARD or BACKWARD bool allwords, // true for "[s"/"]s", false for "[S"/"]S" bool curline, hlf_T *attrp // return: attributes of bad word or NULL // (only when "dir" is FORWARD) ) { linenr_T lnum; pos_T found_pos; size_t found_len = 0; char_u *line; char_u *p; char_u *endp; hlf_T attr = HLF_COUNT; size_t len; int has_syntax = syntax_present(wp); int col; bool can_spell; char_u *buf = NULL; size_t buflen = 0; int skip = 0; int capcol = -1; bool found_one = false; bool wrapped = false; if (no_spell_checking(wp)) return 0; // Start looking for bad word at the start of the line, because we can't // start halfway through a word, we don't know where it starts or ends. // // When searching backwards, we continue in the line to find the last // bad word (in the cursor line: before the cursor). // // We concatenate the start of the next line, so that wrapped words work // (e.g. "etcetera"). Doesn't work when searching backwards // though... lnum = wp->w_cursor.lnum; clearpos(&found_pos); while (!got_int) { line = ml_get_buf(wp->w_buffer, lnum, false); len = STRLEN(line); if (buflen < len + MAXWLEN + 2) { xfree(buf); buflen = len + MAXWLEN + 2; buf = xmalloc(buflen); } assert(buf && buflen >= len + MAXWLEN + 2); // In first line check first word for Capital. if (lnum == 1) capcol = 0; // For checking first word with a capital skip white space. if (capcol == 0) { capcol = (int)getwhitecols(line); } else if (curline && wp == curwin) { // For spellbadword(): check if first word needs a capital. col = (int)getwhitecols(line); if (check_need_cap(lnum, col)) { capcol = col; } // Need to get the line again, may have looked at the previous // one. line = ml_get_buf(wp->w_buffer, lnum, false); } // Copy the line into "buf" and append the start of the next line if // possible. STRCPY(buf, line); if (lnum < wp->w_buffer->b_ml.ml_line_count) spell_cat_line(buf + STRLEN(buf), ml_get_buf(wp->w_buffer, lnum + 1, false), MAXWLEN); p = buf + skip; endp = buf + len; while (p < endp) { // When searching backward don't search after the cursor. Unless // we wrapped around the end of the buffer. if (dir == BACKWARD && lnum == wp->w_cursor.lnum && !wrapped && (colnr_T)(p - buf) >= wp->w_cursor.col) break; // start of word attr = HLF_COUNT; len = spell_check(wp, p, &attr, &capcol, false); if (attr != HLF_COUNT) { // We found a bad word. Check the attribute. if (allwords || attr == HLF_SPB) { // When searching forward only accept a bad word after // the cursor. if (dir == BACKWARD || lnum != wp->w_cursor.lnum || wrapped || ((colnr_T)(curline ? p - buf + (ptrdiff_t)len : p - buf) > wp->w_cursor.col)) { if (has_syntax) { col = (int)(p - buf); (void)syn_get_id(wp, lnum, (colnr_T)col, FALSE, &can_spell, FALSE); if (!can_spell) attr = HLF_COUNT; } else can_spell = true; if (can_spell) { found_one = true; found_pos.lnum = lnum; found_pos.col = (int)(p - buf); found_pos.coladd = 0; if (dir == FORWARD) { // No need to search further. wp->w_cursor = found_pos; xfree(buf); if (attrp != NULL) *attrp = attr; return len; } else if (curline) { // Insert mode completion: put cursor after // the bad word. assert(len <= INT_MAX); found_pos.col += (int)len; } found_len = len; } } else found_one = true; } } // advance to character after the word p += len; assert(len <= INT_MAX); capcol -= (int)len; } if (dir == BACKWARD && found_pos.lnum != 0) { // Use the last match in the line (before the cursor). wp->w_cursor = found_pos; xfree(buf); return found_len; } if (curline) { break; // only check cursor line } // If we are back at the starting line and searched it again there // is no match, give up. if (lnum == wp->w_cursor.lnum && wrapped) { break; } // Advance to next line. if (dir == BACKWARD) { if (lnum > 1) { lnum--; } else if (!p_ws) { break; // at first line and 'nowrapscan' } else { // Wrap around to the end of the buffer. May search the // starting line again and accept the last match. lnum = wp->w_buffer->b_ml.ml_line_count; wrapped = true; if (!shortmess(SHM_SEARCH)) give_warning((char_u *)_(top_bot_msg), true); } capcol = -1; } else { if (lnum < wp->w_buffer->b_ml.ml_line_count) ++lnum; else if (!p_ws) break; // at first line and 'nowrapscan' else { // Wrap around to the start of the buffer. May search the // starting line again and accept the first match. lnum = 1; wrapped = true; if (!shortmess(SHM_SEARCH)) give_warning((char_u *)_(bot_top_msg), true); } // If we are back at the starting line and there is no match then // give up. if (lnum == wp->w_cursor.lnum && !found_one) { break; } // Skip the characters at the start of the next line that were // included in a match crossing line boundaries. if (attr == HLF_COUNT) skip = (int)(p - endp); else skip = 0; // Capcol skips over the inserted space. --capcol; // But after empty line check first word in next line if (*skipwhite(line) == NUL) capcol = 0; } line_breakcheck(); } xfree(buf); return 0; } // For spell checking: concatenate the start of the following line "line" into // "buf", blanking-out special characters. Copy less then "maxlen" bytes. // Keep the blanks at the start of the next line, this is used in win_line() // to skip those bytes if the word was OK. void spell_cat_line(char_u *buf, char_u *line, int maxlen) { char_u *p; int n; p = skipwhite(line); while (vim_strchr((char_u *)"*#/\"\t", *p) != NULL) p = skipwhite(p + 1); if (*p != NUL) { // Only worth concatenating if there is something else than spaces to // concatenate. n = (int)(p - line) + 1; if (n < maxlen - 1) { memset(buf, ' ', n); STRLCPY(buf + n, p, maxlen - n); } } } // Load word list(s) for "lang" from Vim spell file(s). // "lang" must be the language without the region: e.g., "en". static void spell_load_lang(char_u *lang) { char_u fname_enc[85]; int r; spelload_T sl; int round; // Copy the language name to pass it to spell_load_cb() as a cookie. // It's truncated when an error is detected. STRCPY(sl.sl_lang, lang); sl.sl_slang = NULL; sl.sl_nobreak = false; // We may retry when no spell file is found for the language, an // autocommand may load it then. for (round = 1; round <= 2; ++round) { // Find the first spell file for "lang" in 'runtimepath' and load it. vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5, "spell/%s.%s.spl", lang, spell_enc()); r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl); if (r == FAIL && *sl.sl_lang != NUL) { // Try loading the ASCII version. vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5, "spell/%s.ascii.spl", lang); r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl); if (r == FAIL && *sl.sl_lang != NUL && round == 1 && apply_autocmds(EVENT_SPELLFILEMISSING, lang, curbuf->b_fname, FALSE, curbuf)) continue; break; } break; } if (r == FAIL) { if (starting) { // Prompt the user at VimEnter if spell files are missing. #3027 // Plugins aren't loaded yet, so spellfile.vim cannot handle this case. char autocmd_buf[512] = { 0 }; snprintf(autocmd_buf, sizeof(autocmd_buf), "autocmd VimEnter * call spellfile#LoadFile('%s')|set spell", lang); do_cmdline_cmd(autocmd_buf); } else { smsg( _("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""), lang, spell_enc(), lang); } } else if (sl.sl_slang != NULL) { // At least one file was loaded, now load ALL the additions. STRCPY(fname_enc + STRLEN(fname_enc) - 3, "add.spl"); do_in_runtimepath(fname_enc, DIP_ALL, spell_load_cb, &sl); } } // Return the encoding used for spell checking: Use 'encoding', except that we // use "latin1" for "latin9". And limit to 60 characters (just in case). char_u *spell_enc(void) { if (STRLEN(p_enc) < 60 && STRCMP(p_enc, "iso-8859-15") != 0) return p_enc; return (char_u *)"latin1"; } // Get the name of the .spl file for the internal wordlist into // "fname[MAXPATHL]". static void int_wordlist_spl(char_u *fname) { vim_snprintf((char *)fname, MAXPATHL, SPL_FNAME_TMPL, int_wordlist, spell_enc()); } // Allocate a new slang_T for language "lang". "lang" can be NULL. // Caller must fill "sl_next". slang_T *slang_alloc(char_u *lang) FUNC_ATTR_NONNULL_RET { slang_T *lp = xcalloc(1, sizeof(slang_T)); if (lang != NULL) lp->sl_name = vim_strsave(lang); ga_init(&lp->sl_rep, sizeof(fromto_T), 10); ga_init(&lp->sl_repsal, sizeof(fromto_T), 10); lp->sl_compmax = MAXWLEN; lp->sl_compsylmax = MAXWLEN; hash_init(&lp->sl_wordcount); return lp; } // Free the contents of an slang_T and the structure itself. void slang_free(slang_T *lp) { xfree(lp->sl_name); xfree(lp->sl_fname); slang_clear(lp); xfree(lp); } /// Frees a salitem_T static void free_salitem(salitem_T *smp) { xfree(smp->sm_lead); // Don't free sm_oneof and sm_rules, they point into sm_lead. xfree(smp->sm_to); xfree(smp->sm_lead_w); xfree(smp->sm_oneof_w); xfree(smp->sm_to_w); } /// Frees a fromto_T static void free_fromto(fromto_T *ftp) { xfree(ftp->ft_from); xfree(ftp->ft_to); } // Clear an slang_T so that the file can be reloaded. void slang_clear(slang_T *lp) { garray_T *gap; XFREE_CLEAR(lp->sl_fbyts); XFREE_CLEAR(lp->sl_kbyts); XFREE_CLEAR(lp->sl_pbyts); XFREE_CLEAR(lp->sl_fidxs); XFREE_CLEAR(lp->sl_kidxs); XFREE_CLEAR(lp->sl_pidxs); GA_DEEP_CLEAR(&lp->sl_rep, fromto_T, free_fromto); GA_DEEP_CLEAR(&lp->sl_repsal, fromto_T, free_fromto); gap = &lp->sl_sal; if (lp->sl_sofo) { // "ga_len" is set to 1 without adding an item for latin1 GA_DEEP_CLEAR_PTR(gap); } else { // SAL items: free salitem_T items GA_DEEP_CLEAR(gap, salitem_T, free_salitem); } for (int i = 0; i < lp->sl_prefixcnt; ++i) { vim_regfree(lp->sl_prefprog[i]); } lp->sl_prefixcnt = 0; XFREE_CLEAR(lp->sl_prefprog); XFREE_CLEAR(lp->sl_info); XFREE_CLEAR(lp->sl_midword); vim_regfree(lp->sl_compprog); lp->sl_compprog = NULL; XFREE_CLEAR(lp->sl_comprules); XFREE_CLEAR(lp->sl_compstartflags); XFREE_CLEAR(lp->sl_compallflags); XFREE_CLEAR(lp->sl_syllable); ga_clear(&lp->sl_syl_items); ga_clear_strings(&lp->sl_comppat); hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF); hash_init(&lp->sl_wordcount); hash_clear_all(&lp->sl_map_hash, 0); // Clear info from .sug file. slang_clear_sug(lp); lp->sl_compmax = MAXWLEN; lp->sl_compminlen = 0; lp->sl_compsylmax = MAXWLEN; lp->sl_regions[0] = NUL; } // Clear the info from the .sug file in "lp". void slang_clear_sug(slang_T *lp) { XFREE_CLEAR(lp->sl_sbyts); XFREE_CLEAR(lp->sl_sidxs); close_spellbuf(lp->sl_sugbuf); lp->sl_sugbuf = NULL; lp->sl_sugloaded = false; lp->sl_sugtime = 0; } // Load one spell file and store the info into a slang_T. // Invoked through do_in_runtimepath(). static void spell_load_cb(char_u *fname, void *cookie) { spelload_T *slp = (spelload_T *)cookie; slang_T *slang; slang = spell_load_file(fname, slp->sl_lang, NULL, false); if (slang != NULL) { // When a previously loaded file has NOBREAK also use it for the // ".add" files. if (slp->sl_nobreak && slang->sl_add) slang->sl_nobreak = true; else if (slang->sl_nobreak) slp->sl_nobreak = true; slp->sl_slang = slang; } } /// Add a word to the hashtable of common words. /// If it's already there then the counter is increased. /// /// @param[in] lp /// @param[in] word added to common words hashtable /// @param[in] len length of word or -1 for NUL terminated /// @param[in] count 1 to count once, 10 to init void count_common_word(slang_T *lp, char_u *word, int len, int count) { hash_T hash; hashitem_T *hi; wordcount_T *wc; char_u buf[MAXWLEN]; char_u *p; if (len == -1) { p = word; } else if (len >= MAXWLEN) { return; } else { STRLCPY(buf, word, len + 1); p = buf; } hash = hash_hash(p); const size_t p_len = STRLEN(p); hi = hash_lookup(&lp->sl_wordcount, (const char *)p, p_len, hash); if (HASHITEM_EMPTY(hi)) { wc = xmalloc(sizeof(wordcount_T) + p_len); memcpy(wc->wc_word, p, p_len + 1); wc->wc_count = count; hash_add_item(&lp->sl_wordcount, hi, wc->wc_word, hash); } else { wc = HI2WC(hi); if ((wc->wc_count += count) < (unsigned)count) // check for overflow wc->wc_count = MAXWORDCOUNT; } } // Adjust the score of common words. static int score_wordcount_adj ( slang_T *slang, int score, char_u *word, bool split // word was split, less bonus ) { hashitem_T *hi; wordcount_T *wc; int bonus; int newscore; hi = hash_find(&slang->sl_wordcount, word); if (!HASHITEM_EMPTY(hi)) { wc = HI2WC(hi); if (wc->wc_count < SCORE_THRES2) bonus = SCORE_COMMON1; else if (wc->wc_count < SCORE_THRES3) bonus = SCORE_COMMON2; else bonus = SCORE_COMMON3; if (split) newscore = score - bonus / 2; else newscore = score - bonus; if (newscore < 0) return 0; return newscore; } return score; } // Returns true if byte "n" appears in "str". // Like strchr() but independent of locale. bool byte_in_str(char_u *str, int n) { char_u *p; for (p = str; *p != NUL; ++p) if (*p == n) return true; return false; } // Truncate "slang->sl_syllable" at the first slash and put the following items // in "slang->sl_syl_items". int init_syl_tab(slang_T *slang) { char_u *p; char_u *s; int l; ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4); p = vim_strchr(slang->sl_syllable, '/'); while (p != NULL) { *p++ = NUL; if (*p == NUL) // trailing slash break; s = p; p = vim_strchr(p, '/'); if (p == NULL) l = (int)STRLEN(s); else l = (int)(p - s); if (l >= SY_MAXLEN) return SP_FORMERROR; syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items); STRLCPY(syl->sy_chars, s, l + 1); syl->sy_len = l; } return OK; } // Count the number of syllables in "word". // When "word" contains spaces the syllables after the last space are counted. // Returns zero if syllables are not defines. static int count_syllables(slang_T *slang, const char_u *word) FUNC_ATTR_NONNULL_ALL { int cnt = 0; bool skip = false; int len; syl_item_T *syl; int c; if (slang->sl_syllable == NULL) return 0; for (const char_u *p = word; *p != NUL; p += len) { // When running into a space reset counter. if (*p == ' ') { len = 1; cnt = 0; continue; } // Find longest match of syllable items. len = 0; for (int i = 0; i < slang->sl_syl_items.ga_len; ++i) { syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i; if (syl->sy_len > len && STRNCMP(p, syl->sy_chars, syl->sy_len) == 0) len = syl->sy_len; } if (len != 0) { // found a match, count syllable ++cnt; skip = false; } else { // No recognized syllable item, at least a syllable char then? c = utf_ptr2char(p); len = (*mb_ptr2len)(p); if (vim_strchr(slang->sl_syllable, c) == NULL) skip = false; // No, search for next syllable else if (!skip) { ++cnt; // Yes, count it skip = true; // don't count following syllable chars } } } return cnt; } // Parse 'spelllang' and set w_s->b_langp accordingly. // Returns NULL if it's OK, an error message otherwise. char_u *did_set_spelllang(win_T *wp) { garray_T ga; char_u *splp; char_u *region; char_u region_cp[3]; bool filename; int region_mask; slang_T *slang; int c; char_u lang[MAXWLEN + 1]; char_u spf_name[MAXPATHL]; int len; char_u *p; int round; char_u *spf; char_u *use_region = NULL; bool dont_use_region = false; bool nobreak = false; langp_T *lp, *lp2; static bool recursive = false; char_u *ret_msg = NULL; char_u *spl_copy; bufref_T bufref; set_bufref(&bufref, wp->w_buffer); // We don't want to do this recursively. May happen when a language is // not available and the SpellFileMissing autocommand opens a new buffer // in which 'spell' is set. if (recursive) return NULL; recursive = true; ga_init(&ga, sizeof(langp_T), 2); clear_midword(wp); // Make a copy of 'spelllang', the SpellFileMissing autocommands may change // it under our fingers. spl_copy = vim_strsave(wp->w_s->b_p_spl); wp->w_s->b_cjk = 0; // Loop over comma separated language names. for (splp = spl_copy; *splp != NUL; ) { // Get one language name. copy_option_part(&splp, lang, MAXWLEN, ","); region = NULL; len = (int)STRLEN(lang); if (!valid_spelllang(lang)) { continue; } if (STRCMP(lang, "cjk") == 0) { wp->w_s->b_cjk = 1; continue; } // If the name ends in ".spl" use it as the name of the spell file. // If there is a region name let "region" point to it and remove it // from the name. if (len > 4 && fnamecmp(lang + len - 4, ".spl") == 0) { filename = true; // Locate a region and remove it from the file name. p = vim_strchr(path_tail(lang), '_'); if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2]) && !ASCII_ISALPHA(p[3])) { STRLCPY(region_cp, p + 1, 3); memmove(p, p + 3, len - (p - lang) - 2); region = region_cp; } else dont_use_region = true; // Check if we loaded this language before. for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare(lang, slang->sl_fname, false, true) == kEqualFiles) { break; } } } else { filename = false; if (len > 3 && lang[len - 3] == '_') { region = lang + len - 2; lang[len - 3] = NUL; } else dont_use_region = true; // Check if we loaded this language before. for (slang = first_lang; slang != NULL; slang = slang->sl_next) if (STRICMP(lang, slang->sl_name) == 0) break; } if (region != NULL) { // If the region differs from what was used before then don't // use it for 'spellfile'. if (use_region != NULL && STRCMP(region, use_region) != 0) dont_use_region = true; use_region = region; } // If not found try loading the language now. if (slang == NULL) { if (filename) (void)spell_load_file(lang, lang, NULL, false); else { spell_load_lang(lang); // SpellFileMissing autocommands may do anything, including // destroying the buffer we are using... if (!bufref_valid(&bufref)) { ret_msg = (char_u *)N_("E797: SpellFileMissing autocommand deleted buffer"); goto theend; } } } // Loop over the languages, there can be several files for "lang". for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (filename ? path_full_compare(lang, slang->sl_fname, false, true) == kEqualFiles : STRICMP(lang, slang->sl_name) == 0) { region_mask = REGION_ALL; if (!filename && region != NULL) { // find region in sl_regions c = find_region(slang->sl_regions, region); if (c == REGION_ALL) { if (slang->sl_add) { if (*slang->sl_regions != NUL) // This addition file is for other regions. region_mask = 0; } else // This is probably an error. Give a warning and // accept the words anyway. smsg(_("Warning: region %s not supported"), region); } else region_mask = 1 << c; } if (region_mask != 0) { langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga); p_->lp_slang = slang; p_->lp_region = region_mask; use_midword(slang, wp); if (slang->sl_nobreak) nobreak = true; } } } } // round 0: load int_wordlist, if possible. // round 1: load first name in 'spellfile'. // round 2: load second name in 'spellfile. // etc. spf = curwin->w_s->b_p_spf; for (round = 0; round == 0 || *spf != NUL; ++round) { if (round == 0) { // Internal wordlist, if there is one. if (int_wordlist == NULL) continue; int_wordlist_spl(spf_name); } else { // One entry in 'spellfile'. copy_option_part(&spf, spf_name, MAXPATHL - 5, ","); STRCAT(spf_name, ".spl"); // If it was already found above then skip it. for (c = 0; c < ga.ga_len; ++c) { p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname; if (p != NULL && path_full_compare(spf_name, p, false, true) == kEqualFiles) { break; } } if (c < ga.ga_len) continue; } // Check if it was loaded already. for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare(spf_name, slang->sl_fname, false, true) == kEqualFiles) { break; } } if (slang == NULL) { // Not loaded, try loading it now. The language name includes the // region name, the region is ignored otherwise. for int_wordlist // use an arbitrary name. if (round == 0) STRCPY(lang, "internal wordlist"); else { STRLCPY(lang, path_tail(spf_name), MAXWLEN + 1); p = vim_strchr(lang, '.'); if (p != NULL) *p = NUL; // truncate at ".encoding.add" } slang = spell_load_file(spf_name, lang, NULL, true); // If one of the languages has NOBREAK we assume the addition // files also have this. if (slang != NULL && nobreak) slang->sl_nobreak = true; } if (slang != NULL) { region_mask = REGION_ALL; if (use_region != NULL && !dont_use_region) { // find region in sl_regions c = find_region(slang->sl_regions, use_region); if (c != REGION_ALL) region_mask = 1 << c; else if (*slang->sl_regions != NUL) // This spell file is for other regions. region_mask = 0; } if (region_mask != 0) { langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga); p_->lp_slang = slang; p_->lp_sallang = NULL; p_->lp_replang = NULL; p_->lp_region = region_mask; use_midword(slang, wp); } } } // Everything is fine, store the new b_langp value. ga_clear(&wp->w_s->b_langp); wp->w_s->b_langp = ga; // For each language figure out what language to use for sound folding and // REP items. If the language doesn't support it itself use another one // with the same name. E.g. for "en-math" use "en". for (int i = 0; i < ga.ga_len; ++i) { lp = LANGP_ENTRY(ga, i); // sound folding if (!GA_EMPTY(&lp->lp_slang->sl_sal)) // language does sound folding itself lp->lp_sallang = lp->lp_slang; else // find first similar language that does sound folding for (int j = 0; j < ga.ga_len; ++j) { lp2 = LANGP_ENTRY(ga, j); if (!GA_EMPTY(&lp2->lp_slang->sl_sal) && STRNCMP(lp->lp_slang->sl_name, lp2->lp_slang->sl_name, 2) == 0) { lp->lp_sallang = lp2->lp_slang; break; } } // REP items if (!GA_EMPTY(&lp->lp_slang->sl_rep)) // language has REP items itself lp->lp_replang = lp->lp_slang; else // find first similar language that has REP items for (int j = 0; j < ga.ga_len; ++j) { lp2 = LANGP_ENTRY(ga, j); if (!GA_EMPTY(&lp2->lp_slang->sl_rep) && STRNCMP(lp->lp_slang->sl_name, lp2->lp_slang->sl_name, 2) == 0) { lp->lp_replang = lp2->lp_slang; break; } } } theend: xfree(spl_copy); recursive = false; redraw_later(wp, NOT_VALID); return ret_msg; } // Clear the midword characters for buffer "buf". static void clear_midword(win_T *wp) { memset(wp->w_s->b_spell_ismw, 0, 256); XFREE_CLEAR(wp->w_s->b_spell_ismw_mb); } // Use the "sl_midword" field of language "lp" for buffer "buf". // They add up to any currently used midword characters. static void use_midword(slang_T *lp, win_T *wp) FUNC_ATTR_NONNULL_ALL { if (lp->sl_midword == NULL) { // there aren't any return; } for (char_u *p = lp->sl_midword; *p != NUL; ) { const int c = utf_ptr2char(p); const int l = utfc_ptr2len(p); if (c < 256 && l <= 2) { wp->w_s->b_spell_ismw[c] = true; } else if (wp->w_s->b_spell_ismw_mb == NULL) { // First multi-byte char in "b_spell_ismw_mb". wp->w_s->b_spell_ismw_mb = vim_strnsave(p, l); } else { // Append multi-byte chars to "b_spell_ismw_mb". const int n = (int)STRLEN(wp->w_s->b_spell_ismw_mb); char_u *bp = vim_strnsave(wp->w_s->b_spell_ismw_mb, n + l); xfree(wp->w_s->b_spell_ismw_mb); wp->w_s->b_spell_ismw_mb = bp; STRLCPY(bp + n, p, l + 1); } p += l; } } // Find the region "region[2]" in "rp" (points to "sl_regions"). // Each region is simply stored as the two characters of its name. // Returns the index if found (first is 0), REGION_ALL if not found. static int find_region(char_u *rp, char_u *region) { int i; for (i = 0;; i += 2) { if (rp[i] == NUL) return REGION_ALL; if (rp[i] == region[0] && rp[i + 1] == region[1]) break; } return i / 2; } /// Return case type of word: /// w word 0 /// Word WF_ONECAP /// W WORD WF_ALLCAP /// WoRd wOrd WF_KEEPCAP /// /// @param[in] word /// @param[in] end End of word or NULL for NUL delimited string /// /// @returns Case type of word int captype(char_u *word, char_u *end) FUNC_ATTR_NONNULL_ARG(1) { char_u *p; int firstcap; bool allcap; bool past_second = false; // past second word char // find first letter for (p = word; !spell_iswordp_nmw(p, curwin); MB_PTR_ADV(p)) { if (end == NULL ? *p == NUL : p >= end) { return 0; // only non-word characters, illegal word } } int c = mb_ptr2char_adv((const char_u **)&p); firstcap = allcap = SPELL_ISUPPER(c); // Need to check all letters to find a word with mixed upper/lower. // But a word with an upper char only at start is a ONECAP. for (; end == NULL ? *p != NUL : p < end; MB_PTR_ADV(p)) { if (spell_iswordp_nmw(p, curwin)) { c = PTR2CHAR(p); if (!SPELL_ISUPPER(c)) { // UUl -> KEEPCAP if (past_second && allcap) { return WF_KEEPCAP; } allcap = false; } else if (!allcap) { // UlU -> KEEPCAP return WF_KEEPCAP; } past_second = true; } } if (allcap) return WF_ALLCAP; if (firstcap) return WF_ONECAP; return 0; } // Like captype() but for a KEEPCAP word add ONECAP if the word starts with a // capital. So that make_case_word() can turn WOrd into Word. // Add ALLCAP for "WOrD". static int badword_captype(char_u *word, char_u *end) FUNC_ATTR_NONNULL_ALL { int flags = captype(word, end); int c; int l, u; bool first; char_u *p; if (flags & WF_KEEPCAP) { // Count the number of UPPER and lower case letters. l = u = 0; first = false; for (p = word; p < end; MB_PTR_ADV(p)) { c = PTR2CHAR(p); if (SPELL_ISUPPER(c)) { ++u; if (p == word) first = true; } else ++l; } // If there are more UPPER than lower case letters suggest an // ALLCAP word. Otherwise, if the first letter is UPPER then // suggest ONECAP. Exception: "ALl" most likely should be "All", // require three upper case letters. if (u > l && u > 2) flags |= WF_ALLCAP; else if (first) flags |= WF_ONECAP; if (u >= 2 && l >= 2) // maCARONI maCAroni flags |= WF_MIXCAP; } return flags; } // Delete the internal wordlist and its .spl file. void spell_delete_wordlist(void) { char_u fname[MAXPATHL] = {0}; if (int_wordlist != NULL) { os_remove((char *)int_wordlist); int_wordlist_spl(fname); os_remove((char *)fname); XFREE_CLEAR(int_wordlist); } } // Free all languages. void spell_free_all(void) { slang_T *slang; // Go through all buffers and handle 'spelllang'. FOR_ALL_BUFFERS(buf) { ga_clear(&buf->b_s.b_langp); } while (first_lang != NULL) { slang = first_lang; first_lang = slang->sl_next; slang_free(slang); } spell_delete_wordlist(); XFREE_CLEAR(repl_to); XFREE_CLEAR(repl_from); } // Clear all spelling tables and reload them. // Used after 'encoding' is set and when ":mkspell" was used. void spell_reload(void) { // Initialize the table for spell_iswordp(). init_spell_chartab(); // Unload all allocated memory. spell_free_all(); // Go through all buffers and handle 'spelllang'. FOR_ALL_WINDOWS_IN_TAB(wp, curtab) { // Only load the wordlists when 'spelllang' is set and there is a // window for this buffer in which 'spell' is set. if (*wp->w_s->b_p_spl != NUL) { if (wp->w_p_spell) { (void)did_set_spelllang(wp); break; } } } } // Opposite of offset2bytes(). // "pp" points to the bytes and is advanced over it. // Returns the offset. static int bytes2offset(char_u **pp) { char_u *p = *pp; int nr; int c; c = *p++; if ((c & 0x80) == 0x00) { // 1 byte nr = c - 1; } else if ((c & 0xc0) == 0x80) { // 2 bytes nr = (c & 0x3f) - 1; nr = nr * 255 + (*p++ - 1); } else if ((c & 0xe0) == 0xc0) { // 3 bytes nr = (c & 0x1f) - 1; nr = nr * 255 + (*p++ - 1); nr = nr * 255 + (*p++ - 1); } else { // 4 bytes nr = (c & 0x0f) - 1; nr = nr * 255 + (*p++ - 1); nr = nr * 255 + (*p++ - 1); nr = nr * 255 + (*p++ - 1); } *pp = p; return nr; } // Open a spell buffer. This is a nameless buffer that is not in the buffer // list and only contains text lines. Can use a swapfile to reduce memory // use. // Most other fields are invalid! Esp. watch out for string options being // NULL and there is no undo info. buf_T *open_spellbuf(void) { buf_T *buf = xcalloc(1, sizeof(buf_T)); buf->b_spell = true; buf->b_p_swf = true; // may create a swap file if (ml_open(buf) == FAIL) { ELOG("Error opening a new memline"); } ml_open_file(buf); // create swap file now return buf; } // Close the buffer used for spell info. void close_spellbuf(buf_T *buf) { if (buf != NULL) { ml_close(buf, TRUE); xfree(buf); } } // Init the chartab used for spelling for ASCII. void clear_spell_chartab(spelltab_T *sp) { int i; // Init everything to false. memset(sp->st_isw, false, sizeof(sp->st_isw)); memset(sp->st_isu, false, sizeof(sp->st_isu)); for (i = 0; i < 256; ++i) { sp->st_fold[i] = i; sp->st_upper[i] = i; } // We include digits. A word shouldn't start with a digit, but handling // that is done separately. for (i = '0'; i <= '9'; ++i) sp->st_isw[i] = true; for (i = 'A'; i <= 'Z'; ++i) { sp->st_isw[i] = true; sp->st_isu[i] = true; sp->st_fold[i] = i + 0x20; } for (i = 'a'; i <= 'z'; ++i) { sp->st_isw[i] = true; sp->st_upper[i] = i - 0x20; } } // Init the chartab used for spelling. Called once while starting up. // The default is to use isalpha(), but the spell file should define the word // characters to make it possible that 'encoding' differs from the current // locale. For utf-8 we don't use isalpha() but our own functions. void init_spell_chartab(void) { int i; did_set_spelltab = false; clear_spell_chartab(&spelltab); for (i = 128; i < 256; i++) { int f = utf_fold(i); int u = mb_toupper(i); spelltab.st_isu[i] = mb_isupper(i); spelltab.st_isw[i] = spelltab.st_isu[i] || mb_islower(i); // The folded/upper-cased value is different between latin1 and // utf8 for 0xb5, causing E763 for no good reason. Use the latin1 // value for utf-8 to avoid this. spelltab.st_fold[i] = (f < 256) ? f : i; spelltab.st_upper[i] = (u < 256) ? u : i; } } /// Returns true if "p" points to a word character. /// As a special case we see "midword" characters as word character when it is /// followed by a word character. This finds they'there but not 'they there'. /// Thus this only works properly when past the first character of the word. /// /// @param wp Buffer used. static bool spell_iswordp(const char_u *p, const win_T *wp) FUNC_ATTR_NONNULL_ALL { int c; const int l = utfc_ptr2len(p); const char_u *s = p; if (l == 1) { // be quick for ASCII if (wp->w_s->b_spell_ismw[*p]) { s = p + 1; // skip a mid-word character } } else { c = utf_ptr2char(p); if (c < 256 ? wp->w_s->b_spell_ismw[c] : (wp->w_s->b_spell_ismw_mb != NULL && vim_strchr(wp->w_s->b_spell_ismw_mb, c) != NULL)) { s = p + l; } } c = utf_ptr2char(s); if (c > 255) { return spell_mb_isword_class(mb_get_class(s), wp); } return spelltab.st_isw[c]; } // Returns true if "p" points to a word character. // Unlike spell_iswordp() this doesn't check for "midword" characters. bool spell_iswordp_nmw(const char_u *p, win_T *wp) { int c = utf_ptr2char(p); if (c > 255) { return spell_mb_isword_class(mb_get_class(p), wp); } return spelltab.st_isw[c]; } // Returns true if word class indicates a word character. // Only for characters above 255. // Unicode subscript and superscript are not considered word characters. // See also utf_class() in mbyte.c. static bool spell_mb_isword_class(int cl, const win_T *wp) FUNC_ATTR_PURE FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT { if (wp->w_s->b_cjk) // East Asian characters are not considered word characters. return cl == 2 || cl == 0x2800; return cl >= 2 && cl != 0x2070 && cl != 0x2080 && cl != 3; } // Returns true if "p" points to a word character. // Wide version of spell_iswordp(). static bool spell_iswordp_w(const int *p, const win_T *wp) FUNC_ATTR_NONNULL_ALL { const int *s; if (*p < 256 ? wp->w_s->b_spell_ismw[*p] : (wp->w_s->b_spell_ismw_mb != NULL && vim_strchr(wp->w_s->b_spell_ismw_mb, *p) != NULL)) s = p + 1; else s = p; if (*s > 255) { return spell_mb_isword_class(utf_class(*s), wp); } return spelltab.st_isw[*s]; } // Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated. // Uses the character definitions from the .spl file. // When using a multi-byte 'encoding' the length may change! // Returns FAIL when something wrong. int spell_casefold(const win_T *wp, char_u *str, int len, char_u *buf, int buflen) FUNC_ATTR_NONNULL_ALL { if (len >= buflen) { buf[0] = NUL; return FAIL; // result will not fit } int outi = 0; // Fold one character at a time. for (char_u *p = str; p < str + len; ) { if (outi + MB_MAXBYTES > buflen) { buf[outi] = NUL; return FAIL; } int c = mb_cptr2char_adv((const char_u **)&p); // Exception: greek capital sigma 0x03A3 folds to 0x03C3, except // when it is the last character in a word, then it folds to // 0x03C2. if (c == 0x03a3 || c == 0x03c2) { if (p == str + len || !spell_iswordp(p, wp)) { c = 0x03c2; } else { c = 0x03c3; } } else { c = SPELL_TOFOLD(c); } outi += utf_char2bytes(c, buf + outi); } buf[outi] = NUL; return OK; } // values for sps_flags #define SPS_BEST 1 #define SPS_FAST 2 #define SPS_DOUBLE 4 static int sps_flags = SPS_BEST; // flags from 'spellsuggest' static int sps_limit = 9999; // max nr of suggestions given // Check the 'spellsuggest' option. Return FAIL if it's wrong. // Sets "sps_flags" and "sps_limit". int spell_check_sps(void) { char_u *p; char_u *s; char_u buf[MAXPATHL]; int f; sps_flags = 0; sps_limit = 9999; for (p = p_sps; *p != NUL; ) { copy_option_part(&p, buf, MAXPATHL, ","); f = 0; if (ascii_isdigit(*buf)) { s = buf; sps_limit = getdigits_int(&s, true, 0); if (*s != NUL && !ascii_isdigit(*s)) { f = -1; } } else if (STRCMP(buf, "best") == 0) { f = SPS_BEST; } else if (STRCMP(buf, "fast") == 0) { f = SPS_FAST; } else if (STRCMP(buf, "double") == 0) { f = SPS_DOUBLE; } else if (STRNCMP(buf, "expr:", 5) != 0 && STRNCMP(buf, "file:", 5) != 0) { f = -1; } if (f == -1 || (sps_flags != 0 && f != 0)) { sps_flags = SPS_BEST; sps_limit = 9999; return FAIL; } if (f != 0) sps_flags = f; } if (sps_flags == 0) sps_flags = SPS_BEST; return OK; } // "z=": Find badly spelled word under or after the cursor. // Give suggestions for the properly spelled word. // In Visual mode use the highlighted word as the bad word. // When "count" is non-zero use that suggestion. void spell_suggest(int count) { char_u *line; pos_T prev_cursor = curwin->w_cursor; char_u wcopy[MAXWLEN + 2]; char_u *p; int c; suginfo_T sug; suggest_T *stp; int mouse_used; int need_cap; int limit; int selected = count; int badlen = 0; int msg_scroll_save = msg_scroll; const int wo_spell_save = curwin->w_p_spell; if (!curwin->w_p_spell) { did_set_spelllang(curwin); curwin->w_p_spell = true; } if (*curwin->w_s->b_p_spl == NUL) { EMSG(_(e_no_spell)); return; } if (VIsual_active) { // Use the Visually selected text as the bad word. But reject // a multi-line selection. if (curwin->w_cursor.lnum != VIsual.lnum) { vim_beep(BO_SPELL); return; } badlen = (int)curwin->w_cursor.col - (int)VIsual.col; if (badlen < 0) { badlen = -badlen; } else { curwin->w_cursor.col = VIsual.col; } badlen++; end_visual_mode(); } else // Find the start of the badly spelled word. if (spell_move_to(curwin, FORWARD, true, true, NULL) == 0 || curwin->w_cursor.col > prev_cursor.col) { // No bad word or it starts after the cursor: use the word under the // cursor. curwin->w_cursor = prev_cursor; line = get_cursor_line_ptr(); p = line + curwin->w_cursor.col; // Backup to before start of word. while (p > line && spell_iswordp_nmw(p, curwin)) { MB_PTR_BACK(line, p); } // Forward to start of word. while (*p != NUL && !spell_iswordp_nmw(p, curwin)) { MB_PTR_ADV(p); } if (!spell_iswordp_nmw(p, curwin)) { // No word found. beep_flush(); return; } curwin->w_cursor.col = (colnr_T)(p - line); } // Get the word and its length. // Figure out if the word should be capitalised. need_cap = check_need_cap(curwin->w_cursor.lnum, curwin->w_cursor.col); // Make a copy of current line since autocommands may free the line. line = vim_strsave(get_cursor_line_ptr()); // Get the list of suggestions. Limit to 'lines' - 2 or the number in // 'spellsuggest', whatever is smaller. if (sps_limit > (int)Rows - 2) limit = (int)Rows - 2; else limit = sps_limit; spell_find_suggest(line + curwin->w_cursor.col, badlen, &sug, limit, true, need_cap, true); if (GA_EMPTY(&sug.su_ga)) MSG(_("Sorry, no suggestions")); else if (count > 0) { if (count > sug.su_ga.ga_len) smsg(_("Sorry, only %" PRId64 " suggestions"), (int64_t)sug.su_ga.ga_len); } else { // When 'rightleft' is set the list is drawn right-left. cmdmsg_rl = curwin->w_p_rl; if (cmdmsg_rl) msg_col = Columns - 1; // List the suggestions. msg_start(); msg_row = Rows - 1; // for when 'cmdheight' > 1 lines_left = Rows; // avoid more prompt vim_snprintf((char *)IObuff, IOSIZE, _("Change \"%.*s\" to:"), sug.su_badlen, sug.su_badptr); if (cmdmsg_rl && STRNCMP(IObuff, "Change", 6) == 0) { // And now the rabbit from the high hat: Avoid showing the // untranslated message rightleft. vim_snprintf((char *)IObuff, IOSIZE, ":ot \"%.*s\" egnahC", sug.su_badlen, sug.su_badptr); } msg_puts((const char *)IObuff); msg_clr_eos(); msg_putchar('\n'); msg_scroll = TRUE; for (int i = 0; i < sug.su_ga.ga_len; ++i) { stp = &SUG(sug.su_ga, i); // The suggested word may replace only part of the bad word, add // the not replaced part. STRLCPY(wcopy, stp->st_word, MAXWLEN + 1); if (sug.su_badlen > stp->st_orglen) STRLCPY(wcopy + stp->st_wordlen, sug.su_badptr + stp->st_orglen, sug.su_badlen - stp->st_orglen + 1); vim_snprintf((char *)IObuff, IOSIZE, "%2d", i + 1); if (cmdmsg_rl) { rl_mirror(IObuff); } msg_puts((const char *)IObuff); vim_snprintf((char *)IObuff, IOSIZE, " \"%s\"", wcopy); msg_puts((const char *)IObuff); // The word may replace more than "su_badlen". if (sug.su_badlen < stp->st_orglen) { vim_snprintf((char *)IObuff, IOSIZE, _(" < \"%.*s\""), stp->st_orglen, sug.su_badptr); msg_puts((const char *)IObuff); } if (p_verbose > 0) { // Add the score. if (sps_flags & (SPS_DOUBLE | SPS_BEST)) vim_snprintf((char *)IObuff, IOSIZE, " (%s%d - %d)", stp->st_salscore ? "s " : "", stp->st_score, stp->st_altscore); else vim_snprintf((char *)IObuff, IOSIZE, " (%d)", stp->st_score); if (cmdmsg_rl) // Mirror the numbers, but keep the leading space. rl_mirror(IObuff + 1); msg_advance(30); msg_puts((const char *)IObuff); } msg_putchar('\n'); } cmdmsg_rl = FALSE; msg_col = 0; // Ask for choice. selected = prompt_for_number(&mouse_used); if (ui_has(kUIMessages)) { ui_call_msg_clear(); } if (mouse_used) { selected -= lines_left; } lines_left = Rows; // avoid more prompt // don't delay for 'smd' in normal_cmd() msg_scroll = msg_scroll_save; } if (selected > 0 && selected <= sug.su_ga.ga_len && u_save_cursor() == OK) { // Save the from and to text for :spellrepall. XFREE_CLEAR(repl_from); XFREE_CLEAR(repl_to); stp = &SUG(sug.su_ga, selected - 1); if (sug.su_badlen > stp->st_orglen) { // Replacing less than "su_badlen", append the remainder to // repl_to. repl_from = vim_strnsave(sug.su_badptr, sug.su_badlen); vim_snprintf((char *)IObuff, IOSIZE, "%s%.*s", stp->st_word, sug.su_badlen - stp->st_orglen, sug.su_badptr + stp->st_orglen); repl_to = vim_strsave(IObuff); } else { // Replacing su_badlen or more, use the whole word. repl_from = vim_strnsave(sug.su_badptr, stp->st_orglen); repl_to = vim_strsave(stp->st_word); } // Replace the word. p = xmalloc(STRLEN(line) - stp->st_orglen + stp->st_wordlen + 1); c = (int)(sug.su_badptr - line); memmove(p, line, c); STRCPY(p + c, stp->st_word); STRCAT(p, sug.su_badptr + stp->st_orglen); // For redo we use a change-word command. ResetRedobuff(); AppendToRedobuff("ciw"); AppendToRedobuffLit(p + c, stp->st_wordlen + sug.su_badlen - stp->st_orglen); AppendCharToRedobuff(ESC); // "p" may be freed here ml_replace(curwin->w_cursor.lnum, p, false); curwin->w_cursor.col = c; changed_bytes(curwin->w_cursor.lnum, c); } else curwin->w_cursor = prev_cursor; spell_find_cleanup(&sug); xfree(line); curwin->w_p_spell = wo_spell_save; } // Check if the word at line "lnum" column "col" is required to start with a // capital. This uses 'spellcapcheck' of the current buffer. static bool check_need_cap(linenr_T lnum, colnr_T col) { bool need_cap = false; char_u *line; char_u *line_copy = NULL; char_u *p; colnr_T endcol; regmatch_T regmatch; if (curwin->w_s->b_cap_prog == NULL) return false; line = get_cursor_line_ptr(); endcol = 0; if (getwhitecols(line) >= (int)col) { // At start of line, check if previous line is empty or sentence // ends there. if (lnum == 1) need_cap = true; else { line = ml_get(lnum - 1); if (*skipwhite(line) == NUL) need_cap = true; else { // Append a space in place of the line break. line_copy = concat_str(line, (char_u *)" "); line = line_copy; endcol = (colnr_T)STRLEN(line); } } } else { endcol = col; } if (endcol > 0) { // Check if sentence ends before the bad word. regmatch.regprog = curwin->w_s->b_cap_prog; regmatch.rm_ic = FALSE; p = line + endcol; for (;; ) { MB_PTR_BACK(line, p); if (p == line || spell_iswordp_nmw(p, curwin)) { break; } if (vim_regexec(®match, p, 0) && regmatch.endp[0] == line + endcol) { need_cap = true; break; } } curwin->w_s->b_cap_prog = regmatch.regprog; } xfree(line_copy); return need_cap; } // ":spellrepall" void ex_spellrepall(exarg_T *eap) { pos_T pos = curwin->w_cursor; char_u *frompat; int addlen; char_u *line; char_u *p; bool save_ws = p_ws; linenr_T prev_lnum = 0; if (repl_from == NULL || repl_to == NULL) { EMSG(_("E752: No previous spell replacement")); return; } addlen = (int)(STRLEN(repl_to) - STRLEN(repl_from)); frompat = xmalloc(STRLEN(repl_from) + 7); sprintf((char *)frompat, "\\V\\<%s\\>", repl_from); p_ws = false; sub_nsubs = 0; sub_nlines = 0; curwin->w_cursor.lnum = 0; while (!got_int) { if (do_search(NULL, '/', '/', frompat, 1L, SEARCH_KEEP, NULL) == 0 || u_save_cursor() == FAIL) { break; } // Only replace when the right word isn't there yet. This happens // when changing "etc" to "etc.". line = get_cursor_line_ptr(); if (addlen <= 0 || STRNCMP(line + curwin->w_cursor.col, repl_to, STRLEN(repl_to)) != 0) { p = xmalloc(STRLEN(line) + addlen + 1); memmove(p, line, curwin->w_cursor.col); STRCPY(p + curwin->w_cursor.col, repl_to); STRCAT(p, line + curwin->w_cursor.col + STRLEN(repl_from)); ml_replace(curwin->w_cursor.lnum, p, false); changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col); if (curwin->w_cursor.lnum != prev_lnum) { ++sub_nlines; prev_lnum = curwin->w_cursor.lnum; } ++sub_nsubs; } curwin->w_cursor.col += (colnr_T)STRLEN(repl_to); } p_ws = save_ws; curwin->w_cursor = pos; xfree(frompat); if (sub_nsubs == 0) EMSG2(_("E753: Not found: %s"), repl_from); else do_sub_msg(false); } // Find spell suggestions for "word". Return them in the growarray "*gap" as // a list of allocated strings. void spell_suggest_list ( garray_T *gap, char_u *word, int maxcount, // maximum nr of suggestions bool need_cap, // 'spellcapcheck' matched bool interactive ) { suginfo_T sug; suggest_T *stp; char_u *wcopy; spell_find_suggest(word, 0, &sug, maxcount, false, need_cap, interactive); // Make room in "gap". ga_init(gap, sizeof(char_u *), sug.su_ga.ga_len + 1); ga_grow(gap, sug.su_ga.ga_len); for (int i = 0; i < sug.su_ga.ga_len; ++i) { stp = &SUG(sug.su_ga, i); // The suggested word may replace only part of "word", add the not // replaced part. wcopy = xmalloc(stp->st_wordlen + STRLEN(sug.su_badptr + stp->st_orglen) + 1); STRCPY(wcopy, stp->st_word); STRCPY(wcopy + stp->st_wordlen, sug.su_badptr + stp->st_orglen); ((char_u **)gap->ga_data)[gap->ga_len++] = wcopy; } spell_find_cleanup(&sug); } // Find spell suggestions for the word at the start of "badptr". // Return the suggestions in "su->su_ga". // The maximum number of suggestions is "maxcount". // Note: does use info for the current window. // This is based on the mechanisms of Aspell, but completely reimplemented. static void spell_find_suggest ( char_u *badptr, int badlen, // length of bad word or 0 if unknown suginfo_T *su, int maxcount, bool banbadword, // don't include badword in suggestions bool need_cap, // word should start with capital bool interactive ) { hlf_T attr = HLF_COUNT; char_u buf[MAXPATHL]; char_u *p; bool do_combine = false; char_u *sps_copy; static bool expr_busy = false; int c; langp_T *lp; bool did_intern = false; // Set the info in "*su". memset(su, 0, sizeof(suginfo_T)); ga_init(&su->su_ga, (int)sizeof(suggest_T), 10); ga_init(&su->su_sga, (int)sizeof(suggest_T), 10); if (*badptr == NUL) return; hash_init(&su->su_banned); su->su_badptr = badptr; if (badlen != 0) su->su_badlen = badlen; else { size_t tmplen = spell_check(curwin, su->su_badptr, &attr, NULL, false); assert(tmplen <= INT_MAX); su->su_badlen = (int)tmplen; } su->su_maxcount = maxcount; su->su_maxscore = SCORE_MAXINIT; if (su->su_badlen >= MAXWLEN) su->su_badlen = MAXWLEN - 1; // just in case STRLCPY(su->su_badword, su->su_badptr, su->su_badlen + 1); (void)spell_casefold(curwin, su->su_badptr, su->su_badlen, su->su_fbadword, MAXWLEN); // TODO(vim): make this work if the case-folded text is longer than the // original text. Currently an illegal byte causes wrong pointer // computations. su->su_fbadword[su->su_badlen] = NUL; // get caps flags for bad word su->su_badflags = badword_captype(su->su_badptr, su->su_badptr + su->su_badlen); if (need_cap) su->su_badflags |= WF_ONECAP; // Find the default language for sound folding. We simply use the first // one in 'spelllang' that supports sound folding. That's good for when // using multiple files for one language, it's not that bad when mixing // languages (e.g., "pl,en"). for (int i = 0; i < curbuf->b_s.b_langp.ga_len; ++i) { lp = LANGP_ENTRY(curbuf->b_s.b_langp, i); if (lp->lp_sallang != NULL) { su->su_sallang = lp->lp_sallang; break; } } // Soundfold the bad word with the default sound folding, so that we don't // have to do this many times. if (su->su_sallang != NULL) spell_soundfold(su->su_sallang, su->su_fbadword, true, su->su_sal_badword); // If the word is not capitalised and spell_check() doesn't consider the // word to be bad then it might need to be capitalised. Add a suggestion // for that. c = PTR2CHAR(su->su_badptr); if (!SPELL_ISUPPER(c) && attr == HLF_COUNT) { make_case_word(su->su_badword, buf, WF_ONECAP); add_suggestion(su, &su->su_ga, buf, su->su_badlen, SCORE_ICASE, 0, true, su->su_sallang, false); } // Ban the bad word itself. It may appear in another region. if (banbadword) add_banned(su, su->su_badword); // Make a copy of 'spellsuggest', because the expression may change it. sps_copy = vim_strsave(p_sps); // Loop over the items in 'spellsuggest'. for (p = sps_copy; *p != NUL; ) { copy_option_part(&p, buf, MAXPATHL, ","); if (STRNCMP(buf, "expr:", 5) == 0) { // Evaluate an expression. Skip this when called recursively, // when using spellsuggest() in the expression. if (!expr_busy) { expr_busy = true; spell_suggest_expr(su, buf + 5); expr_busy = false; } } else if (STRNCMP(buf, "file:", 5) == 0) { // Use list of suggestions in a file. spell_suggest_file(su, buf + 5); } else if (!did_intern) { // Use internal method once. spell_suggest_intern(su, interactive); if (sps_flags & SPS_DOUBLE) { do_combine = true; } did_intern = true; } } xfree(sps_copy); if (do_combine) // Combine the two list of suggestions. This must be done last, // because sorting changes the order again. score_combine(su); } // Find suggestions by evaluating expression "expr". static void spell_suggest_expr(suginfo_T *su, char_u *expr) { int score; const char *p; // The work is split up in a few parts to avoid having to export // suginfo_T. // First evaluate the expression and get the resulting list. list_T *const list = eval_spell_expr(su->su_badword, expr); if (list != NULL) { // Loop over the items in the list. TV_LIST_ITER(list, li, { if (TV_LIST_ITEM_TV(li)->v_type == VAR_LIST) { // Get the word and the score from the items. score = get_spellword(TV_LIST_ITEM_TV(li)->vval.v_list, &p); if (score >= 0 && score <= su->su_maxscore) { add_suggestion(su, &su->su_ga, (const char_u *)p, su->su_badlen, score, 0, true, su->su_sallang, false); } } }); tv_list_unref(list); } // Remove bogus suggestions, sort and truncate at "maxcount". check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); } // Find suggestions in file "fname". Used for "file:" in 'spellsuggest'. static void spell_suggest_file(suginfo_T *su, char_u *fname) { FILE *fd; char_u line[MAXWLEN * 2]; char_u *p; int len; char_u cword[MAXWLEN]; // Open the file. fd = os_fopen((char *)fname, "r"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return; } // Read it line by line. while (!vim_fgets(line, MAXWLEN * 2, fd) && !got_int) { line_breakcheck(); p = vim_strchr(line, '/'); if (p == NULL) continue; // No Tab found, just skip the line. *p++ = NUL; if (STRICMP(su->su_badword, line) == 0) { // Match! Isolate the good word, until CR or NL. for (len = 0; p[len] >= ' '; ++len) ; p[len] = NUL; // If the suggestion doesn't have specific case duplicate the case // of the bad word. if (captype(p, NULL) == 0) { make_case_word(p, cword, su->su_badflags); p = cword; } add_suggestion(su, &su->su_ga, p, su->su_badlen, SCORE_FILE, 0, true, su->su_sallang, false); } } fclose(fd); // Remove bogus suggestions, sort and truncate at "maxcount". check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); } // Find suggestions for the internal method indicated by "sps_flags". static void spell_suggest_intern(suginfo_T *su, bool interactive) { // Load the .sug file(s) that are available and not done yet. suggest_load_files(); // 1. Try special cases, such as repeating a word: "the the" -> "the". // // Set a maximum score to limit the combination of operations that is // tried. suggest_try_special(su); // 2. Try inserting/deleting/swapping/changing a letter, use REP entries // from the .aff file and inserting a space (split the word). suggest_try_change(su); // For the resulting top-scorers compute the sound-a-like score. if (sps_flags & SPS_DOUBLE) score_comp_sal(su); // 3. Try finding sound-a-like words. if ((sps_flags & SPS_FAST) == 0) { if (sps_flags & SPS_BEST) // Adjust the word score for the suggestions found so far for how // they sounds like. rescore_suggestions(su); // While going through the soundfold tree "su_maxscore" is the score // for the soundfold word, limits the changes that are being tried, // and "su_sfmaxscore" the rescored score, which is set by // cleanup_suggestions(). // First find words with a small edit distance, because this is much // faster and often already finds the top-N suggestions. If we didn't // find many suggestions try again with a higher edit distance. // "sl_sounddone" is used to avoid doing the same word twice. suggest_try_soundalike_prep(); su->su_maxscore = SCORE_SFMAX1; su->su_sfmaxscore = SCORE_MAXINIT * 3; suggest_try_soundalike(su); if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) { // We didn't find enough matches, try again, allowing more // changes to the soundfold word. su->su_maxscore = SCORE_SFMAX2; suggest_try_soundalike(su); if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) { // Still didn't find enough matches, try again, allowing even // more changes to the soundfold word. su->su_maxscore = SCORE_SFMAX3; suggest_try_soundalike(su); } } su->su_maxscore = su->su_sfmaxscore; suggest_try_soundalike_finish(); } // When CTRL-C was hit while searching do show the results. Only clear // got_int when using a command, not for spellsuggest(). os_breakcheck(); if (interactive && got_int) { (void)vgetc(); got_int = FALSE; } if ((sps_flags & SPS_DOUBLE) == 0 && su->su_ga.ga_len != 0) { if (sps_flags & SPS_BEST) // Adjust the word score for how it sounds like. rescore_suggestions(su); // Remove bogus suggestions, sort and truncate at "maxcount". check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); } } // Free the info put in "*su" by spell_find_suggest(). static void spell_find_cleanup(suginfo_T *su) { # define FREE_SUG_WORD(sug) xfree(sug->st_word) // Free the suggestions. GA_DEEP_CLEAR(&su->su_ga, suggest_T, FREE_SUG_WORD); GA_DEEP_CLEAR(&su->su_sga, suggest_T, FREE_SUG_WORD); // Free the banned words. hash_clear_all(&su->su_banned, 0); } /// Make a copy of "word", with the first letter upper or lower cased, to /// "wcopy[MAXWLEN]". "word" must not be empty. /// The result is NUL terminated. /// /// @param[in] word source string to copy /// @param[in,out] wcopy copied string, with case of first letter changed /// @param[in] upper True to upper case, otherwise lower case void onecap_copy(char_u *word, char_u *wcopy, bool upper) { char_u *p = word; int c = mb_cptr2char_adv((const char_u **)&p); if (upper) { c = SPELL_TOUPPER(c); } else { c = SPELL_TOFOLD(c); } int l = utf_char2bytes(c, wcopy); STRLCPY(wcopy + l, p, MAXWLEN - l); } // Make a copy of "word" with all the letters upper cased into // "wcopy[MAXWLEN]". The result is NUL terminated. static void allcap_copy(char_u *word, char_u *wcopy) { char_u *d = wcopy; for (char_u *s = word; *s != NUL; ) { int c = mb_cptr2char_adv((const char_u **)&s); if (c == 0xdf) { c = 'S'; if (d - wcopy >= MAXWLEN - 1) break; *d++ = c; } else c = SPELL_TOUPPER(c); if (d - wcopy >= MAXWLEN - MB_MAXBYTES) { break; } d += utf_char2bytes(c, d); } *d = NUL; } // Try finding suggestions by recognizing specific situations. static void suggest_try_special(suginfo_T *su) { char_u *p; size_t len; int c; char_u word[MAXWLEN]; // Recognize a word that is repeated: "the the". p = skiptowhite(su->su_fbadword); len = p - su->su_fbadword; p = skipwhite(p); if (STRLEN(p) == len && STRNCMP(su->su_fbadword, p, len) == 0) { // Include badflags: if the badword is onecap or allcap // use that for the goodword too: "The the" -> "The". c = su->su_fbadword[len]; su->su_fbadword[len] = NUL; make_case_word(su->su_fbadword, word, su->su_badflags); su->su_fbadword[len] = c; // Give a soundalike score of 0, compute the score as if deleting one // character. add_suggestion(su, &su->su_ga, word, su->su_badlen, RESCORE(SCORE_REP, 0), 0, true, su->su_sallang, false); } } // Measure how much time is spent in each state. // Output is dumped in "suggestprof". #ifdef SUGGEST_PROFILE proftime_T current; proftime_T total; proftime_T times[STATE_FINAL + 1]; long counts[STATE_FINAL + 1]; static void prof_init(void) { for (int i = 0; i <= STATE_FINAL; i++) { profile_zero(×[i]); counts[i] = 0; } profile_start(¤t); profile_start(&total); } // call before changing state static void prof_store(state_T state) { profile_end(¤t); profile_add(×[state], ¤t); counts[state]++; profile_start(¤t); } # define PROF_STORE(state) prof_store(state); static void prof_report(char *name) { FILE *fd = fopen("suggestprof", "a"); profile_end(&total); fprintf(fd, "-----------------------\n"); fprintf(fd, "%s: %s\n", name, profile_msg(&total)); for (int i = 0; i <= STATE_FINAL; i++) { fprintf(fd, "%d: %s ("%" PRId64)\n", i, profile_msg(×[i]), counts[i]); } fclose(fd); } #else # define PROF_STORE(state) #endif // Try finding suggestions by adding/removing/swapping letters. static void suggest_try_change(suginfo_T *su) { char_u fword[MAXWLEN]; // copy of the bad word, case-folded int n; char_u *p; langp_T *lp; // We make a copy of the case-folded bad word, so that we can modify it // to find matches (esp. REP items). Append some more text, changing // chars after the bad word may help. STRCPY(fword, su->su_fbadword); n = (int)STRLEN(fword); p = su->su_badptr + su->su_badlen; (void)spell_casefold(curwin, p, (int)STRLEN(p), fword + n, MAXWLEN - n); for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); // If reloading a spell file fails it's still in the list but // everything has been cleared. if (lp->lp_slang->sl_fbyts == NULL) continue; // Try it for this language. Will add possible suggestions. // #ifdef SUGGEST_PROFILE prof_init(); #endif suggest_trie_walk(su, lp, fword, false); #ifdef SUGGEST_PROFILE prof_report("try_change"); #endif } } // Check the maximum score, if we go over it we won't try this change. #define TRY_DEEPER(su, stack, depth, add) \ (stack[depth].ts_score + (add) < su->su_maxscore) // Try finding suggestions by adding/removing/swapping letters. // // This uses a state machine. At each node in the tree we try various // operations. When trying if an operation works "depth" is increased and the // stack[] is used to store info. This allows combinations, thus insert one // character, replace one and delete another. The number of changes is // limited by su->su_maxscore. // // After implementing this I noticed an article by Kemal Oflazer that // describes something similar: "Error-tolerant Finite State Recognition with // Applications to Morphological Analysis and Spelling Correction" (1996). // The implementation in the article is simplified and requires a stack of // unknown depth. The implementation here only needs a stack depth equal to // the length of the word. // // This is also used for the sound-folded word, "soundfold" is true then. // The mechanism is the same, but we find a match with a sound-folded word // that comes from one or more original words. Each of these words may be // added, this is done by add_sound_suggest(). // Don't use: // the prefix tree or the keep-case tree // "su->su_badlen" // anything to do with upper and lower case // anything to do with word or non-word characters ("spell_iswordp()") // banned words // word flags (rare, region, compounding) // word splitting for now // "similar_chars()" // use "slang->sl_repsal" instead of "lp->lp_replang->sl_rep" static void suggest_trie_walk(suginfo_T *su, langp_T *lp, char_u *fword, bool soundfold) { char_u tword[MAXWLEN]; // good word collected so far trystate_T stack[MAXWLEN]; char_u preword[MAXWLEN * 3] = { 0 }; // word found with proper case; // concatenation of prefix compound // words and split word. NUL terminated // when going deeper but not when coming // back. char_u compflags[MAXWLEN]; // compound flags, one for each word trystate_T *sp; int newscore; int score; char_u *byts, *fbyts, *pbyts; idx_T *idxs, *fidxs, *pidxs; int depth; int c, c2, c3; int n = 0; int flags; garray_T *gap; idx_T arridx; int len; char_u *p; fromto_T *ftp; int fl = 0, tl; int repextra = 0; // extra bytes in fword[] from REP item slang_T *slang = lp->lp_slang; int fword_ends; bool goodword_ends; #ifdef DEBUG_TRIEWALK // Stores the name of the change made at each level. char_u changename[MAXWLEN][80]; #endif int breakcheckcount = 1000; bool compound_ok; // Go through the whole case-fold tree, try changes at each node. // "tword[]" contains the word collected from nodes in the tree. // "fword[]" the word we are trying to match with (initially the bad // word). depth = 0; sp = &stack[0]; memset(sp, 0, sizeof(trystate_T)); // -V512 sp->ts_curi = 1; if (soundfold) { // Going through the soundfold tree. byts = fbyts = slang->sl_sbyts; idxs = fidxs = slang->sl_sidxs; pbyts = NULL; pidxs = NULL; sp->ts_prefixdepth = PFD_NOPREFIX; sp->ts_state = STATE_START; } else { // When there are postponed prefixes we need to use these first. At // the end of the prefix we continue in the case-fold tree. fbyts = slang->sl_fbyts; fidxs = slang->sl_fidxs; pbyts = slang->sl_pbyts; pidxs = slang->sl_pidxs; if (pbyts != NULL) { byts = pbyts; idxs = pidxs; sp->ts_prefixdepth = PFD_PREFIXTREE; sp->ts_state = STATE_NOPREFIX; // try without prefix first } else { byts = fbyts; idxs = fidxs; sp->ts_prefixdepth = PFD_NOPREFIX; sp->ts_state = STATE_START; } } // Loop to find all suggestions. At each round we either: // - For the current state try one operation, advance "ts_curi", // increase "depth". // - When a state is done go to the next, set "ts_state". // - When all states are tried decrease "depth". while (depth >= 0 && !got_int) { sp = &stack[depth]; switch (sp->ts_state) { case STATE_START: case STATE_NOPREFIX: // Start of node: Deal with NUL bytes, which means // tword[] may end here. arridx = sp->ts_arridx; // current node in the tree len = byts[arridx]; // bytes in this node arridx += sp->ts_curi; // index of current byte if (sp->ts_prefixdepth == PFD_PREFIXTREE) { // Skip over the NUL bytes, we use them later. for (n = 0; n < len && byts[arridx + n] == 0; ++n) ; sp->ts_curi += n; // Always past NUL bytes now. n = (int)sp->ts_state; PROF_STORE(sp->ts_state) sp->ts_state = STATE_ENDNUL; sp->ts_save_badflags = su->su_badflags; // At end of a prefix or at start of prefixtree: check for // following word. if (byts[arridx] == 0 || n == (int)STATE_NOPREFIX) { // Set su->su_badflags to the caps type at this position. // Use the caps type until here for the prefix itself. n = nofold_len(fword, sp->ts_fidx, su->su_badptr); flags = badword_captype(su->su_badptr, su->su_badptr + n); su->su_badflags = badword_captype(su->su_badptr + n, su->su_badptr + su->su_badlen); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "prefix"); #endif go_deeper(stack, depth, 0); ++depth; sp = &stack[depth]; sp->ts_prefixdepth = depth - 1; byts = fbyts; idxs = fidxs; sp->ts_arridx = 0; // Move the prefix to preword[] with the right case // and make find_keepcap_word() works. tword[sp->ts_twordlen] = NUL; make_case_word(tword + sp->ts_splitoff, preword + sp->ts_prewordlen, flags); sp->ts_prewordlen = (char_u)STRLEN(preword); sp->ts_splitoff = sp->ts_twordlen; } break; } if (sp->ts_curi > len || byts[arridx] != 0) { // Past bytes in node and/or past NUL bytes. PROF_STORE(sp->ts_state) sp->ts_state = STATE_ENDNUL; sp->ts_save_badflags = su->su_badflags; break; } // End of word in tree. ++sp->ts_curi; // eat one NUL byte flags = (int)idxs[arridx]; // Skip words with the NOSUGGEST flag. if (flags & WF_NOSUGGEST) break; fword_ends = (fword[sp->ts_fidx] == NUL || (soundfold ? ascii_iswhite(fword[sp->ts_fidx]) : !spell_iswordp(fword + sp->ts_fidx, curwin))); tword[sp->ts_twordlen] = NUL; if (sp->ts_prefixdepth <= PFD_NOTSPECIAL && (sp->ts_flags & TSF_PREFIXOK) == 0 && pbyts != NULL) { // There was a prefix before the word. Check that the prefix // can be used with this word. // Count the length of the NULs in the prefix. If there are // none this must be the first try without a prefix. n = stack[sp->ts_prefixdepth].ts_arridx; len = pbyts[n++]; for (c = 0; c < len && pbyts[n + c] == 0; ++c) ; if (c > 0) { c = valid_word_prefix(c, n, flags, tword + sp->ts_splitoff, slang, false); if (c == 0) break; // Use the WF_RARE flag for a rare prefix. if (c & WF_RAREPFX) flags |= WF_RARE; // Tricky: when checking for both prefix and compounding // we run into the prefix flag first. // Remember that it's OK, so that we accept the prefix // when arriving at a compound flag. sp->ts_flags |= TSF_PREFIXOK; } } // Check NEEDCOMPOUND: can't use word without compounding. Do try // appending another compound word below. if (sp->ts_complen == sp->ts_compsplit && fword_ends && (flags & WF_NEEDCOMP)) goodword_ends = false; else goodword_ends = true; p = NULL; compound_ok = true; if (sp->ts_complen > sp->ts_compsplit) { if (slang->sl_nobreak) { // There was a word before this word. When there was no // change in this word (it was correct) add the first word // as a suggestion. If this word was corrected too, we // need to check if a correct word follows. if (sp->ts_fidx - sp->ts_splitfidx == sp->ts_twordlen - sp->ts_splitoff && STRNCMP(fword + sp->ts_splitfidx, tword + sp->ts_splitoff, sp->ts_fidx - sp->ts_splitfidx) == 0) { preword[sp->ts_prewordlen] = NUL; newscore = score_wordcount_adj(slang, sp->ts_score, preword + sp->ts_prewordlen, sp->ts_prewordlen > 0); // Add the suggestion if the score isn't too bad. if (newscore <= su->su_maxscore) add_suggestion(su, &su->su_ga, preword, sp->ts_splitfidx - repextra, newscore, 0, false, lp->lp_sallang, false); break; } } else { // There was a compound word before this word. If this // word does not support compounding then give up // (splitting is tried for the word without compound // flag). if (((unsigned)flags >> 24) == 0 || sp->ts_twordlen - sp->ts_splitoff < slang->sl_compminlen) { break; } // For multi-byte chars check character length against // COMPOUNDMIN. if (slang->sl_compminlen > 0 && mb_charlen(tword + sp->ts_splitoff) < slang->sl_compminlen) { break; } compflags[sp->ts_complen] = ((unsigned)flags >> 24); compflags[sp->ts_complen + 1] = NUL; STRLCPY(preword + sp->ts_prewordlen, tword + sp->ts_splitoff, sp->ts_twordlen - sp->ts_splitoff + 1); // Verify CHECKCOMPOUNDPATTERN rules. if (match_checkcompoundpattern(preword, sp->ts_prewordlen, &slang->sl_comppat)) compound_ok = false; if (compound_ok) { p = preword; while (*skiptowhite(p) != NUL) p = skipwhite(skiptowhite(p)); if (fword_ends && !can_compound(slang, p, compflags + sp->ts_compsplit)) // Compound is not allowed. But it may still be // possible if we add another (short) word. compound_ok = false; } // Get pointer to last char of previous word. p = preword + sp->ts_prewordlen; MB_PTR_BACK(preword, p); } } // Form the word with proper case in preword. // If there is a word from a previous split, append. // For the soundfold tree don't change the case, simply append. if (soundfold) STRCPY(preword + sp->ts_prewordlen, tword + sp->ts_splitoff); else if (flags & WF_KEEPCAP) // Must find the word in the keep-case tree. find_keepcap_word(slang, tword + sp->ts_splitoff, preword + sp->ts_prewordlen); else { // Include badflags: If the badword is onecap or allcap // use that for the goodword too. But if the badword is // allcap and it's only one char long use onecap. c = su->su_badflags; if ((c & WF_ALLCAP) && su->su_badlen == (*mb_ptr2len)(su->su_badptr) ) c = WF_ONECAP; c |= flags; // When appending a compound word after a word character don't // use Onecap. if (p != NULL && spell_iswordp_nmw(p, curwin)) c &= ~WF_ONECAP; make_case_word(tword + sp->ts_splitoff, preword + sp->ts_prewordlen, c); } if (!soundfold) { // Don't use a banned word. It may appear again as a good // word, thus remember it. if (flags & WF_BANNED) { add_banned(su, preword + sp->ts_prewordlen); break; } if ((sp->ts_complen == sp->ts_compsplit && WAS_BANNED(su, preword + sp->ts_prewordlen)) || WAS_BANNED(su, preword)) { if (slang->sl_compprog == NULL) break; // the word so far was banned but we may try compounding goodword_ends = false; } } newscore = 0; if (!soundfold) { // soundfold words don't have flags if ((flags & WF_REGION) && (((unsigned)flags >> 16) & lp->lp_region) == 0) newscore += SCORE_REGION; if (flags & WF_RARE) newscore += SCORE_RARE; if (!spell_valid_case(su->su_badflags, captype(preword + sp->ts_prewordlen, NULL))) newscore += SCORE_ICASE; } // TODO: how about splitting in the soundfold tree? if (fword_ends && goodword_ends && sp->ts_fidx >= sp->ts_fidxtry && compound_ok) { // The badword also ends: add suggestions. #ifdef DEBUG_TRIEWALK if (soundfold && STRCMP(preword, "smwrd") == 0) { int j; // print the stack of changes that brought us here smsg("------ %s -------", fword); for (j = 0; j < depth; ++j) smsg("%s", changename[j]); } #endif if (soundfold) { // For soundfolded words we need to find the original // words, the edit distance and then add them. add_sound_suggest(su, preword, sp->ts_score, lp); } else if (sp->ts_fidx > 0) { // Give a penalty when changing non-word char to word // char, e.g., "thes," -> "these". p = fword + sp->ts_fidx; MB_PTR_BACK(fword, p); if (!spell_iswordp(p, curwin)) { p = preword + STRLEN(preword); MB_PTR_BACK(preword, p); if (spell_iswordp(p, curwin)) { newscore += SCORE_NONWORD; } } // Give a bonus to words seen before. score = score_wordcount_adj(slang, sp->ts_score + newscore, preword + sp->ts_prewordlen, sp->ts_prewordlen > 0); // Add the suggestion if the score isn't too bad. if (score <= su->su_maxscore) { add_suggestion(su, &su->su_ga, preword, sp->ts_fidx - repextra, score, 0, false, lp->lp_sallang, false); if (su->su_badflags & WF_MIXCAP) { // We really don't know if the word should be // upper or lower case, add both. c = captype(preword, NULL); if (c == 0 || c == WF_ALLCAP) { make_case_word(tword + sp->ts_splitoff, preword + sp->ts_prewordlen, c == 0 ? WF_ALLCAP : 0); add_suggestion(su, &su->su_ga, preword, sp->ts_fidx - repextra, score + SCORE_ICASE, 0, false, lp->lp_sallang, false); } } } } } // Try word split and/or compounding. if ((sp->ts_fidx >= sp->ts_fidxtry || fword_ends) // Don't split in the middle of a character && (sp->ts_tcharlen == 0) ) { bool try_compound; int try_split; // If past the end of the bad word don't try a split. // Otherwise try changing the next word. E.g., find // suggestions for "the the" where the second "the" is // different. It's done like a split. // TODO: word split for soundfold words try_split = (sp->ts_fidx - repextra < su->su_badlen) && !soundfold; // Get here in several situations: // 1. The word in the tree ends: // If the word allows compounding try that. Otherwise try // a split by inserting a space. For both check that a // valid words starts at fword[sp->ts_fidx]. // For NOBREAK do like compounding to be able to check if // the next word is valid. // 2. The badword does end, but it was due to a change (e.g., // a swap). No need to split, but do check that the // following word is valid. // 3. The badword and the word in the tree end. It may still // be possible to compound another (short) word. try_compound = false; if (!soundfold && !slang->sl_nocompoundsugs && slang->sl_compprog != NULL && ((unsigned)flags >> 24) != 0 && sp->ts_twordlen - sp->ts_splitoff >= slang->sl_compminlen && (slang->sl_compminlen == 0 || mb_charlen(tword + sp->ts_splitoff) >= slang->sl_compminlen) && (slang->sl_compsylmax < MAXWLEN || sp->ts_complen + 1 - sp->ts_compsplit < slang->sl_compmax) && (can_be_compound(sp, slang, compflags, ((unsigned)flags >> 24)))) { try_compound = true; compflags[sp->ts_complen] = ((unsigned)flags >> 24); compflags[sp->ts_complen + 1] = NUL; } // For NOBREAK we never try splitting, it won't make any word // valid. if (slang->sl_nobreak && !slang->sl_nocompoundsugs) { try_compound = true; } else if (!fword_ends && try_compound && (sp->ts_flags & TSF_DIDSPLIT) == 0) { // If we could add a compound word, and it's also possible to // split at this point, do the split first and set // TSF_DIDSPLIT to avoid doing it again. try_compound = false; sp->ts_flags |= TSF_DIDSPLIT; --sp->ts_curi; // do the same NUL again compflags[sp->ts_complen] = NUL; } else { sp->ts_flags &= ~TSF_DIDSPLIT; } if (try_split || try_compound) { if (!try_compound && (!fword_ends || !goodword_ends)) { // If we're going to split need to check that the // words so far are valid for compounding. If there // is only one word it must not have the NEEDCOMPOUND // flag. if (sp->ts_complen == sp->ts_compsplit && (flags & WF_NEEDCOMP)) break; p = preword; while (*skiptowhite(p) != NUL) p = skipwhite(skiptowhite(p)); if (sp->ts_complen > sp->ts_compsplit && !can_compound(slang, p, compflags + sp->ts_compsplit)) break; if (slang->sl_nosplitsugs) newscore += SCORE_SPLIT_NO; else newscore += SCORE_SPLIT; // Give a bonus to words seen before. newscore = score_wordcount_adj(slang, newscore, preword + sp->ts_prewordlen, true); } if (TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK if (!try_compound && !fword_ends) sprintf(changename[depth], "%.*s-%s: split", sp->ts_twordlen, tword, fword + sp->ts_fidx); else sprintf(changename[depth], "%.*s-%s: compound", sp->ts_twordlen, tword, fword + sp->ts_fidx); #endif // Save things to be restored at STATE_SPLITUNDO. sp->ts_save_badflags = su->su_badflags; PROF_STORE(sp->ts_state) sp->ts_state = STATE_SPLITUNDO; ++depth; sp = &stack[depth]; // Append a space to preword when splitting. if (!try_compound && !fword_ends) STRCAT(preword, " "); sp->ts_prewordlen = (char_u)STRLEN(preword); sp->ts_splitoff = sp->ts_twordlen; sp->ts_splitfidx = sp->ts_fidx; // If the badword has a non-word character at this // position skip it. That means replacing the // non-word character with a space. Always skip a // character when the word ends. But only when the // good word can end. if (((!try_compound && !spell_iswordp_nmw(fword + sp->ts_fidx, curwin)) || fword_ends) && fword[sp->ts_fidx] != NUL && goodword_ends) { int l; l = utfc_ptr2len(fword + sp->ts_fidx); if (fword_ends) { // Copy the skipped character to preword. memmove(preword + sp->ts_prewordlen, fword + sp->ts_fidx, l); sp->ts_prewordlen += l; preword[sp->ts_prewordlen] = NUL; } else sp->ts_score -= SCORE_SPLIT - SCORE_SUBST; sp->ts_fidx += l; } // When compounding include compound flag in // compflags[] (already set above). When splitting we // may start compounding over again. if (try_compound) ++sp->ts_complen; else sp->ts_compsplit = sp->ts_complen; sp->ts_prefixdepth = PFD_NOPREFIX; // set su->su_badflags to the caps type at this // position n = nofold_len(fword, sp->ts_fidx, su->su_badptr); su->su_badflags = badword_captype(su->su_badptr + n, su->su_badptr + su->su_badlen); // Restart at top of the tree. sp->ts_arridx = 0; // If there are postponed prefixes, try these too. if (pbyts != NULL) { byts = pbyts; idxs = pidxs; sp->ts_prefixdepth = PFD_PREFIXTREE; PROF_STORE(sp->ts_state) sp->ts_state = STATE_NOPREFIX; } } } } break; case STATE_SPLITUNDO: // Undo the changes done for word split or compound word. su->su_badflags = sp->ts_save_badflags; // Continue looking for NUL bytes. PROF_STORE(sp->ts_state) sp->ts_state = STATE_START; // In case we went into the prefix tree. byts = fbyts; idxs = fidxs; break; case STATE_ENDNUL: // Past the NUL bytes in the node. su->su_badflags = sp->ts_save_badflags; if (fword[sp->ts_fidx] == NUL && sp->ts_tcharlen == 0 ) { // The badword ends, can't use STATE_PLAIN. PROF_STORE(sp->ts_state) sp->ts_state = STATE_DEL; break; } PROF_STORE(sp->ts_state) sp->ts_state = STATE_PLAIN; FALLTHROUGH; case STATE_PLAIN: // Go over all possible bytes at this node, add each to tword[] // and use child node. "ts_curi" is the index. arridx = sp->ts_arridx; if (sp->ts_curi > byts[arridx]) { // Done all bytes at this node, do next state. When still at // already changed bytes skip the other tricks. PROF_STORE(sp->ts_state) if (sp->ts_fidx >= sp->ts_fidxtry) { sp->ts_state = STATE_DEL; } else { sp->ts_state = STATE_FINAL; } } else { arridx += sp->ts_curi++; c = byts[arridx]; // Normal byte, go one level deeper. If it's not equal to the // byte in the bad word adjust the score. But don't even try // when the byte was already changed. And don't try when we // just deleted this byte, accepting it is always cheaper than // delete + substitute. if (c == fword[sp->ts_fidx] || (sp->ts_tcharlen > 0 && sp->ts_isdiff != DIFF_NONE) ) newscore = 0; else newscore = SCORE_SUBST; if ((newscore == 0 || (sp->ts_fidx >= sp->ts_fidxtry && ((sp->ts_flags & TSF_DIDDEL) == 0 || c != fword[sp->ts_delidx]))) && TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK if (newscore > 0) sprintf(changename[depth], "%.*s-%s: subst %c to %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, fword[sp->ts_fidx], c); else sprintf(changename[depth], "%.*s-%s: accept %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, fword[sp->ts_fidx]); #endif ++depth; sp = &stack[depth]; ++sp->ts_fidx; tword[sp->ts_twordlen++] = c; sp->ts_arridx = idxs[arridx]; if (newscore == SCORE_SUBST) { sp->ts_isdiff = DIFF_YES; } // Multi-byte characters are a bit complicated to // handle: They differ when any of the bytes differ // and then their length may also differ. if (sp->ts_tcharlen == 0) { // First byte. sp->ts_tcharidx = 0; sp->ts_tcharlen = MB_BYTE2LEN(c); sp->ts_fcharstart = sp->ts_fidx - 1; sp->ts_isdiff = (newscore != 0) ? DIFF_YES : DIFF_NONE; } else if (sp->ts_isdiff == DIFF_INSERT) { // When inserting trail bytes don't advance in the // bad word. sp->ts_fidx--; } if (++sp->ts_tcharidx == sp->ts_tcharlen) { // Last byte of character. if (sp->ts_isdiff == DIFF_YES) { // Correct ts_fidx for the byte length of the // character (we didn't check that before). sp->ts_fidx = sp->ts_fcharstart + utfc_ptr2len(fword + sp->ts_fcharstart); // For changing a composing character adjust // the score from SCORE_SUBST to // SCORE_SUBCOMP. if (utf_iscomposing(utf_ptr2char(tword + sp->ts_twordlen - sp->ts_tcharlen)) && utf_iscomposing(utf_ptr2char(fword + sp->ts_fcharstart))) { sp->ts_score -= SCORE_SUBST - SCORE_SUBCOMP; } else if ( !soundfold && slang->sl_has_map && similar_chars( slang, utf_ptr2char(tword + sp->ts_twordlen - sp->ts_tcharlen), utf_ptr2char(fword + sp->ts_fcharstart))) { // For a similar character adjust score from // SCORE_SUBST to SCORE_SIMILAR. sp->ts_score -= SCORE_SUBST - SCORE_SIMILAR; } } else if (sp->ts_isdiff == DIFF_INSERT && sp->ts_twordlen > sp->ts_tcharlen) { p = tword + sp->ts_twordlen - sp->ts_tcharlen; c = utf_ptr2char(p); if (utf_iscomposing(c)) { // Inserting a composing char doesn't // count that much. sp->ts_score -= SCORE_INS - SCORE_INSCOMP; } else { // If the previous character was the same, // thus doubling a character, give a bonus // to the score. Also for the soundfold // tree (might seem illogical but does // give better scores). MB_PTR_BACK(tword, p); if (c == utf_ptr2char(p)) { sp->ts_score -= SCORE_INS - SCORE_INSDUP; } } } // Starting a new char, reset the length. sp->ts_tcharlen = 0; } } } break; case STATE_DEL: // When past the first byte of a multi-byte char don't try // delete/insert/swap a character. if (sp->ts_tcharlen > 0) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } // Try skipping one character in the bad word (delete it). PROF_STORE(sp->ts_state) sp->ts_state = STATE_INS_PREP; sp->ts_curi = 1; if (soundfold && sp->ts_fidx == 0 && fword[sp->ts_fidx] == '*') // Deleting a vowel at the start of a word counts less, see // soundalike_score(). newscore = 2 * SCORE_DEL / 3; else newscore = SCORE_DEL; if (fword[sp->ts_fidx] != NUL && TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: delete %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, fword[sp->ts_fidx]); #endif ++depth; // Remember what character we deleted, so that we can avoid // inserting it again. stack[depth].ts_flags |= TSF_DIDDEL; stack[depth].ts_delidx = sp->ts_fidx; // Advance over the character in fword[]. Give a bonus to the // score if the same character is following "nn" -> "n". It's // a bit illogical for soundfold tree but it does give better // results. c = utf_ptr2char(fword + sp->ts_fidx); stack[depth].ts_fidx += utfc_ptr2len(fword + sp->ts_fidx); if (utf_iscomposing(c)) { stack[depth].ts_score -= SCORE_DEL - SCORE_DELCOMP; } else if (c == utf_ptr2char(fword + stack[depth].ts_fidx)) { stack[depth].ts_score -= SCORE_DEL - SCORE_DELDUP; } break; } FALLTHROUGH; case STATE_INS_PREP: if (sp->ts_flags & TSF_DIDDEL) { // If we just deleted a byte then inserting won't make sense, // a substitute is always cheaper. PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP; break; } // skip over NUL bytes n = sp->ts_arridx; for (;; ) { if (sp->ts_curi > byts[n]) { // Only NUL bytes at this node, go to next state. PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP; break; } if (byts[n + sp->ts_curi] != NUL) { // Found a byte to insert. PROF_STORE(sp->ts_state) sp->ts_state = STATE_INS; break; } ++sp->ts_curi; } break; case STATE_INS: // Insert one byte. Repeat this for each possible byte at this // node. n = sp->ts_arridx; if (sp->ts_curi > byts[n]) { // Done all bytes at this node, go to next state. PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP; break; } // Do one more byte at this node, but: // - Skip NUL bytes. // - Skip the byte if it's equal to the byte in the word, // accepting that byte is always better. n += sp->ts_curi++; c = byts[n]; if (soundfold && sp->ts_twordlen == 0 && c == '*') // Inserting a vowel at the start of a word counts less, // see soundalike_score(). newscore = 2 * SCORE_INS / 3; else newscore = SCORE_INS; if (c != fword[sp->ts_fidx] && TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: insert %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, c); #endif ++depth; sp = &stack[depth]; tword[sp->ts_twordlen++] = c; sp->ts_arridx = idxs[n]; fl = MB_BYTE2LEN(c); if (fl > 1) { // There are following bytes for the same character. // We must find all bytes before trying // delete/insert/swap/etc. sp->ts_tcharlen = fl; sp->ts_tcharidx = 1; sp->ts_isdiff = DIFF_INSERT; } if (fl == 1) { // If the previous character was the same, thus doubling a // character, give a bonus to the score. Also for // soundfold words (illogical but does give a better // score). if (sp->ts_twordlen >= 2 && tword[sp->ts_twordlen - 2] == c) sp->ts_score -= SCORE_INS - SCORE_INSDUP; } } break; case STATE_SWAP: // Swap two bytes in the bad word: "12" -> "21". // We change "fword" here, it's changed back afterwards at // STATE_UNSWAP. p = fword + sp->ts_fidx; c = *p; if (c == NUL) { // End of word, can't swap or replace. PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } // Don't swap if the first character is not a word character. // SWAP3 etc. also don't make sense then. if (!soundfold && !spell_iswordp(p, curwin)) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } n = MB_CPTR2LEN(p); c = utf_ptr2char(p); if (p[n] == NUL) { c2 = NUL; } else if (!soundfold && !spell_iswordp(p + n, curwin)) { c2 = c; // don't swap non-word char } else { c2 = utf_ptr2char(p + n); } // When the second character is NUL we can't swap. if (c2 == NUL) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } // When characters are identical, swap won't do anything. // Also get here if the second char is not a word character. if (c == c2) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP3; break; } if (TRY_DEEPER(su, stack, depth, SCORE_SWAP)) { go_deeper(stack, depth, SCORE_SWAP); #ifdef DEBUG_TRIEWALK snprintf(changename[depth], sizeof(changename[0]), "%.*s-%s: swap %c and %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, c, c2); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNSWAP; depth++; fl = mb_char2len(c2); memmove(p, p + n, fl); utf_char2bytes(c, p + fl); stack[depth].ts_fidxtry = sp->ts_fidx + n + fl; } else { // If this swap doesn't work then SWAP3 won't either. PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNSWAP: // Undo the STATE_SWAP swap: "21" -> "12". p = fword + sp->ts_fidx; n = utfc_ptr2len(p); c = utf_ptr2char(p + n); memmove(p + utfc_ptr2len(p + n), p, n); utf_char2bytes(c, p); FALLTHROUGH; case STATE_SWAP3: // Swap two bytes, skipping one: "123" -> "321". We change // "fword" here, it's changed back afterwards at STATE_UNSWAP3. p = fword + sp->ts_fidx; n = MB_CPTR2LEN(p); c = utf_ptr2char(p); fl = MB_CPTR2LEN(p + n); c2 = utf_ptr2char(p + n); if (!soundfold && !spell_iswordp(p + n + fl, curwin)) { c3 = c; // don't swap non-word char } else { c3 = utf_ptr2char(p + n + fl); } // When characters are identical: "121" then SWAP3 result is // identical, ROT3L result is same as SWAP: "211", ROT3L result is // same as SWAP on next char: "112". Thus skip all swapping. // Also skip when c3 is NUL. // Also get here when the third character is not a word character. // Second character may any char: "a.b" -> "b.a" if (c == c3 || c3 == NUL) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) { go_deeper(stack, depth, SCORE_SWAP3); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: swap3 %c and %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, c, c3); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNSWAP3; depth++; tl = mb_char2len(c3); memmove(p, p + n + fl, tl); utf_char2bytes(c2, p + tl); utf_char2bytes(c, p + fl + tl); stack[depth].ts_fidxtry = sp->ts_fidx + n + fl + tl; } else { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNSWAP3: // Undo STATE_SWAP3: "321" -> "123" p = fword + sp->ts_fidx; n = utfc_ptr2len(p); c2 = utf_ptr2char(p + n); fl = utfc_ptr2len(p + n); c = utf_ptr2char(p + n + fl); tl = utfc_ptr2len(p + n + fl); memmove(p + fl + tl, p, n); utf_char2bytes(c, p); utf_char2bytes(c2, p + tl); p = p + tl; if (!soundfold && !spell_iswordp(p, curwin)) { // Middle char is not a word char, skip the rotate. First and // third char were already checked at swap and swap3. PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } // Rotate three characters left: "123" -> "231". We change // "fword" here, it's changed back afterwards at STATE_UNROT3L. if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) { go_deeper(stack, depth, SCORE_SWAP3); #ifdef DEBUG_TRIEWALK p = fword + sp->ts_fidx; sprintf(changename[depth], "%.*s-%s: rotate left %c%c%c", sp->ts_twordlen, tword, fword + sp->ts_fidx, p[0], p[1], p[2]); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNROT3L; ++depth; p = fword + sp->ts_fidx; n = MB_CPTR2LEN(p); c = utf_ptr2char(p); fl = MB_CPTR2LEN(p + n); fl += MB_CPTR2LEN(p + n + fl); memmove(p, p + n, fl); utf_char2bytes(c, p + fl); stack[depth].ts_fidxtry = sp->ts_fidx + n + fl; } else { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNROT3L: // Undo ROT3L: "231" -> "123" p = fword + sp->ts_fidx; n = utfc_ptr2len(p); n += utfc_ptr2len(p + n); c = utf_ptr2char(p + n); tl = utfc_ptr2len(p + n); memmove(p + tl, p, n); utf_char2bytes(c, p); // Rotate three bytes right: "123" -> "312". We change "fword" // here, it's changed back afterwards at STATE_UNROT3R. if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) { go_deeper(stack, depth, SCORE_SWAP3); #ifdef DEBUG_TRIEWALK p = fword + sp->ts_fidx; sprintf(changename[depth], "%.*s-%s: rotate right %c%c%c", sp->ts_twordlen, tword, fword + sp->ts_fidx, p[0], p[1], p[2]); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNROT3R; ++depth; p = fword + sp->ts_fidx; n = MB_CPTR2LEN(p); n += MB_CPTR2LEN(p + n); c = utf_ptr2char(p + n); tl = MB_CPTR2LEN(p + n); memmove(p + tl, p, n); utf_char2bytes(c, p); stack[depth].ts_fidxtry = sp->ts_fidx + n + tl; } else { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNROT3R: // Undo ROT3R: "312" -> "123" p = fword + sp->ts_fidx; c = utf_ptr2char(p); tl = utfc_ptr2len(p); n = utfc_ptr2len(p + tl); n += utfc_ptr2len(p + tl + n); memmove(p, p + tl, n); utf_char2bytes(c, p + n); FALLTHROUGH; case STATE_REP_INI: // Check if matching with REP items from the .aff file would work. // Quickly skip if: // - there are no REP items and we are not in the soundfold trie // - the score is going to be too high anyway // - already applied a REP item or swapped here if ((lp->lp_replang == NULL && !soundfold) || sp->ts_score + SCORE_REP >= su->su_maxscore || sp->ts_fidx < sp->ts_fidxtry) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } // Use the first byte to quickly find the first entry that may // match. If the index is -1 there is none. if (soundfold) sp->ts_curi = slang->sl_repsal_first[fword[sp->ts_fidx]]; else sp->ts_curi = lp->lp_replang->sl_rep_first[fword[sp->ts_fidx]]; if (sp->ts_curi < 0) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP; FALLTHROUGH; case STATE_REP: // Try matching with REP items from the .aff file. For each match // replace the characters and check if the resulting word is // valid. p = fword + sp->ts_fidx; if (soundfold) gap = &slang->sl_repsal; else gap = &lp->lp_replang->sl_rep; while (sp->ts_curi < gap->ga_len) { ftp = (fromto_T *)gap->ga_data + sp->ts_curi++; if (*ftp->ft_from != *p) { // past possible matching entries sp->ts_curi = gap->ga_len; break; } if (STRNCMP(ftp->ft_from, p, STRLEN(ftp->ft_from)) == 0 && TRY_DEEPER(su, stack, depth, SCORE_REP)) { go_deeper(stack, depth, SCORE_REP); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: replace %s with %s", sp->ts_twordlen, tword, fword + sp->ts_fidx, ftp->ft_from, ftp->ft_to); #endif // Need to undo this afterwards. PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_UNDO; // Change the "from" to the "to" string. ++depth; fl = (int)STRLEN(ftp->ft_from); tl = (int)STRLEN(ftp->ft_to); if (fl != tl) { STRMOVE(p + tl, p + fl); repextra += tl - fl; } memmove(p, ftp->ft_to, tl); stack[depth].ts_fidxtry = sp->ts_fidx + tl; stack[depth].ts_tcharlen = 0; break; } } if (sp->ts_curi >= gap->ga_len && sp->ts_state == STATE_REP) // No (more) matches. PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; case STATE_REP_UNDO: // Undo a REP replacement and continue with the next one. if (soundfold) gap = &slang->sl_repsal; else gap = &lp->lp_replang->sl_rep; ftp = (fromto_T *)gap->ga_data + sp->ts_curi - 1; fl = (int)STRLEN(ftp->ft_from); tl = (int)STRLEN(ftp->ft_to); p = fword + sp->ts_fidx; if (fl != tl) { STRMOVE(p + fl, p + tl); repextra -= tl - fl; } memmove(p, ftp->ft_from, fl); PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP; break; default: // Did all possible states at this level, go up one level. --depth; if (depth >= 0 && stack[depth].ts_prefixdepth == PFD_PREFIXTREE) { // Continue in or go back to the prefix tree. byts = pbyts; idxs = pidxs; } // Don't check for CTRL-C too often, it takes time. if (--breakcheckcount == 0) { os_breakcheck(); breakcheckcount = 1000; } } } } // Go one level deeper in the tree. static void go_deeper(trystate_T *stack, int depth, int score_add) { stack[depth + 1] = stack[depth]; stack[depth + 1].ts_state = STATE_START; stack[depth + 1].ts_score = stack[depth].ts_score + score_add; stack[depth + 1].ts_curi = 1; // start just after length byte stack[depth + 1].ts_flags = 0; } // Case-folding may change the number of bytes: Count nr of chars in // fword[flen] and return the byte length of that many chars in "word". static int nofold_len(char_u *fword, int flen, char_u *word) { char_u *p; int i = 0; for (p = fword; p < fword + flen; MB_PTR_ADV(p)) { i++; } for (p = word; i > 0; MB_PTR_ADV(p)) { i--; } return (int)(p - word); } // "fword" is a good word with case folded. Find the matching keep-case // words and put it in "kword". // Theoretically there could be several keep-case words that result in the // same case-folded word, but we only find one... static void find_keepcap_word(slang_T *slang, char_u *fword, char_u *kword) { char_u uword[MAXWLEN]; // "fword" in upper-case int depth; idx_T tryidx; // The following arrays are used at each depth in the tree. idx_T arridx[MAXWLEN]; int round[MAXWLEN]; int fwordidx[MAXWLEN]; int uwordidx[MAXWLEN]; int kwordlen[MAXWLEN]; int flen, ulen; int l; int len; int c; idx_T lo, hi, m; char_u *p; char_u *byts = slang->sl_kbyts; // array with bytes of the words idx_T *idxs = slang->sl_kidxs; // array with indexes if (byts == NULL) { // array is empty: "cannot happen" *kword = NUL; return; } // Make an all-cap version of "fword". allcap_copy(fword, uword); // Each character needs to be tried both case-folded and upper-case. // All this gets very complicated if we keep in mind that changing case // may change the byte length of a multi-byte character... depth = 0; arridx[0] = 0; round[0] = 0; fwordidx[0] = 0; uwordidx[0] = 0; kwordlen[0] = 0; while (depth >= 0) { if (fword[fwordidx[depth]] == NUL) { // We are at the end of "fword". If the tree allows a word to end // here we have found a match. if (byts[arridx[depth] + 1] == 0) { kword[kwordlen[depth]] = NUL; return; } // kword is getting too long, continue one level up --depth; } else if (++round[depth] > 2) { // tried both fold-case and upper-case character, continue one // level up --depth; } else { // round[depth] == 1: Try using the folded-case character. // round[depth] == 2: Try using the upper-case character. flen = MB_CPTR2LEN(fword + fwordidx[depth]); ulen = MB_CPTR2LEN(uword + uwordidx[depth]); if (round[depth] == 1) { p = fword + fwordidx[depth]; l = flen; } else { p = uword + uwordidx[depth]; l = ulen; } for (tryidx = arridx[depth]; l > 0; --l) { // Perform a binary search in the list of accepted bytes. len = byts[tryidx++]; c = *p++; lo = tryidx; hi = tryidx + len - 1; while (lo < hi) { m = (lo + hi) / 2; if (byts[m] > c) hi = m - 1; else if (byts[m] < c) lo = m + 1; else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) break; // Continue at the child (if there is one). tryidx = idxs[lo]; } if (l == 0) { // Found the matching char. Copy it to "kword" and go a // level deeper. if (round[depth] == 1) { STRNCPY(kword + kwordlen[depth], fword + fwordidx[depth], flen); kwordlen[depth + 1] = kwordlen[depth] + flen; } else { STRNCPY(kword + kwordlen[depth], uword + uwordidx[depth], ulen); kwordlen[depth + 1] = kwordlen[depth] + ulen; } fwordidx[depth + 1] = fwordidx[depth] + flen; uwordidx[depth + 1] = uwordidx[depth] + ulen; ++depth; arridx[depth] = tryidx; round[depth] = 0; } } } // Didn't find it: "cannot happen". *kword = NUL; } // Compute the sound-a-like score for suggestions in su->su_ga and add them to // su->su_sga. static void score_comp_sal(suginfo_T *su) { langp_T *lp; char_u badsound[MAXWLEN]; int i; suggest_T *stp; suggest_T *sstp; int score; ga_grow(&su->su_sga, su->su_ga.ga_len); // Use the sound-folding of the first language that supports it. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the bad word spell_soundfold(lp->lp_slang, su->su_fbadword, true, badsound); for (i = 0; i < su->su_ga.ga_len; ++i) { stp = &SUG(su->su_ga, i); // Case-fold the suggested word, sound-fold it and compute the // sound-a-like score. score = stp_sal_score(stp, su, lp->lp_slang, badsound); if (score < SCORE_MAXMAX) { // Add the suggestion. sstp = &SUG(su->su_sga, su->su_sga.ga_len); sstp->st_word = vim_strsave(stp->st_word); sstp->st_wordlen = stp->st_wordlen; sstp->st_score = score; sstp->st_altscore = 0; sstp->st_orglen = stp->st_orglen; ++su->su_sga.ga_len; } } break; } } } // Combine the list of suggestions in su->su_ga and su->su_sga. // They are entwined. static void score_combine(suginfo_T *su) { garray_T ga; garray_T *gap; langp_T *lp; suggest_T *stp; char_u *p; char_u badsound[MAXWLEN]; int round; slang_T *slang = NULL; // Add the alternate score to su_ga. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the bad word slang = lp->lp_slang; spell_soundfold(slang, su->su_fbadword, true, badsound); for (int i = 0; i < su->su_ga.ga_len; ++i) { stp = &SUG(su->su_ga, i); stp->st_altscore = stp_sal_score(stp, su, slang, badsound); if (stp->st_altscore == SCORE_MAXMAX) stp->st_score = (stp->st_score * 3 + SCORE_BIG) / 4; else stp->st_score = (stp->st_score * 3 + stp->st_altscore) / 4; stp->st_salscore = false; } break; } } if (slang == NULL) { // Using "double" without sound folding. (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); return; } // Add the alternate score to su_sga. for (int i = 0; i < su->su_sga.ga_len; ++i) { stp = &SUG(su->su_sga, i); stp->st_altscore = spell_edit_score(slang, su->su_badword, stp->st_word); if (stp->st_score == SCORE_MAXMAX) stp->st_score = (SCORE_BIG * 7 + stp->st_altscore) / 8; else stp->st_score = (stp->st_score * 7 + stp->st_altscore) / 8; stp->st_salscore = true; } // Remove bad suggestions, sort the suggestions and truncate at "maxcount" // for both lists. check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); check_suggestions(su, &su->su_sga); (void)cleanup_suggestions(&su->su_sga, su->su_maxscore, su->su_maxcount); ga_init(&ga, (int)sizeof(suginfo_T), 1); ga_grow(&ga, su->su_ga.ga_len + su->su_sga.ga_len); stp = &SUG(ga, 0); for (int i = 0; i < su->su_ga.ga_len || i < su->su_sga.ga_len; ++i) { // round 1: get a suggestion from su_ga // round 2: get a suggestion from su_sga for (round = 1; round <= 2; ++round) { gap = round == 1 ? &su->su_ga : &su->su_sga; if (i < gap->ga_len) { // Don't add a word if it's already there. p = SUG(*gap, i).st_word; int j; for (j = 0; j < ga.ga_len; ++j) if (STRCMP(stp[j].st_word, p) == 0) break; if (j == ga.ga_len) stp[ga.ga_len++] = SUG(*gap, i); else xfree(p); } } } ga_clear(&su->su_ga); ga_clear(&su->su_sga); // Truncate the list to the number of suggestions that will be displayed. if (ga.ga_len > su->su_maxcount) { for (int i = su->su_maxcount; i < ga.ga_len; ++i) { xfree(stp[i].st_word); } ga.ga_len = su->su_maxcount; } su->su_ga = ga; } // For the goodword in "stp" compute the soundalike score compared to the // badword. static int stp_sal_score ( suggest_T *stp, suginfo_T *su, slang_T *slang, char_u *badsound // sound-folded badword ) { char_u *p; char_u *pbad; char_u *pgood; char_u badsound2[MAXWLEN]; char_u fword[MAXWLEN]; char_u goodsound[MAXWLEN]; char_u goodword[MAXWLEN]; int lendiff; lendiff = su->su_badlen - stp->st_orglen; if (lendiff >= 0) pbad = badsound; else { // soundfold the bad word with more characters following (void)spell_casefold(curwin, su->su_badptr, stp->st_orglen, fword, MAXWLEN); // When joining two words the sound often changes a lot. E.g., "t he" // sounds like "t h" while "the" sounds like "@". Avoid that by // removing the space. Don't do it when the good word also contains a // space. if (ascii_iswhite(su->su_badptr[su->su_badlen]) && *skiptowhite(stp->st_word) == NUL) for (p = fword; *(p = skiptowhite(p)) != NUL; ) STRMOVE(p, p + 1); spell_soundfold(slang, fword, true, badsound2); pbad = badsound2; } if (lendiff > 0 && stp->st_wordlen + lendiff < MAXWLEN) { // Add part of the bad word to the good word, so that we soundfold // what replaces the bad word. STRCPY(goodword, stp->st_word); STRLCPY(goodword + stp->st_wordlen, su->su_badptr + su->su_badlen - lendiff, lendiff + 1); pgood = goodword; } else pgood = stp->st_word; // Sound-fold the word and compute the score for the difference. spell_soundfold(slang, pgood, false, goodsound); return soundalike_score(goodsound, pbad); } static sftword_T dumsft; #define HIKEY2SFT(p) ((sftword_T *)(p - (dumsft.sft_word - (char_u *)&dumsft))) #define HI2SFT(hi) HIKEY2SFT((hi)->hi_key) // Prepare for calling suggest_try_soundalike(). static void suggest_try_soundalike_prep(void) { langp_T *lp; slang_T *slang; // Do this for all languages that support sound folding and for which a // .sug file has been loaded. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) // prepare the hashtable used by add_sound_suggest() hash_init(&slang->sl_sounddone); } } // Find suggestions by comparing the word in a sound-a-like form. // Note: This doesn't support postponed prefixes. static void suggest_try_soundalike(suginfo_T *su) { char_u salword[MAXWLEN]; langp_T *lp; slang_T *slang; // Do this for all languages that support sound folding and for which a // .sug file has been loaded. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) { // soundfold the bad word spell_soundfold(slang, su->su_fbadword, true, salword); // try all kinds of inserts/deletes/swaps/etc. // TODO: also soundfold the next words, so that we can try joining // and splitting #ifdef SUGGEST_PROFILE prof_init(); #endif suggest_trie_walk(su, lp, salword, true); #ifdef SUGGEST_PROFILE prof_report("soundalike"); #endif } } } // Finish up after calling suggest_try_soundalike(). static void suggest_try_soundalike_finish(void) { langp_T *lp; slang_T *slang; int todo; hashitem_T *hi; // Do this for all languages that support sound folding and for which a // .sug file has been loaded. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) { // Free the info about handled words. todo = (int)slang->sl_sounddone.ht_used; for (hi = slang->sl_sounddone.ht_array; todo > 0; ++hi) if (!HASHITEM_EMPTY(hi)) { xfree(HI2SFT(hi)); --todo; } // Clear the hashtable, it may also be used by another region. hash_clear(&slang->sl_sounddone); hash_init(&slang->sl_sounddone); } } } // A match with a soundfolded word is found. Add the good word(s) that // produce this soundfolded word. static void add_sound_suggest ( suginfo_T *su, char_u *goodword, int score, // soundfold score langp_T *lp ) { slang_T *slang = lp->lp_slang; // language for sound folding int sfwordnr; char_u *nrline; int orgnr; char_u theword[MAXWLEN]; int i; int wlen; char_u *byts; idx_T *idxs; int n; int wordcount; int wc; int goodscore; hash_T hash; hashitem_T *hi; sftword_T *sft; int bc, gc; int limit; // It's very well possible that the same soundfold word is found several // times with different scores. Since the following is quite slow only do // the words that have a better score than before. Use a hashtable to // remember the words that have been done. hash = hash_hash(goodword); const size_t goodword_len = STRLEN(goodword); hi = hash_lookup(&slang->sl_sounddone, (const char *)goodword, goodword_len, hash); if (HASHITEM_EMPTY(hi)) { sft = xmalloc(sizeof(sftword_T) + goodword_len); sft->sft_score = score; memcpy(sft->sft_word, goodword, goodword_len + 1); hash_add_item(&slang->sl_sounddone, hi, sft->sft_word, hash); } else { sft = HI2SFT(hi); if (score >= sft->sft_score) return; sft->sft_score = score; } // Find the word nr in the soundfold tree. sfwordnr = soundfold_find(slang, goodword); if (sfwordnr < 0) { internal_error("add_sound_suggest()"); return; } // Go over the list of good words that produce this soundfold word nrline = ml_get_buf(slang->sl_sugbuf, (linenr_T)sfwordnr + 1, false); orgnr = 0; while (*nrline != NUL) { // The wordnr was stored in a minimal nr of bytes as an offset to the // previous wordnr. orgnr += bytes2offset(&nrline); byts = slang->sl_fbyts; idxs = slang->sl_fidxs; // Lookup the word "orgnr" one of the two tries. n = 0; wordcount = 0; for (wlen = 0; wlen < MAXWLEN - 3; ++wlen) { i = 1; if (wordcount == orgnr && byts[n + 1] == NUL) break; // found end of word if (byts[n + 1] == NUL) ++wordcount; // skip over the NUL bytes for (; byts[n + i] == NUL; ++i) if (i > byts[n]) { // safety check STRCPY(theword + wlen, "BAD"); wlen += 3; goto badword; } // One of the siblings must have the word. for (; i < byts[n]; ++i) { wc = idxs[idxs[n + i]]; // nr of words under this byte if (wordcount + wc > orgnr) break; wordcount += wc; } theword[wlen] = byts[n + i]; n = idxs[n + i]; } badword: theword[wlen] = NUL; // Go over the possible flags and regions. for (; i <= byts[n] && byts[n + i] == NUL; ++i) { char_u cword[MAXWLEN]; char_u *p; int flags = (int)idxs[n + i]; // Skip words with the NOSUGGEST flag if (flags & WF_NOSUGGEST) continue; if (flags & WF_KEEPCAP) { // Must find the word in the keep-case tree. find_keepcap_word(slang, theword, cword); p = cword; } else { flags |= su->su_badflags; if ((flags & WF_CAPMASK) != 0) { // Need to fix case according to "flags". make_case_word(theword, cword, flags); p = cword; } else p = theword; } // Add the suggestion. if (sps_flags & SPS_DOUBLE) { // Add the suggestion if the score isn't too bad. if (score <= su->su_maxscore) add_suggestion(su, &su->su_sga, p, su->su_badlen, score, 0, false, slang, false); } else { // Add a penalty for words in another region. if ((flags & WF_REGION) && (((unsigned)flags >> 16) & lp->lp_region) == 0) goodscore = SCORE_REGION; else goodscore = 0; // Add a small penalty for changing the first letter from // lower to upper case. Helps for "tath" -> "Kath", which is // less common than "tath" -> "path". Don't do it when the // letter is the same, that has already been counted. gc = PTR2CHAR(p); if (SPELL_ISUPPER(gc)) { bc = PTR2CHAR(su->su_badword); if (!SPELL_ISUPPER(bc) && SPELL_TOFOLD(bc) != SPELL_TOFOLD(gc)) goodscore += SCORE_ICASE / 2; } // Compute the score for the good word. This only does letter // insert/delete/swap/replace. REP items are not considered, // which may make the score a bit higher. // Use a limit for the score to make it work faster. Use // MAXSCORE(), because RESCORE() will change the score. // If the limit is very high then the iterative method is // inefficient, using an array is quicker. limit = MAXSCORE(su->su_sfmaxscore - goodscore, score); if (limit > SCORE_LIMITMAX) goodscore += spell_edit_score(slang, su->su_badword, p); else goodscore += spell_edit_score_limit(slang, su->su_badword, p, limit); // When going over the limit don't bother to do the rest. if (goodscore < SCORE_MAXMAX) { // Give a bonus to words seen before. goodscore = score_wordcount_adj(slang, goodscore, p, false); // Add the suggestion if the score isn't too bad. goodscore = RESCORE(goodscore, score); if (goodscore <= su->su_sfmaxscore) add_suggestion(su, &su->su_ga, p, su->su_badlen, goodscore, score, true, slang, true); } } } } } // Find word "word" in fold-case tree for "slang" and return the word number. static int soundfold_find(slang_T *slang, char_u *word) { idx_T arridx = 0; int len; int wlen = 0; int c; char_u *ptr = word; char_u *byts; idx_T *idxs; int wordnr = 0; byts = slang->sl_sbyts; idxs = slang->sl_sidxs; for (;; ) { // First byte is the number of possible bytes. len = byts[arridx++]; // If the first possible byte is a zero the word could end here. // If the word ends we found the word. If not skip the NUL bytes. c = ptr[wlen]; if (byts[arridx] == NUL) { if (c == NUL) break; // Skip over the zeros, there can be several. while (len > 0 && byts[arridx] == NUL) { ++arridx; --len; } if (len == 0) return -1; // no children, word should have ended here ++wordnr; } // If the word ends we didn't find it. if (c == NUL) return -1; // Perform a binary search in the list of accepted bytes. if (c == TAB) // is handled like c = ' '; while (byts[arridx] < c) { // The word count is in the first idxs[] entry of the child. wordnr += idxs[idxs[arridx]]; ++arridx; if (--len == 0) // end of the bytes, didn't find it return -1; } if (byts[arridx] != c) // didn't find the byte return -1; // Continue at the child (if there is one). arridx = idxs[arridx]; ++wlen; // One space in the good word may stand for several spaces in the // checked word. if (c == ' ') while (ptr[wlen] == ' ' || ptr[wlen] == TAB) ++wlen; } return wordnr; } // Copy "fword" to "cword", fixing case according to "flags". static void make_case_word(char_u *fword, char_u *cword, int flags) { if (flags & WF_ALLCAP) // Make it all upper-case allcap_copy(fword, cword); else if (flags & WF_ONECAP) // Make the first letter upper-case onecap_copy(fword, cword, true); else // Use goodword as-is. STRCPY(cword, fword); } // Returns true if "c1" and "c2" are similar characters according to the MAP // lines in the .aff file. static bool similar_chars(slang_T *slang, int c1, int c2) { int m1, m2; char_u buf[MB_MAXBYTES + 1]; hashitem_T *hi; if (c1 >= 256) { buf[utf_char2bytes(c1, buf)] = 0; hi = hash_find(&slang->sl_map_hash, buf); if (HASHITEM_EMPTY(hi)) { m1 = 0; } else { m1 = utf_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1); } } else { m1 = slang->sl_map_array[c1]; } if (m1 == 0) { return false; } if (c2 >= 256) { buf[utf_char2bytes(c2, buf)] = 0; hi = hash_find(&slang->sl_map_hash, buf); if (HASHITEM_EMPTY(hi)) { m2 = 0; } else { m2 = utf_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1); } } else { m2 = slang->sl_map_array[c2]; } return m1 == m2; } // Adds a suggestion to the list of suggestions. // For a suggestion that is already in the list the lowest score is remembered. static void add_suggestion ( suginfo_T *su, garray_T *gap, // either su_ga or su_sga const char_u *goodword, int badlenarg, // len of bad word replaced with "goodword" int score, int altscore, bool had_bonus, // value for st_had_bonus slang_T *slang, // language for sound folding bool maxsf // su_maxscore applies to soundfold score, // su_sfmaxscore to the total score. ) { int goodlen; // len of goodword changed int badlen; // len of bad word changed suggest_T *stp; suggest_T new_sug; // Minimize "badlen" for consistency. Avoids that changing "the the" to // "thee the" is added next to changing the first "the" the "thee". const char_u *pgood = goodword + STRLEN(goodword); char_u *pbad = su->su_badptr + badlenarg; for (;; ) { goodlen = (int)(pgood - goodword); badlen = (int)(pbad - su->su_badptr); if (goodlen <= 0 || badlen <= 0) break; MB_PTR_BACK(goodword, pgood); MB_PTR_BACK(su->su_badptr, pbad); if (utf_ptr2char(pgood) != utf_ptr2char(pbad)) { break; } } if (badlen == 0 && goodlen == 0) // goodword doesn't change anything; may happen for "the the" changing // the first "the" to itself. return; int i; if (GA_EMPTY(gap)) { i = -1; } else { // Check if the word is already there. Also check the length that is // being replaced "thes," -> "these" is a different suggestion from // "thes" -> "these". stp = &SUG(*gap, 0); for (i = gap->ga_len; --i >= 0; ++stp) { if (stp->st_wordlen == goodlen && stp->st_orglen == badlen && STRNCMP(stp->st_word, goodword, goodlen) == 0) { // Found it. Remember the word with the lowest score. if (stp->st_slang == NULL) stp->st_slang = slang; new_sug.st_score = score; new_sug.st_altscore = altscore; new_sug.st_had_bonus = had_bonus; if (stp->st_had_bonus != had_bonus) { // Only one of the two had the soundalike score computed. // Need to do that for the other one now, otherwise the // scores can't be compared. This happens because // suggest_try_change() doesn't compute the soundalike // word to keep it fast, while some special methods set // the soundalike score to zero. if (had_bonus) rescore_one(su, stp); else { new_sug.st_word = stp->st_word; new_sug.st_wordlen = stp->st_wordlen; new_sug.st_slang = stp->st_slang; new_sug.st_orglen = badlen; rescore_one(su, &new_sug); } } if (stp->st_score > new_sug.st_score) { stp->st_score = new_sug.st_score; stp->st_altscore = new_sug.st_altscore; stp->st_had_bonus = new_sug.st_had_bonus; } break; } } } if (i < 0) { // Add a suggestion. stp = GA_APPEND_VIA_PTR(suggest_T, gap); stp->st_word = vim_strnsave(goodword, goodlen); stp->st_wordlen = goodlen; stp->st_score = score; stp->st_altscore = altscore; stp->st_had_bonus = had_bonus; stp->st_orglen = badlen; stp->st_slang = slang; // If we have too many suggestions now, sort the list and keep // the best suggestions. if (gap->ga_len > SUG_MAX_COUNT(su)) { if (maxsf) su->su_sfmaxscore = cleanup_suggestions(gap, su->su_sfmaxscore, SUG_CLEAN_COUNT(su)); else su->su_maxscore = cleanup_suggestions(gap, su->su_maxscore, SUG_CLEAN_COUNT(su)); } } } // Suggestions may in fact be flagged as errors. Esp. for banned words and // for split words, such as "the the". Remove these from the list here. static void check_suggestions ( suginfo_T *su, garray_T *gap // either su_ga or su_sga ) { suggest_T *stp; char_u longword[MAXWLEN + 1]; int len; hlf_T attr; if (gap->ga_len == 0) { return; } stp = &SUG(*gap, 0); for (int i = gap->ga_len - 1; i >= 0; --i) { // Need to append what follows to check for "the the". STRLCPY(longword, stp[i].st_word, MAXWLEN + 1); len = stp[i].st_wordlen; STRLCPY(longword + len, su->su_badptr + stp[i].st_orglen, MAXWLEN - len + 1); attr = HLF_COUNT; (void)spell_check(curwin, longword, &attr, NULL, false); if (attr != HLF_COUNT) { // Remove this entry. xfree(stp[i].st_word); --gap->ga_len; if (i < gap->ga_len) memmove(stp + i, stp + i + 1, sizeof(suggest_T) * (gap->ga_len - i)); } } } // Add a word to be banned. static void add_banned(suginfo_T *su, char_u *word) { char_u *s; hash_T hash; hashitem_T *hi; hash = hash_hash(word); const size_t word_len = STRLEN(word); hi = hash_lookup(&su->su_banned, (const char *)word, word_len, hash); if (HASHITEM_EMPTY(hi)) { s = xmemdupz(word, word_len); hash_add_item(&su->su_banned, hi, s, hash); } } // Recompute the score for all suggestions if sound-folding is possible. This // is slow, thus only done for the final results. static void rescore_suggestions(suginfo_T *su) { if (su->su_sallang != NULL) { for (int i = 0; i < su->su_ga.ga_len; ++i) { rescore_one(su, &SUG(su->su_ga, i)); } } } // Recompute the score for one suggestion if sound-folding is possible. static void rescore_one(suginfo_T *su, suggest_T *stp) { slang_T *slang = stp->st_slang; char_u sal_badword[MAXWLEN]; char_u *p; // Only rescore suggestions that have no sal score yet and do have a // language. if (slang != NULL && !GA_EMPTY(&slang->sl_sal) && !stp->st_had_bonus) { if (slang == su->su_sallang) p = su->su_sal_badword; else { spell_soundfold(slang, su->su_fbadword, true, sal_badword); p = sal_badword; } stp->st_altscore = stp_sal_score(stp, su, slang, p); if (stp->st_altscore == SCORE_MAXMAX) stp->st_altscore = SCORE_BIG; stp->st_score = RESCORE(stp->st_score, stp->st_altscore); stp->st_had_bonus = true; } } // Function given to qsort() to sort the suggestions on st_score. // First on "st_score", then "st_altscore" then alphabetically. static int sug_compare(const void *s1, const void *s2) { suggest_T *p1 = (suggest_T *)s1; suggest_T *p2 = (suggest_T *)s2; int n = p1->st_score - p2->st_score; if (n == 0) { n = p1->st_altscore - p2->st_altscore; if (n == 0) n = STRICMP(p1->st_word, p2->st_word); } return n; } // Cleanup the suggestions: // - Sort on score. // - Remove words that won't be displayed. // Returns the maximum score in the list or "maxscore" unmodified. static int cleanup_suggestions ( garray_T *gap, int maxscore, int keep // nr of suggestions to keep ) FUNC_ATTR_NONNULL_ALL { if (gap->ga_len > 0) { // Sort the list. qsort(gap->ga_data, (size_t)gap->ga_len, sizeof(suggest_T), sug_compare); // Truncate the list to the number of suggestions that will be displayed. if (gap->ga_len > keep) { suggest_T *const stp = &SUG(*gap, 0); for (int i = keep; i < gap->ga_len; i++) { xfree(stp[i].st_word); } gap->ga_len = keep; if (keep >= 1) { return stp[keep - 1].st_score; } } } return maxscore; } /// Soundfold a string, for soundfold() /// /// @param[in] word Word to soundfold. /// /// @return [allocated] soundfolded string or NULL in case of error. May return /// copy of the input string if soundfolding is not /// supported by any of the languages in &spellang. char *eval_soundfold(const char *const word) FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_MALLOC FUNC_ATTR_NONNULL_ALL { if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) { // Use the sound-folding of the first language that supports it. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) { langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the word char_u sound[MAXWLEN]; spell_soundfold(lp->lp_slang, (char_u *)word, false, sound); return xstrdup((const char *)sound); } } } // No language with sound folding, return word as-is. return xstrdup(word); } /// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]". /// /// There are many ways to turn a word into a sound-a-like representation. The /// oldest is Soundex (1918!). A nice overview can be found in "Approximate /// swedish name matching - survey and test of different algorithms" by Klas /// Erikson. /// /// We support two methods: /// 1. SOFOFROM/SOFOTO do a simple character mapping. /// 2. SAL items define a more advanced sound-folding (and much slower). /// /// @param[in] slang /// @param[in] inword word to soundfold /// @param[in] folded whether inword is already case-folded /// @param[in,out] res destination for soundfolded word void spell_soundfold(slang_T *slang, char_u *inword, bool folded, char_u *res) { char_u fword[MAXWLEN]; char_u *word; if (slang->sl_sofo) // SOFOFROM and SOFOTO used spell_soundfold_sofo(slang, inword, res); else { // SAL items used. Requires the word to be case-folded. if (folded) { word = inword; } else { (void)spell_casefold(curwin, inword, (int)STRLEN(inword), fword, MAXWLEN); word = fword; } spell_soundfold_wsal(slang, word, res); } } // Perform sound folding of "inword" into "res" according to SOFOFROM and // SOFOTO lines. static void spell_soundfold_sofo(slang_T *slang, char_u *inword, char_u *res) { int ri = 0; int prevc = 0; // The sl_sal_first[] table contains the translation for chars up to // 255, sl_sal the rest. for (char_u *s = inword; *s != NUL; ) { int c = mb_cptr2char_adv((const char_u **)&s); if (utf_class(c) == 0) { c = ' '; } else if (c < 256) { c = slang->sl_sal_first[c]; } else { int *ip = ((int **)slang->sl_sal.ga_data)[c & 0xff]; if (ip == NULL) { // empty list, can't match c = NUL; } else { for (;; ) { // find "c" in the list if (*ip == 0) { // not found c = NUL; break; } if (*ip == c) { // match! c = ip[1]; break; } ip += 2; } } } if (c != NUL && c != prevc) { ri += utf_char2bytes(c, res + ri); if (ri + MB_MAXBYTES > MAXWLEN) { break; } prevc = c; } } res[ri] = NUL; } // Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]". // Multi-byte version of spell_soundfold(). static void spell_soundfold_wsal(slang_T *slang, char_u *inword, char_u *res) { salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data; int word[MAXWLEN] = { 0 }; int wres[MAXWLEN] = { 0 }; int l; int *ws; int *pf; int i, j, z; int reslen; int n, k = 0; int z0; int k0; int n0; int c; int pri; int p0 = -333; int c0; bool did_white = false; int wordlen; // Convert the multi-byte string to a wide-character string. // Remove accents, if wanted. We actually remove all non-word characters. // But keep white space. wordlen = 0; for (const char_u *s = inword; *s != NUL; ) { const char_u *t = s; c = mb_cptr2char_adv((const char_u **)&s); if (slang->sl_rem_accents) { if (utf_class(c) == 0) { if (did_white) { continue; } c = ' '; did_white = true; } else { did_white = false; if (!spell_iswordp_nmw(t, curwin)) { continue; } } } word[wordlen++] = c; } word[wordlen] = NUL; // This algorithm comes from Aspell phonet.cpp. // Converted from C++ to C. Added support for multi-byte chars. // Changed to keep spaces. i = reslen = z = 0; while ((c = word[i]) != NUL) { // Start with the first rule that has the character in the word. n = slang->sl_sal_first[c & 0xff]; z0 = 0; if (n >= 0) { // Check all rules for the same index byte. // If c is 0x300 need extra check for the end of the array, as // (c & 0xff) is NUL. for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff) && ws[0] != NUL; ++n) { // Quickly skip entries that don't match the word. Most // entries are less then three chars, optimize for that. if (c != ws[0]) continue; k = smp[n].sm_leadlen; if (k > 1) { if (word[i + 1] != ws[1]) continue; if (k > 2) { for (j = 2; j < k; ++j) if (word[i + j] != ws[j]) break; if (j < k) continue; } } if ((pf = smp[n].sm_oneof_w) != NULL) { // Check for match with one of the chars in "sm_oneof". while (*pf != NUL && *pf != word[i + k]) ++pf; if (*pf == NUL) continue; ++k; } char_u *s = smp[n].sm_rules; pri = 5; // default priority p0 = *s; k0 = k; while (*s == '-' && k > 1) { k--; s++; } if (*s == '<') s++; if (ascii_isdigit(*s)) { // determine priority pri = *s - '0'; s++; } if (*s == '^' && *(s + 1) == '^') s++; if (*s == NUL || (*s == '^' && (i == 0 || !(word[i - 1] == ' ' || spell_iswordp_w(word + i - 1, curwin))) && (*(s + 1) != '$' || (!spell_iswordp_w(word + i + k0, curwin)))) || (*s == '$' && i > 0 && spell_iswordp_w(word + i - 1, curwin) && (!spell_iswordp_w(word + i + k0, curwin)))) { // search for followup rules, if: // followup and k > 1 and NO '-' in searchstring c0 = word[i + k - 1]; n0 = slang->sl_sal_first[c0 & 0xff]; if (slang->sl_followup && k > 1 && n0 >= 0 && p0 != '-' && word[i + k] != NUL) { // Test follow-up rule for "word[i + k]"; loop over // all entries with the same index byte. for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff) == (c0 & 0xff); ++n0) { // Quickly skip entries that don't match the word. if (c0 != ws[0]) continue; k0 = smp[n0].sm_leadlen; if (k0 > 1) { if (word[i + k] != ws[1]) continue; if (k0 > 2) { pf = word + i + k + 1; for (j = 2; j < k0; ++j) if (*pf++ != ws[j]) break; if (j < k0) continue; } } k0 += k - 1; if ((pf = smp[n0].sm_oneof_w) != NULL) { // Check for match with one of the chars in // "sm_oneof". while (*pf != NUL && *pf != word[i + k0]) ++pf; if (*pf == NUL) continue; ++k0; } p0 = 5; s = smp[n0].sm_rules; while (*s == '-') { // "k0" gets NOT reduced because // "if (k0 == k)" s++; } if (*s == '<') s++; if (ascii_isdigit(*s)) { p0 = *s - '0'; s++; } if (*s == NUL // *s == '^' cuts || (*s == '$' && !spell_iswordp_w(word + i + k0, curwin))) { if (k0 == k) // this is just a piece of the string continue; if (p0 < pri) // priority too low continue; // rule fits; stop search break; } } if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff) == (c0 & 0xff)) continue; } // replace string ws = smp[n].sm_to_w; s = smp[n].sm_rules; p0 = (vim_strchr(s, '<') != NULL) ? 1 : 0; if (p0 == 1 && z == 0) { // rule with '<' is used if (reslen > 0 && ws != NULL && *ws != NUL && (wres[reslen - 1] == c || wres[reslen - 1] == *ws)) reslen--; z0 = 1; z = 1; k0 = 0; if (ws != NULL) while (*ws != NUL && word[i + k0] != NUL) { word[i + k0] = *ws; k0++; ws++; } if (k > k0) memmove(word + i + k0, word + i + k, sizeof(int) * (wordlen - (i + k) + 1)); // new "actual letter" c = word[i]; } else { // no '<' rule used i += k - 1; z = 0; if (ws != NULL) while (*ws != NUL && ws[1] != NUL && reslen < MAXWLEN) { if (reslen == 0 || wres[reslen - 1] != *ws) wres[reslen++] = *ws; ws++; } // new "actual letter" if (ws == NULL) c = NUL; else c = *ws; if (strstr((char *)s, "^^") != NULL) { if (c != NUL) wres[reslen++] = c; memmove(word, word + i + 1, sizeof(int) * (wordlen - (i + 1) + 1)); i = 0; z0 = 1; } } break; } } } else if (ascii_iswhite(c)) { c = ' '; k = 1; } if (z0 == 0) { if (k && !p0 && reslen < MAXWLEN && c != NUL && (!slang->sl_collapse || reslen == 0 || wres[reslen - 1] != c)) // condense only double letters wres[reslen++] = c; i++; z = 0; k = 0; } } // Convert wide characters in "wres" to a multi-byte string in "res". l = 0; for (n = 0; n < reslen; n++) { l += utf_char2bytes(wres[n], res + l); if (l + MB_MAXBYTES > MAXWLEN) { break; } } res[l] = NUL; } // Compute a score for two sound-a-like words. // This permits up to two inserts/deletes/swaps/etc. to keep things fast. // Instead of a generic loop we write out the code. That keeps it fast by // avoiding checks that will not be possible. static int soundalike_score ( char_u *goodstart, // sound-folded good word char_u *badstart // sound-folded bad word ) { char_u *goodsound = goodstart; char_u *badsound = badstart; int goodlen; int badlen; int n; char_u *pl, *ps; char_u *pl2, *ps2; int score = 0; // Adding/inserting "*" at the start (word starts with vowel) shouldn't be // counted so much, vowels in the middle of the word aren't counted at all. if ((*badsound == '*' || *goodsound == '*') && *badsound != *goodsound) { if ((badsound[0] == NUL && goodsound[1] == NUL) || (goodsound[0] == NUL && badsound[1] == NUL)) // changing word with vowel to word without a sound return SCORE_DEL; if (badsound[0] == NUL || goodsound[0] == NUL) // more than two changes return SCORE_MAXMAX; if (badsound[1] == goodsound[1] || (badsound[1] != NUL && goodsound[1] != NUL && badsound[2] == goodsound[2])) { // handle like a substitute } else { score = 2 * SCORE_DEL / 3; if (*badsound == '*') ++badsound; else ++goodsound; } } goodlen = (int)STRLEN(goodsound); badlen = (int)STRLEN(badsound); // Return quickly if the lengths are too different to be fixed by two // changes. n = goodlen - badlen; if (n < -2 || n > 2) return SCORE_MAXMAX; if (n > 0) { pl = goodsound; // goodsound is longest ps = badsound; } else { pl = badsound; // badsound is longest ps = goodsound; } // Skip over the identical part. while (*pl == *ps && *pl != NUL) { ++pl; ++ps; } switch (n) { case -2: case 2: // Must delete two characters from "pl". ++pl; // first delete while (*pl == *ps) { ++pl; ++ps; } // strings must be equal after second delete if (STRCMP(pl + 1, ps) == 0) return score + SCORE_DEL * 2; // Failed to compare. break; case -1: case 1: // Minimal one delete from "pl" required. // 1: delete pl2 = pl + 1; ps2 = ps; while (*pl2 == *ps2) { if (*pl2 == NUL) // reached the end return score + SCORE_DEL; ++pl2; ++ps2; } // 2: delete then swap, then rest must be equal if (pl2[0] == ps2[1] && pl2[1] == ps2[0] && STRCMP(pl2 + 2, ps2 + 2) == 0) return score + SCORE_DEL + SCORE_SWAP; // 3: delete then substitute, then the rest must be equal if (STRCMP(pl2 + 1, ps2 + 1) == 0) return score + SCORE_DEL + SCORE_SUBST; // 4: first swap then delete if (pl[0] == ps[1] && pl[1] == ps[0]) { pl2 = pl + 2; // swap, skip two chars ps2 = ps + 2; while (*pl2 == *ps2) { ++pl2; ++ps2; } // delete a char and then strings must be equal if (STRCMP(pl2 + 1, ps2) == 0) return score + SCORE_SWAP + SCORE_DEL; } // 5: first substitute then delete pl2 = pl + 1; // substitute, skip one char ps2 = ps + 1; while (*pl2 == *ps2) { ++pl2; ++ps2; } // delete a char and then strings must be equal if (STRCMP(pl2 + 1, ps2) == 0) return score + SCORE_SUBST + SCORE_DEL; // Failed to compare. break; case 0: // Lengths are equal, thus changes must result in same length: An // insert is only possible in combination with a delete. // 1: check if for identical strings if (*pl == NUL) return score; // 2: swap if (pl[0] == ps[1] && pl[1] == ps[0]) { pl2 = pl + 2; // swap, skip two chars ps2 = ps + 2; while (*pl2 == *ps2) { if (*pl2 == NUL) // reached the end return score + SCORE_SWAP; ++pl2; ++ps2; } // 3: swap and swap again if (pl2[0] == ps2[1] && pl2[1] == ps2[0] && STRCMP(pl2 + 2, ps2 + 2) == 0) return score + SCORE_SWAP + SCORE_SWAP; // 4: swap and substitute if (STRCMP(pl2 + 1, ps2 + 1) == 0) return score + SCORE_SWAP + SCORE_SUBST; } // 5: substitute pl2 = pl + 1; ps2 = ps + 1; while (*pl2 == *ps2) { if (*pl2 == NUL) // reached the end return score + SCORE_SUBST; ++pl2; ++ps2; } // 6: substitute and swap if (pl2[0] == ps2[1] && pl2[1] == ps2[0] && STRCMP(pl2 + 2, ps2 + 2) == 0) return score + SCORE_SUBST + SCORE_SWAP; // 7: substitute and substitute if (STRCMP(pl2 + 1, ps2 + 1) == 0) return score + SCORE_SUBST + SCORE_SUBST; // 8: insert then delete pl2 = pl; ps2 = ps + 1; while (*pl2 == *ps2) { ++pl2; ++ps2; } if (STRCMP(pl2 + 1, ps2) == 0) return score + SCORE_INS + SCORE_DEL; // 9: delete then insert pl2 = pl + 1; ps2 = ps; while (*pl2 == *ps2) { ++pl2; ++ps2; } if (STRCMP(pl2, ps2 + 1) == 0) return score + SCORE_INS + SCORE_DEL; // Failed to compare. break; } return SCORE_MAXMAX; } // Compute the "edit distance" to turn "badword" into "goodword". The less // deletes/inserts/substitutes/swaps are required the lower the score. // // The algorithm is described by Du and Chang, 1992. // The implementation of the algorithm comes from Aspell editdist.cpp, // edit_distance(). It has been converted from C++ to C and modified to // support multi-byte characters. static int spell_edit_score(slang_T *slang, char_u *badword, char_u *goodword) { int *cnt; int j, i; int t; int bc, gc; int pbc, pgc; int wbadword[MAXWLEN]; int wgoodword[MAXWLEN]; // Lengths with NUL. int badlen; int goodlen; { // Get the characters from the multi-byte strings and put them in an // int array for easy access. badlen = 0; for (const char_u *p = badword; *p != NUL; ) { wbadword[badlen++] = mb_cptr2char_adv(&p); } wbadword[badlen++] = 0; goodlen = 0; for (const char_u *p = goodword; *p != NUL; ) { wgoodword[goodlen++] = mb_cptr2char_adv(&p); } wgoodword[goodlen++] = 0; } // We use "cnt" as an array: CNT(badword_idx, goodword_idx). #define CNT(a, b) cnt[(a) + (b) * (badlen + 1)] cnt = xmalloc(sizeof(int) * (badlen + 1) * (goodlen + 1)); CNT(0, 0) = 0; for (j = 1; j <= goodlen; ++j) CNT(0, j) = CNT(0, j - 1) + SCORE_INS; for (i = 1; i <= badlen; ++i) { CNT(i, 0) = CNT(i - 1, 0) + SCORE_DEL; for (j = 1; j <= goodlen; j++) { bc = wbadword[i - 1]; gc = wgoodword[j - 1]; if (bc == gc) { CNT(i, j) = CNT(i - 1, j - 1); } else { // Use a better score when there is only a case difference. if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc)) CNT(i, j) = SCORE_ICASE + CNT(i - 1, j - 1); else { // For a similar character use SCORE_SIMILAR. if (slang != NULL && slang->sl_has_map && similar_chars(slang, gc, bc)) CNT(i, j) = SCORE_SIMILAR + CNT(i - 1, j - 1); else CNT(i, j) = SCORE_SUBST + CNT(i - 1, j - 1); } if (i > 1 && j > 1) { pbc = wbadword[i - 2]; pgc = wgoodword[j - 2]; if (bc == pgc && pbc == gc) { t = SCORE_SWAP + CNT(i - 2, j - 2); if (t < CNT(i, j)) CNT(i, j) = t; } } t = SCORE_DEL + CNT(i - 1, j); if (t < CNT(i, j)) CNT(i, j) = t; t = SCORE_INS + CNT(i, j - 1); if (t < CNT(i, j)) CNT(i, j) = t; } } } i = CNT(badlen - 1, goodlen - 1); xfree(cnt); return i; } // Like spell_edit_score(), but with a limit on the score to make it faster. // May return SCORE_MAXMAX when the score is higher than "limit". // // This uses a stack for the edits still to be tried. // The idea comes from Aspell leditdist.cpp. Rewritten in C and added support // for multi-byte characters. static int spell_edit_score_limit(slang_T *slang, char_u *badword, char_u *goodword, int limit) { return spell_edit_score_limit_w(slang, badword, goodword, limit); } // Multi-byte version of spell_edit_score_limit(). // Keep it in sync with the above! static int spell_edit_score_limit_w(slang_T *slang, char_u *badword, char_u *goodword, int limit) { limitscore_T stack[10]; // allow for over 3 * 2 edits int stackidx; int bi, gi; int bi2, gi2; int bc, gc; int score; int score_off; int minscore; int round; int wbadword[MAXWLEN]; int wgoodword[MAXWLEN]; // Get the characters from the multi-byte strings and put them in an // int array for easy access. bi = 0; for (const char_u *p = badword; *p != NUL; ) { wbadword[bi++] = mb_cptr2char_adv(&p); } wbadword[bi++] = 0; gi = 0; for (const char_u *p = goodword; *p != NUL; ) { wgoodword[gi++] = mb_cptr2char_adv(&p); } wgoodword[gi++] = 0; // The idea is to go from start to end over the words. So long as // characters are equal just continue, this always gives the lowest score. // When there is a difference try several alternatives. Each alternative // increases "score" for the edit distance. Some of the alternatives are // pushed unto a stack and tried later, some are tried right away. At the // end of the word the score for one alternative is known. The lowest // possible score is stored in "minscore". stackidx = 0; bi = 0; gi = 0; score = 0; minscore = limit + 1; for (;; ) { // Skip over an equal part, score remains the same. for (;; ) { bc = wbadword[bi]; gc = wgoodword[gi]; if (bc != gc) // stop at a char that's different break; if (bc == NUL) { // both words end if (score < minscore) minscore = score; goto pop; // do next alternative } ++bi; ++gi; } if (gc == NUL) { // goodword ends, delete badword chars do { if ((score += SCORE_DEL) >= minscore) goto pop; // do next alternative } while (wbadword[++bi] != NUL); minscore = score; } else if (bc == NUL) { // badword ends, insert badword chars do { if ((score += SCORE_INS) >= minscore) goto pop; // do next alternative } while (wgoodword[++gi] != NUL); minscore = score; } else { // both words continue // If not close to the limit, perform a change. Only try changes // that may lead to a lower score than "minscore". // round 0: try deleting a char from badword // round 1: try inserting a char in badword for (round = 0; round <= 1; ++round) { score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS); if (score_off < minscore) { if (score_off + SCORE_EDIT_MIN >= minscore) { // Near the limit, rest of the words must match. We // can check that right now, no need to push an item // onto the stack. bi2 = bi + 1 - round; gi2 = gi + round; while (wgoodword[gi2] == wbadword[bi2]) { if (wgoodword[gi2] == NUL) { minscore = score_off; break; } ++bi2; ++gi2; } } else { // try deleting a character from badword later stack[stackidx].badi = bi + 1 - round; stack[stackidx].goodi = gi + round; stack[stackidx].score = score_off; ++stackidx; } } } if (score + SCORE_SWAP < minscore) { // If swapping two characters makes a match then the // substitution is more expensive, thus there is no need to // try both. if (gc == wbadword[bi + 1] && bc == wgoodword[gi + 1]) { // Swap two characters, that is: skip them. gi += 2; bi += 2; score += SCORE_SWAP; continue; } } // Substitute one character for another which is the same // thing as deleting a character from both goodword and badword. // Use a better score when there is only a case difference. if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc)) score += SCORE_ICASE; else { // For a similar character use SCORE_SIMILAR. if (slang != NULL && slang->sl_has_map && similar_chars(slang, gc, bc)) score += SCORE_SIMILAR; else score += SCORE_SUBST; } if (score < minscore) { // Do the substitution. ++gi; ++bi; continue; } } pop: // Get here to try the next alternative, pop it from the stack. if (stackidx == 0) // stack is empty, finished break; // pop an item from the stack --stackidx; gi = stack[stackidx].goodi; bi = stack[stackidx].badi; score = stack[stackidx].score; } // When the score goes over "limit" it may actually be much higher. // Return a very large number to avoid going below the limit when giving a // bonus. if (minscore > limit) return SCORE_MAXMAX; return minscore; } // ":spellinfo" void ex_spellinfo(exarg_T *eap) { if (no_spell_checking(curwin)) { return; } msg_start(); for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; lpi++) { langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); msg_puts("file: "); msg_puts((const char *)lp->lp_slang->sl_fname); msg_putchar('\n'); const char *const p = (const char *)lp->lp_slang->sl_info; if (p != NULL) { msg_puts(p); msg_putchar('\n'); } } msg_end(); } #define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree #define DUMPFLAG_COUNT 2 // include word count #define DUMPFLAG_ICASE 4 // ignore case when finding matches #define DUMPFLAG_ONECAP 8 // pattern starts with capital #define DUMPFLAG_ALLCAP 16 // pattern is all capitals // ":spelldump" void ex_spelldump(exarg_T *eap) { char_u *spl; long dummy; if (no_spell_checking(curwin)) { return; } get_option_value("spl", &dummy, &spl, OPT_LOCAL); // Create a new empty buffer in a new window. do_cmdline_cmd("new"); // enable spelling locally in the new window set_option_value("spell", true, "", OPT_LOCAL); set_option_value("spl", dummy, (char *)spl, OPT_LOCAL); xfree(spl); if (!buf_is_empty(curbuf)) { return; } spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0); // Delete the empty line that we started with. if (curbuf->b_ml.ml_line_count > 1) { ml_delete(curbuf->b_ml.ml_line_count, false); } redraw_later(curwin, NOT_VALID); } // Go through all possible words and: // 1. When "pat" is NULL: dump a list of all words in the current buffer. // "ic" and "dir" are not used. // 2. When "pat" is not NULL: add matching words to insert mode completion. void spell_dump_compl ( char_u *pat, // leading part of the word int ic, // ignore case Direction *dir, // direction for adding matches int dumpflags_arg // DUMPFLAG_* ) { langp_T *lp; slang_T *slang; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u word[MAXWLEN]; int c; char_u *byts; idx_T *idxs; linenr_T lnum = 0; int round; int depth; int n; int flags; char_u *region_names = NULL; // region names being used bool do_region = true; // dump region names and numbers char_u *p; int dumpflags = dumpflags_arg; int patlen; // When ignoring case or when the pattern starts with capital pass this on // to dump_word(). if (pat != NULL) { if (ic) dumpflags |= DUMPFLAG_ICASE; else { n = captype(pat, NULL); if (n == WF_ONECAP) dumpflags |= DUMPFLAG_ONECAP; else if (n == WF_ALLCAP && (int)STRLEN(pat) > mb_ptr2len(pat) ) dumpflags |= DUMPFLAG_ALLCAP; } } // Find out if we can support regions: All languages must support the same // regions or none at all. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); p = lp->lp_slang->sl_regions; if (p[0] != 0) { if (region_names == NULL) // first language with regions region_names = p; else if (STRCMP(region_names, p) != 0) { do_region = false; // region names are different break; } } } if (do_region && region_names != NULL) { if (pat == NULL) { vim_snprintf((char *)IObuff, IOSIZE, "/regions=%s", region_names); ml_append(lnum++, IObuff, (colnr_T)0, false); } } else do_region = false; // Loop over all files loaded for the entries in 'spelllang'. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (slang->sl_fbyts == NULL) // reloading failed continue; if (pat == NULL) { vim_snprintf((char *)IObuff, IOSIZE, "# file: %s", slang->sl_fname); ml_append(lnum++, IObuff, (colnr_T)0, false); } // When matching with a pattern and there are no prefixes only use // parts of the tree that match "pat". if (pat != NULL && slang->sl_pbyts == NULL) patlen = (int)STRLEN(pat); else patlen = -1; // round 1: case-folded tree // round 2: keep-case tree for (round = 1; round <= 2; ++round) { if (round == 1) { dumpflags &= ~DUMPFLAG_KEEPCASE; byts = slang->sl_fbyts; idxs = slang->sl_fidxs; } else { dumpflags |= DUMPFLAG_KEEPCASE; byts = slang->sl_kbyts; idxs = slang->sl_kidxs; } if (byts == NULL) continue; // array is empty depth = 0; arridx[0] = 0; curi[0] = 1; while (depth >= 0 && !got_int && (pat == NULL || !compl_interrupted)) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. --depth; line_breakcheck(); ins_compl_check_keys(50, false); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // End of word, deal with the word. // Don't use keep-case words in the fold-case tree, // they will appear in the keep-case tree. // Only use the word when the region matches. flags = (int)idxs[n]; if ((round == 2 || (flags & WF_KEEPCAP) == 0) && (flags & WF_NEEDCOMP) == 0 && (do_region || (flags & WF_REGION) == 0 || (((unsigned)flags >> 16) & lp->lp_region) != 0)) { word[depth] = NUL; if (!do_region) flags &= ~WF_REGION; // Dump the basic word if there is no prefix or // when it's the first one. c = (unsigned)flags >> 24; if (c == 0 || curi[depth] == 2) { dump_word(slang, word, pat, dir, dumpflags, flags, lnum); if (pat == NULL) ++lnum; } // Apply the prefix, if there is one. if (c != 0) lnum = dump_prefixes(slang, word, pat, dir, dumpflags, flags, lnum); } } else { // Normal char, go one level deeper. word[depth++] = c; arridx[depth] = idxs[n]; curi[depth] = 1; // Check if this characters matches with the pattern. // If not skip the whole tree below it. // Always ignore case here, dump_word() will check // proper case later. This isn't exactly right when // length changes for multi-byte characters with // ignore case... assert(depth >= 0); if (depth <= patlen && mb_strnicmp(word, pat, (size_t)depth) != 0) --depth; } } } } } } // Dumps one word: apply case modifications and append a line to the buffer. // When "lnum" is zero add insert mode completion. static void dump_word(slang_T *slang, char_u *word, char_u *pat, Direction *dir, int dumpflags, int wordflags, linenr_T lnum) { bool keepcap = false; char_u *p; char_u *tw; char_u cword[MAXWLEN]; char_u badword[MAXWLEN + 10]; int i; int flags = wordflags; if (dumpflags & DUMPFLAG_ONECAP) flags |= WF_ONECAP; if (dumpflags & DUMPFLAG_ALLCAP) flags |= WF_ALLCAP; if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) { // Need to fix case according to "flags". make_case_word(word, cword, flags); p = cword; } else { p = word; if ((dumpflags & DUMPFLAG_KEEPCASE) && ((captype(word, NULL) & WF_KEEPCAP) == 0 || (flags & WF_FIXCAP) != 0)) keepcap = true; } tw = p; if (pat == NULL) { // Add flags and regions after a slash. if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) { STRCPY(badword, p); STRCAT(badword, "/"); if (keepcap) { STRCAT(badword, "="); } if (flags & WF_BANNED) { STRCAT(badword, "!"); } else if (flags & WF_RARE) { STRCAT(badword, "?"); } if (flags & WF_REGION) { for (i = 0; i < 7; i++) { if (flags & (0x10000 << i)) { const size_t badword_len = STRLEN(badword); snprintf((char *)badword + badword_len, sizeof(badword) - badword_len, "%d", i + 1); } } } p = badword; } if (dumpflags & DUMPFLAG_COUNT) { hashitem_T *hi; // Include the word count for ":spelldump!". hi = hash_find(&slang->sl_wordcount, tw); if (!HASHITEM_EMPTY(hi)) { vim_snprintf((char *)IObuff, IOSIZE, "%s\t%d", tw, HI2WC(hi)->wc_count); p = IObuff; } } ml_append(lnum, p, (colnr_T)0, false); } else if (((dumpflags & DUMPFLAG_ICASE) ? mb_strnicmp(p, pat, STRLEN(pat)) == 0 : STRNCMP(p, pat, STRLEN(pat)) == 0) && ins_compl_add_infercase(p, (int)STRLEN(p), p_ic, NULL, *dir, false) == OK) { // if dir was BACKWARD then honor it just once *dir = FORWARD; } } // For ":spelldump": Find matching prefixes for "word". Prepend each to // "word" and append a line to the buffer. // When "lnum" is zero add insert mode completion. // Return the updated line number. static linenr_T dump_prefixes ( slang_T *slang, char_u *word, // case-folded word char_u *pat, Direction *dir, int dumpflags, int flags, // flags with prefix ID linenr_T startlnum ) { idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u prefix[MAXWLEN]; char_u word_up[MAXWLEN]; bool has_word_up = false; int c; char_u *byts; idx_T *idxs; linenr_T lnum = startlnum; int depth; int n; int len; int i; // If the word starts with a lower-case letter make the word with an // upper-case letter in word_up[]. c = PTR2CHAR(word); if (SPELL_TOUPPER(c) != c) { onecap_copy(word, word_up, true); has_word_up = true; } byts = slang->sl_pbyts; idxs = slang->sl_pidxs; if (byts != NULL) { // array not is empty // Loop over all prefixes, building them byte-by-byte in prefix[]. // When at the end of a prefix check that it supports "flags". depth = 0; arridx[0] = 0; curi[0] = 1; while (depth >= 0 && !got_int) { n = arridx[depth]; len = byts[n]; if (curi[depth] > len) { // Done all bytes at this node, go up one level. --depth; line_breakcheck(); } else { // Do one more byte at this node. n += curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // End of prefix, find out how many IDs there are. for (i = 1; i < len; ++i) if (byts[n + i] != 0) break; curi[depth] += i - 1; c = valid_word_prefix(i, n, flags, word, slang, false); if (c != 0) { STRLCPY(prefix + depth, word, MAXWLEN - depth); dump_word(slang, prefix, pat, dir, dumpflags, (c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum); if (lnum != 0) ++lnum; } // Check for prefix that matches the word when the // first letter is upper-case, but only if the prefix has // a condition. if (has_word_up) { c = valid_word_prefix(i, n, flags, word_up, slang, true); if (c != 0) { STRLCPY(prefix + depth, word_up, MAXWLEN - depth); dump_word(slang, prefix, pat, dir, dumpflags, (c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum); if (lnum != 0) ++lnum; } } } else { // Normal char, go one level deeper. prefix[depth++] = c; arridx[depth] = idxs[n]; curi[depth] = 1; } } } } return lnum; } // Move "p" to the end of word "start". // Uses the spell-checking word characters. char_u *spell_to_word_end(char_u *start, win_T *win) { char_u *p = start; while (*p != NUL && spell_iswordp(p, win)) { MB_PTR_ADV(p); } return p; } // For Insert mode completion CTRL-X s: // Find start of the word in front of column "startcol". // We don't check if it is badly spelled, with completion we can only change // the word in front of the cursor. // Returns the column number of the word. int spell_word_start(int startcol) { char_u *line; char_u *p; int col = 0; if (no_spell_checking(curwin)) { return startcol; } // Find a word character before "startcol". line = get_cursor_line_ptr(); for (p = line + startcol; p > line; ) { MB_PTR_BACK(line, p); if (spell_iswordp_nmw(p, curwin)) { break; } } // Go back to start of the word. while (p > line) { col = (int)(p - line); MB_PTR_BACK(line, p); if (!spell_iswordp(p, curwin)) { break; } col = 0; } return col; } // Need to check for 'spellcapcheck' now, the word is removed before // expand_spelling() is called. Therefore the ugly global variable. static bool spell_expand_need_cap; void spell_expand_check_cap(colnr_T col) { spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col); } // Get list of spelling suggestions. // Used for Insert mode completion CTRL-X ?. // Returns the number of matches. The matches are in "matchp[]", array of // allocated strings. int expand_spelling(linenr_T lnum, char_u *pat, char_u ***matchp) { garray_T ga; spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true); *matchp = ga.ga_data; return ga.ga_len; }