// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com // spell.c: code for spell checking // // See spellfile.c for the Vim spell file format. // // The spell checking mechanism uses a tree (aka trie). Each node in the tree // has a list of bytes that can appear (siblings). For each byte there is a // pointer to the node with the byte that follows in the word (child). // // A NUL byte is used where the word may end. The bytes are sorted, so that // binary searching can be used and the NUL bytes are at the start. The // number of possible bytes is stored before the list of bytes. // // The tree uses two arrays: "byts" stores the characters, "idxs" stores // either the next index or flags. The tree starts at index 0. For example, // to lookup "vi" this sequence is followed: // i = 0 // len = byts[i] // n = where "v" appears in byts[i + 1] to byts[i + len] // i = idxs[n] // len = byts[i] // n = where "i" appears in byts[i + 1] to byts[i + len] // i = idxs[n] // len = byts[i] // find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi". // // There are two word trees: one with case-folded words and one with words in // original case. The second one is only used for keep-case words and is // usually small. // // There is one additional tree for when not all prefixes are applied when // generating the .spl file. This tree stores all the possible prefixes, as // if they were words. At each word (prefix) end the prefix nr is stored, the // following word must support this prefix nr. And the condition nr is // stored, used to lookup the condition that the word must match with. // // Thanks to Olaf Seibert for providing an example implementation of this tree // and the compression mechanism. // LZ trie ideas: // http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf // More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html // // Matching involves checking the caps type: Onecap ALLCAP KeepCap. // // Why doesn't Vim use aspell/ispell/myspell/etc.? // See ":help develop-spell". // Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word. // Only use it for small word lists! // Use SPELL_COMPRESS_ALLWAYS for debugging: compress the word tree after // adding a word. Only use it for small word lists! // Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a // specific word. #include #include #include #include #include #include #include // for offsetof() #include #include "nvim/ascii.h" #include "nvim/buffer.h" #include "nvim/change.h" #include "nvim/charset.h" #include "nvim/cursor.h" #include "nvim/drawscreen.h" #include "nvim/edit.h" #include "nvim/ex_cmds.h" #include "nvim/ex_docmd.h" #include "nvim/func_attr.h" #include "nvim/garray.h" #include "nvim/hashtab.h" #include "nvim/input.h" #include "nvim/insexpand.h" #include "nvim/mark.h" #include "nvim/mbyte.h" #include "nvim/memline.h" #include "nvim/memory.h" #include "nvim/message.h" #include "nvim/normal.h" #include "nvim/option.h" #include "nvim/os/input.h" #include "nvim/os/os.h" #include "nvim/os_unix.h" #include "nvim/path.h" #include "nvim/regexp.h" #include "nvim/search.h" #include "nvim/spell.h" #include "nvim/spellfile.h" #include "nvim/spellsuggest.h" #include "nvim/strings.h" #include "nvim/syntax.h" #include "nvim/undo.h" // Result values. Lower number is accepted over higher one. #define SP_BANNED (-1) #define SP_RARE 0 #define SP_OK 1 #define SP_LOCAL 2 #define SP_BAD 3 // First language that is loaded, start of the linked list of loaded // languages. slang_T *first_lang = NULL; // file used for "zG" and "zW" char_u *int_wordlist = NULL; // Structure to store info for word matching. typedef struct matchinf_S { langp_T *mi_lp; // info for language and region // pointers to original text to be checked char_u *mi_word; // start of word being checked char_u *mi_end; // end of matching word so far char_u *mi_fend; // next char to be added to mi_fword char_u *mi_cend; // char after what was used for // mi_capflags // case-folded text char_u mi_fword[MAXWLEN + 1]; // mi_word case-folded int mi_fwordlen; // nr of valid bytes in mi_fword // for when checking word after a prefix int mi_prefarridx; // index in sl_pidxs with list of // affixID/condition int mi_prefcnt; // number of entries at mi_prefarridx int mi_prefixlen; // byte length of prefix int mi_cprefixlen; // byte length of prefix in original // case // for when checking a compound word int mi_compoff; // start of following word offset char_u mi_compflags[MAXWLEN]; // flags for compound words used int mi_complen; // nr of compound words used int mi_compextra; // nr of COMPOUNDROOT words // others int mi_result; // result so far: SP_BAD, SP_OK, etc. int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP win_T *mi_win; // buffer being checked // for NOBREAK int mi_result2; // "mi_resul" without following word char_u *mi_end2; // "mi_end" without following word } matchinf_T; // Structure used for the cookie argument of do_in_runtimepath(). typedef struct spelload_S { char_u sl_lang[MAXWLEN + 1]; // language name slang_T *sl_slang; // resulting slang_T struct int sl_nobreak; // NOBREAK language found } spelload_T; #define SY_MAXLEN 30 typedef struct syl_item_S { char_u sy_chars[SY_MAXLEN]; // the sequence of chars int sy_len; } syl_item_T; spelltab_T spelltab; int did_set_spelltab; #ifdef INCLUDE_GENERATED_DECLARATIONS # include "spell.c.generated.h" #endif // mode values for find_word #define FIND_FOLDWORD 0 // find word case-folded #define FIND_KEEPWORD 1 // find keep-case word #define FIND_PREFIX 2 // find word after prefix #define FIND_COMPOUND 3 // find case-folded compound word #define FIND_KEEPCOMPOUND 4 // find keep-case compound word char *e_format = N_("E759: Format error in spell file"); // Remember what "z?" replaced. char_u *repl_from = NULL; char_u *repl_to = NULL; /// Main spell-checking function. /// "ptr" points to a character that could be the start of a word. /// "*attrp" is set to the highlight index for a badly spelled word. For a /// non-word or when it's OK it remains unchanged. /// This must only be called when 'spelllang' is not empty. /// /// "capcol" is used to check for a Capitalised word after the end of a /// sentence. If it's zero then perform the check. Return the column where to /// check next, or -1 when no sentence end was found. If it's NULL then don't /// worry. /// /// @param wp current window /// @param capcol column to check for Capital /// @param docount count good words /// /// @return the length of the word in bytes, also when it's OK, so that the /// caller can skip over the word. size_t spell_check(win_T *wp, char_u *ptr, hlf_T *attrp, int *capcol, bool docount) { matchinf_T mi; // Most things are put in "mi" so that it can // be passed to functions quickly. size_t nrlen = 0; // found a number first int c; size_t wrongcaplen = 0; int lpi; bool count_word = docount; bool use_camel_case = *wp->w_s->b_p_spo != NUL; bool camel_case = false; // A word never starts at a space or a control character. Return quickly // then, skipping over the character. if (*ptr <= ' ') { return 1; } // Return here when loading language files failed. if (GA_EMPTY(&wp->w_s->b_langp)) { return 1; } CLEAR_FIELD(mi); // A number is always OK. Also skip hexadecimal numbers 0xFF99 and // 0X99FF. But always do check spelling to find "3GPP" and "11 // julifeest". if (*ptr >= '0' && *ptr <= '9') { if (*ptr == '0' && (ptr[1] == 'b' || ptr[1] == 'B')) { mi.mi_end = (char_u *)skipbin((char *)ptr + 2); } else if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X')) { mi.mi_end = skiphex(ptr + 2); } else { mi.mi_end = (char_u *)skipdigits((char *)ptr); } nrlen = (size_t)(mi.mi_end - ptr); } // Find the normal end of the word (until the next non-word character). mi.mi_word = ptr; mi.mi_fend = ptr; if (spell_iswordp(mi.mi_fend, wp)) { bool this_upper = false; // init for gcc if (use_camel_case) { c = utf_ptr2char((char *)mi.mi_fend); this_upper = SPELL_ISUPPER(c); } do { MB_PTR_ADV(mi.mi_fend); if (use_camel_case) { const bool prev_upper = this_upper; c = utf_ptr2char((char *)mi.mi_fend); this_upper = SPELL_ISUPPER(c); camel_case = !prev_upper && this_upper; } } while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp) && !camel_case); if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) { // Check word starting with capital letter. c = utf_ptr2char((char *)ptr); if (!SPELL_ISUPPER(c)) { wrongcaplen = (size_t)(mi.mi_fend - ptr); } } } if (capcol != NULL) { *capcol = -1; } // We always use the characters up to the next non-word character, // also for bad words. mi.mi_end = mi.mi_fend; // Check caps type later. mi.mi_capflags = 0; mi.mi_cend = NULL; mi.mi_win = wp; // case-fold the word with one non-word character, so that we can check // for the word end. if (*mi.mi_fend != NUL) { MB_PTR_ADV(mi.mi_fend); } (void)spell_casefold(wp, ptr, (int)(mi.mi_fend - ptr), mi.mi_fword, MAXWLEN + 1); mi.mi_fwordlen = (int)STRLEN(mi.mi_fword); if (camel_case && mi.mi_fwordlen > 0) { // introduce a fake word end space into the folded word. mi.mi_fword[mi.mi_fwordlen - 1] = ' '; } // The word is bad unless we recognize it. mi.mi_result = SP_BAD; mi.mi_result2 = SP_BAD; // Loop over the languages specified in 'spelllang'. // We check them all, because a word may be matched longer in another // language. for (lpi = 0; lpi < wp->w_s->b_langp.ga_len; ++lpi) { mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi); // If reloading fails the language is still in the list but everything // has been cleared. if (mi.mi_lp->lp_slang->sl_fidxs == NULL) { continue; } // Check for a matching word in case-folded words. find_word(&mi, FIND_FOLDWORD); // Check for a matching word in keep-case words. find_word(&mi, FIND_KEEPWORD); // Check for matching prefixes. find_prefix(&mi, FIND_FOLDWORD); // For a NOBREAK language, may want to use a word without a following // word as a backup. if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD && mi.mi_result2 != SP_BAD) { mi.mi_result = mi.mi_result2; mi.mi_end = mi.mi_end2; } // Count the word in the first language where it's found to be OK. if (count_word && mi.mi_result == SP_OK) { count_common_word(mi.mi_lp->lp_slang, ptr, (int)(mi.mi_end - ptr), 1); count_word = false; } } if (mi.mi_result != SP_OK) { // If we found a number skip over it. Allows for "42nd". Do flag // rare and local words, e.g., "3GPP". if (nrlen > 0) { if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) { return nrlen; } } else if (!spell_iswordp_nmw(ptr, wp)) { // When we are at a non-word character there is no error, just // skip over the character (try looking for a word after it). if (capcol != NULL && wp->w_s->b_cap_prog != NULL) { regmatch_T regmatch; // Check for end of sentence. regmatch.regprog = wp->w_s->b_cap_prog; regmatch.rm_ic = false; int r = vim_regexec(®match, (char *)ptr, 0); wp->w_s->b_cap_prog = regmatch.regprog; if (r) { *capcol = (int)(regmatch.endp[0] - ptr); } } return (size_t)(utfc_ptr2len((char *)ptr)); } else if (mi.mi_end == ptr) { // Always include at least one character. Required for when there // is a mixup in "midword". MB_PTR_ADV(mi.mi_end); } else if (mi.mi_result == SP_BAD && LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) { char_u *p, *fp; int save_result = mi.mi_result; // First language in 'spelllang' is NOBREAK. Find first position // at which any word would be valid. mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0); if (mi.mi_lp->lp_slang->sl_fidxs != NULL) { p = mi.mi_word; fp = mi.mi_fword; for (;;) { MB_PTR_ADV(p); MB_PTR_ADV(fp); if (p >= mi.mi_end) { break; } mi.mi_compoff = (int)(fp - mi.mi_fword); find_word(&mi, FIND_COMPOUND); if (mi.mi_result != SP_BAD) { mi.mi_end = p; break; } } mi.mi_result = save_result; } } if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) { *attrp = HLF_SPB; } else if (mi.mi_result == SP_RARE) { *attrp = HLF_SPR; } else { *attrp = HLF_SPL; } } if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) { // Report SpellCap only when the word isn't badly spelled. *attrp = HLF_SPC; return wrongcaplen; } return (size_t)(mi.mi_end - ptr); } // Check if the word at "mip->mi_word" is in the tree. // When "mode" is FIND_FOLDWORD check in fold-case word tree. // When "mode" is FIND_KEEPWORD check in keep-case word tree. // When "mode" is FIND_PREFIX check for word after prefix in fold-case word // tree. // // For a match mip->mi_result is updated. static void find_word(matchinf_T *mip, int mode) { int wlen = 0; int flen; char_u *ptr; slang_T *slang = mip->mi_lp->lp_slang; char_u *byts; idx_T *idxs; if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) { // Check for word with matching case in keep-case tree. ptr = mip->mi_word; flen = 9999; // no case folding, always enough bytes byts = slang->sl_kbyts; idxs = slang->sl_kidxs; if (mode == FIND_KEEPCOMPOUND) { // Skip over the previously found word(s). wlen += mip->mi_compoff; } } else { // Check for case-folded in case-folded tree. ptr = mip->mi_fword; flen = mip->mi_fwordlen; // available case-folded bytes byts = slang->sl_fbyts; idxs = slang->sl_fidxs; if (mode == FIND_PREFIX) { // Skip over the prefix. wlen = mip->mi_prefixlen; flen -= mip->mi_prefixlen; } else if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). wlen = mip->mi_compoff; flen -= mip->mi_compoff; } } if (byts == NULL) { return; // array is empty } idx_T arridx = 0; int endlen[MAXWLEN]; // length at possible word endings idx_T endidx[MAXWLEN]; // possible word endings int endidxcnt = 0; int len; int c; // Repeat advancing in the tree until: // - there is a byte that doesn't match, // - we reach the end of the tree, // - or we reach the end of the line. for (;;) { if (flen <= 0 && *mip->mi_fend != NUL) { flen = fold_more(mip); } len = byts[arridx++]; // If the first possible byte is a zero the word could end here. // Remember this index, we first check for the longest word. if (byts[arridx] == 0) { if (endidxcnt == MAXWLEN) { // Must be a corrupted spell file. emsg(_(e_format)); return; } endlen[endidxcnt] = wlen; endidx[endidxcnt++] = arridx++; len--; // Skip over the zeros, there can be several flag/region // combinations. while (len > 0 && byts[arridx] == 0) { arridx++; len--; } if (len == 0) { break; // no children, word must end here } } // Stop looking at end of the line. if (ptr[wlen] == NUL) { break; } // Perform a binary search in the list of accepted bytes. c = ptr[wlen]; if (c == TAB) { // is handled like c = ' '; } idx_T lo = arridx; idx_T hi = arridx + len - 1; while (lo < hi) { idx_T m = (lo + hi) / 2; if (byts[m] > c) { hi = m - 1; } else if (byts[m] < c) { lo = m + 1; } else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) { break; } // Continue at the child (if there is one). arridx = idxs[lo]; wlen++; flen--; // One space in the good word may stand for several spaces in the // checked word. if (c == ' ') { for (;;) { if (flen <= 0 && *mip->mi_fend != NUL) { flen = fold_more(mip); } if (ptr[wlen] != ' ' && ptr[wlen] != TAB) { break; } wlen++; flen--; } } } char_u *p; bool word_ends; // Verify that one of the possible endings is valid. Try the longest // first. while (endidxcnt > 0) { endidxcnt--; arridx = endidx[endidxcnt]; wlen = endlen[endidxcnt]; if (utf_head_off(ptr, ptr + wlen) > 0) { continue; // not at first byte of character } if (spell_iswordp(ptr + wlen, mip->mi_win)) { if (slang->sl_compprog == NULL && !slang->sl_nobreak) { continue; // next char is a word character } word_ends = false; } else { word_ends = true; } // The prefix flag is before compound flags. Once a valid prefix flag // has been found we try compound flags. bool prefix_found = false; if (mode != FIND_KEEPWORD) { // Compute byte length in original word, length may change // when folding case. This can be slow, take a shortcut when the // case-folded word is equal to the keep-case word. p = mip->mi_word; if (STRNCMP(ptr, p, wlen) != 0) { for (char_u *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) { MB_PTR_ADV(p); } wlen = (int)(p - mip->mi_word); } } // Check flags and region. For FIND_PREFIX check the condition and // prefix ID. // Repeat this if there are more flags/region alternatives until there // is a match. for (len = byts[arridx - 1]; len > 0 && byts[arridx] == 0; len--, arridx++) { uint32_t flags = (uint32_t)idxs[arridx]; // For the fold-case tree check that the case of the checked word // matches with what the word in the tree requires. // For keep-case tree the case is always right. For prefixes we // don't bother to check. if (mode == FIND_FOLDWORD) { if (mip->mi_cend != mip->mi_word + wlen) { // mi_capflags was set for a different word length, need // to do it again. mip->mi_cend = mip->mi_word + wlen; mip->mi_capflags = captype(mip->mi_word, mip->mi_cend); } if (mip->mi_capflags == WF_KEEPCAP || !spell_valid_case(mip->mi_capflags, (int)flags)) { continue; } } // When mode is FIND_PREFIX the word must support the prefix: // check the prefix ID and the condition. Do that for the list at // mip->mi_prefarridx that find_prefix() filled. else if (mode == FIND_PREFIX && !prefix_found) { c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx, (int)flags, mip->mi_word + mip->mi_cprefixlen, slang, false); if (c == 0) { continue; } // Use the WF_RARE flag for a rare prefix. if (c & WF_RAREPFX) { flags |= WF_RARE; } prefix_found = true; } if (slang->sl_nobreak) { if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND) && (flags & WF_BANNED) == 0) { // NOBREAK: found a valid following word. That's all we // need to know, so return. mip->mi_result = SP_OK; break; } } else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND || !word_ends)) { // If there is no compound flag or the word is shorter than // COMPOUNDMIN reject it quickly. // Makes you wonder why someone puts a compound flag on a word // that's too short... Myspell compatibility requires this // anyway. if (((unsigned)flags >> 24) == 0 || wlen - mip->mi_compoff < slang->sl_compminlen) { continue; } // For multi-byte chars check character length against // COMPOUNDMIN. if (slang->sl_compminlen > 0 && mb_charlen_len(mip->mi_word + mip->mi_compoff, wlen - mip->mi_compoff) < slang->sl_compminlen) { continue; } // Limit the number of compound words to COMPOUNDWORDMAX if no // maximum for syllables is specified. if (!word_ends && mip->mi_complen + mip->mi_compextra + 2 > slang->sl_compmax && slang->sl_compsylmax == MAXWLEN) { continue; } // Don't allow compounding on a side where an affix was added, // unless COMPOUNDPERMITFLAG was used. if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF)) { continue; } if (!word_ends && (flags & WF_NOCOMPAFT)) { continue; } // Quickly check if compounding is possible with this flag. if (!byte_in_str(mip->mi_complen == 0 ? slang->sl_compstartflags : slang->sl_compallflags, (int)((unsigned)flags >> 24))) { continue; } // If there is a match with a CHECKCOMPOUNDPATTERN rule // discard the compound word. if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat)) { continue; } if (mode == FIND_COMPOUND) { int capflags; // Need to check the caps type of the appended compound // word. if (STRNCMP(ptr, mip->mi_word, mip->mi_compoff) != 0) { // case folding may have changed the length p = mip->mi_word; for (char_u *s = ptr; s < ptr + mip->mi_compoff; MB_PTR_ADV(s)) { MB_PTR_ADV(p); } } else { p = mip->mi_word + mip->mi_compoff; } capflags = captype(p, mip->mi_word + wlen); if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP && (flags & WF_FIXCAP) != 0)) { continue; } if (capflags != WF_ALLCAP) { // When the character before the word is a word // character we do not accept a Onecap word. We do // accept a no-caps word, even when the dictionary // word specifies ONECAP. MB_PTR_BACK(mip->mi_word, p); if (spell_iswordp_nmw(p, mip->mi_win) ? capflags == WF_ONECAP : (flags & WF_ONECAP) != 0 && capflags != WF_ONECAP) { continue; } } } // If the word ends the sequence of compound flags of the // words must match with one of the COMPOUNDRULE items and // the number of syllables must not be too large. mip->mi_compflags[mip->mi_complen] = (char_u)((unsigned)flags >> 24); mip->mi_compflags[mip->mi_complen + 1] = NUL; if (word_ends) { char_u fword[MAXWLEN] = { 0 }; if (slang->sl_compsylmax < MAXWLEN) { // "fword" is only needed for checking syllables. if (ptr == mip->mi_word) { (void)spell_casefold(mip->mi_win, ptr, wlen, fword, MAXWLEN); } else { STRLCPY(fword, ptr, endlen[endidxcnt] + 1); } } if (!can_compound(slang, fword, mip->mi_compflags)) { continue; } } else if (slang->sl_comprules != NULL && !match_compoundrule(slang, mip->mi_compflags)) { // The compound flags collected so far do not match any // COMPOUNDRULE, discard the compounded word. continue; } } // Check NEEDCOMPOUND: can't use word without compounding. else if (flags & WF_NEEDCOMP) { continue; } int nobreak_result = SP_OK; if (!word_ends) { int save_result = mip->mi_result; char_u *save_end = mip->mi_end; langp_T *save_lp = mip->mi_lp; // Check that a valid word follows. If there is one and we // are compounding, it will set "mi_result", thus we are // always finished here. For NOBREAK we only check that a // valid word follows. // Recursive! if (slang->sl_nobreak) { mip->mi_result = SP_BAD; } // Find following word in case-folded tree. mip->mi_compoff = endlen[endidxcnt]; if (mode == FIND_KEEPWORD) { // Compute byte length in case-folded word from "wlen": // byte length in keep-case word. Length may change when // folding case. This can be slow, take a shortcut when // the case-folded word is equal to the keep-case word. p = mip->mi_fword; if (STRNCMP(ptr, p, wlen) != 0) { for (char_u *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) { MB_PTR_ADV(p); } mip->mi_compoff = (int)(p - mip->mi_fword); } } #if 0 c = mip->mi_compoff; #endif ++mip->mi_complen; if (flags & WF_COMPROOT) { ++mip->mi_compextra; } // For NOBREAK we need to try all NOBREAK languages, at least // to find the ".add" file(s). for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; ++lpi) { if (slang->sl_nobreak) { mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi); if (mip->mi_lp->lp_slang->sl_fidxs == NULL || !mip->mi_lp->lp_slang->sl_nobreak) { continue; } } find_word(mip, FIND_COMPOUND); // When NOBREAK any word that matches is OK. Otherwise we // need to find the longest match, thus try with keep-case // and prefix too. if (!slang->sl_nobreak || mip->mi_result == SP_BAD) { // Find following word in keep-case tree. mip->mi_compoff = wlen; find_word(mip, FIND_KEEPCOMPOUND); #if 0 // Disabled, a prefix must not appear halfway through a compound // word, unless the COMPOUNDPERMITFLAG is used, in which case it // can't be a postponed prefix. if (!slang->sl_nobreak || mip->mi_result == SP_BAD) { // Check for following word with prefix. mip->mi_compoff = c; find_prefix(mip, FIND_COMPOUND); } #endif } if (!slang->sl_nobreak) { break; } } --mip->mi_complen; if (flags & WF_COMPROOT) { --mip->mi_compextra; } mip->mi_lp = save_lp; if (slang->sl_nobreak) { nobreak_result = mip->mi_result; mip->mi_result = save_result; mip->mi_end = save_end; } else { if (mip->mi_result == SP_OK) { break; } continue; } } int res = SP_BAD; if (flags & WF_BANNED) { res = SP_BANNED; } else if (flags & WF_REGION) { // Check region. if (((unsigned)mip->mi_lp->lp_region & (flags >> 16)) != 0) { res = SP_OK; } else { res = SP_LOCAL; } } else if (flags & WF_RARE) { res = SP_RARE; } else { res = SP_OK; } // Always use the longest match and the best result. For NOBREAK // we separately keep the longest match without a following good // word as a fall-back. if (nobreak_result == SP_BAD) { if (mip->mi_result2 > res) { mip->mi_result2 = res; mip->mi_end2 = mip->mi_word + wlen; } else if (mip->mi_result2 == res && mip->mi_end2 < mip->mi_word + wlen) { mip->mi_end2 = mip->mi_word + wlen; } } else if (mip->mi_result > res) { mip->mi_result = res; mip->mi_end = mip->mi_word + wlen; } else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen) { mip->mi_end = mip->mi_word + wlen; } if (mip->mi_result == SP_OK) { break; } } if (mip->mi_result == SP_OK) { break; } } } /// Returns true if there is a match between the word ptr[wlen] and /// CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another /// word. /// A match means that the first part of CHECKCOMPOUNDPATTERN matches at the /// end of ptr[wlen] and the second part matches after it. /// /// @param gap &sl_comppat bool match_checkcompoundpattern(char_u *ptr, int wlen, garray_T *gap) { char_u *p; int len; for (int i = 0; i + 1 < gap->ga_len; i += 2) { p = ((char_u **)gap->ga_data)[i + 1]; if (STRNCMP(ptr + wlen, p, STRLEN(p)) == 0) { // Second part matches at start of following compound word, now // check if first part matches at end of previous word. p = ((char_u **)gap->ga_data)[i]; len = (int)STRLEN(p); if (len <= wlen && STRNCMP(ptr + wlen - len, p, len) == 0) { return true; } } } return false; } // Returns true if "flags" is a valid sequence of compound flags and "word" // does not have too many syllables. bool can_compound(slang_T *slang, const char_u *word, const char_u *flags) FUNC_ATTR_NONNULL_ALL { char_u uflags[MAXWLEN * 2] = { 0 }; if (slang->sl_compprog == NULL) { return false; } // Need to convert the single byte flags to utf8 characters. char_u *p = uflags; for (int i = 0; flags[i] != NUL; i++) { p += utf_char2bytes(flags[i], (char *)p); } *p = NUL; p = uflags; if (!vim_regexec_prog(&slang->sl_compprog, false, p, 0)) { return false; } // Count the number of syllables. This may be slow, do it last. If there // are too many syllables AND the number of compound words is above // COMPOUNDWORDMAX then compounding is not allowed. if (slang->sl_compsylmax < MAXWLEN && count_syllables(slang, word) > slang->sl_compsylmax) { return (int)STRLEN(flags) < slang->sl_compmax; } return true; } // Returns true if the compound flags in compflags[] match the start of any // compound rule. This is used to stop trying a compound if the flags // collected so far can't possibly match any compound rule. // Caller must check that slang->sl_comprules is not NULL. bool match_compoundrule(slang_T *slang, char_u *compflags) { char_u *p; int i; int c; // loop over all the COMPOUNDRULE entries for (p = slang->sl_comprules; *p != NUL; ++p) { // loop over the flags in the compound word we have made, match // them against the current rule entry for (i = 0;; ++i) { c = compflags[i]; if (c == NUL) { // found a rule that matches for the flags we have so far return true; } if (*p == '/' || *p == NUL) { break; // end of rule, it's too short } if (*p == '[') { bool match = false; // compare against all the flags in [] p++; while (*p != ']' && *p != NUL) { if (*p++ == c) { match = true; } } if (!match) { break; // none matches } } else if (*p != c) { break; // flag of word doesn't match flag in pattern } p++; } // Skip to the next "/", where the next pattern starts. p = (char_u *)vim_strchr((char *)p, '/'); if (p == NULL) { break; } } // Checked all the rules and none of them match the flags, so there // can't possibly be a compound starting with these flags. return false; } /// Return non-zero if the prefix indicated by "arridx" matches with the prefix /// ID in "flags" for the word "word". /// The WF_RAREPFX flag is included in the return value for a rare prefix. /// /// @param totprefcnt nr of prefix IDs /// @param arridx idx in sl_pidxs[] /// @param cond_req only use prefixes with a condition int valid_word_prefix(int totprefcnt, int arridx, int flags, char_u *word, slang_T *slang, bool cond_req) { int prefcnt; int pidx; int prefid = (int)((unsigned)flags >> 24); for (prefcnt = totprefcnt - 1; prefcnt >= 0; prefcnt--) { pidx = slang->sl_pidxs[arridx + prefcnt]; // Check the prefix ID. if (prefid != (pidx & 0xff)) { continue; } // Check if the prefix doesn't combine and the word already has a // suffix. if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC)) { continue; } // Check the condition, if there is one. The condition index is // stored in the two bytes above the prefix ID byte. regprog_T **rp = &slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff]; if (*rp != NULL) { if (!vim_regexec_prog(rp, false, word, 0)) { continue; } } else if (cond_req) { continue; } // It's a match! Return the WF_ flags. return pidx; } return 0; } // Check if the word at "mip->mi_word" has a matching prefix. // If it does, then check the following word. // // If "mode" is "FIND_COMPOUND" then do the same after another word, find a // prefix in a compound word. // // For a match mip->mi_result is updated. static void find_prefix(matchinf_T *mip, int mode) { idx_T arridx = 0; int len; int wlen = 0; int flen; int c; char_u *ptr; idx_T lo, hi, m; slang_T *slang = mip->mi_lp->lp_slang; char_u *byts; idx_T *idxs; byts = slang->sl_pbyts; if (byts == NULL) { return; // array is empty } // We use the case-folded word here, since prefixes are always // case-folded. ptr = mip->mi_fword; flen = mip->mi_fwordlen; // available case-folded bytes if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). ptr += mip->mi_compoff; flen -= mip->mi_compoff; } idxs = slang->sl_pidxs; // Repeat advancing in the tree until: // - there is a byte that doesn't match, // - we reach the end of the tree, // - or we reach the end of the line. for (;;) { if (flen == 0 && *mip->mi_fend != NUL) { flen = fold_more(mip); } len = byts[arridx++]; // If the first possible byte is a zero the prefix could end here. // Check if the following word matches and supports the prefix. if (byts[arridx] == 0) { // There can be several prefixes with different conditions. We // try them all, since we don't know which one will give the // longest match. The word is the same each time, pass the list // of possible prefixes to find_word(). mip->mi_prefarridx = arridx; mip->mi_prefcnt = len; while (len > 0 && byts[arridx] == 0) { arridx++; len--; } mip->mi_prefcnt -= len; // Find the word that comes after the prefix. mip->mi_prefixlen = wlen; if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). mip->mi_prefixlen += mip->mi_compoff; } // Case-folded length may differ from original length. mip->mi_cprefixlen = nofold_len(mip->mi_fword, mip->mi_prefixlen, mip->mi_word); find_word(mip, FIND_PREFIX); if (len == 0) { break; // no children, word must end here } } // Stop looking at end of the line. if (ptr[wlen] == NUL) { break; } // Perform a binary search in the list of accepted bytes. c = ptr[wlen]; lo = arridx; hi = arridx + len - 1; while (lo < hi) { m = (lo + hi) / 2; if (byts[m] > c) { hi = m - 1; } else if (byts[m] < c) { lo = m + 1; } else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) { break; } // Continue at the child (if there is one). arridx = idxs[lo]; wlen++; flen--; } } // Need to fold at least one more character. Do until next non-word character // for efficiency. Include the non-word character too. // Return the length of the folded chars in bytes. static int fold_more(matchinf_T *mip) { int flen; char_u *p; p = mip->mi_fend; do { MB_PTR_ADV(mip->mi_fend); } while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win)); // Include the non-word character so that we can check for the word end. if (*mip->mi_fend != NUL) { MB_PTR_ADV(mip->mi_fend); } (void)spell_casefold(mip->mi_win, p, (int)(mip->mi_fend - p), mip->mi_fword + mip->mi_fwordlen, MAXWLEN - mip->mi_fwordlen); flen = (int)STRLEN(mip->mi_fword + mip->mi_fwordlen); mip->mi_fwordlen += flen; return flen; } /// Checks case flags for a word. Returns true, if the word has the requested /// case. /// /// @param wordflags Flags for the checked word. /// @param treeflags Flags for the word in the spell tree. bool spell_valid_case(int wordflags, int treeflags) { return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0) || ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0 && ((treeflags & WF_ONECAP) == 0 || (wordflags & WF_ONECAP) != 0)); } // Returns true if spell checking is not enabled. bool no_spell_checking(win_T *wp) { if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL || GA_EMPTY(&wp->w_s->b_langp)) { emsg(_(e_no_spell)); return true; } return false; } /// Moves to the next spell error. /// "curline" is false for "[s", "]s", "[S" and "]S". /// "curline" is true to find word under/after cursor in the same line. /// For Insert mode completion "dir" is BACKWARD and "curline" is true: move /// to after badly spelled word before the cursor. /// /// @param dir FORWARD or BACKWARD /// @param allwords true for "[s"/"]s", false for "[S"/"]S" /// @param attrp return: attributes of bad word or NULL (only when "dir" is FORWARD) /// /// @return 0 if not found, length of the badly spelled word otherwise. size_t spell_move_to(win_T *wp, int dir, bool allwords, bool curline, hlf_T *attrp) { linenr_T lnum; pos_T found_pos; size_t found_len = 0; char_u *line; char_u *p; char_u *endp; hlf_T attr = HLF_COUNT; size_t len; int has_syntax = syntax_present(wp); int col; bool can_spell; char_u *buf = NULL; size_t buflen = 0; int skip = 0; int capcol = -1; bool found_one = false; bool wrapped = false; if (no_spell_checking(wp)) { return 0; } // Start looking for bad word at the start of the line, because we can't // start halfway through a word, we don't know where it starts or ends. // // When searching backwards, we continue in the line to find the last // bad word (in the cursor line: before the cursor). // // We concatenate the start of the next line, so that wrapped words work // (e.g. "etcetera"). Doesn't work when searching backwards // though... lnum = wp->w_cursor.lnum; clearpos(&found_pos); while (!got_int) { line = ml_get_buf(wp->w_buffer, lnum, false); len = STRLEN(line); if (buflen < len + MAXWLEN + 2) { xfree(buf); buflen = len + MAXWLEN + 2; buf = xmalloc(buflen); } assert(buf && buflen >= len + MAXWLEN + 2); // In first line check first word for Capital. if (lnum == 1) { capcol = 0; } // For checking first word with a capital skip white space. if (capcol == 0) { capcol = (int)getwhitecols(line); } else if (curline && wp == curwin) { // For spellbadword(): check if first word needs a capital. col = (int)getwhitecols(line); if (check_need_cap(lnum, col)) { capcol = col; } // Need to get the line again, may have looked at the previous // one. line = ml_get_buf(wp->w_buffer, lnum, false); } // Copy the line into "buf" and append the start of the next line if // possible. Note: this ml_get_buf() may make "line" invalid, check // for empty line first. bool empty_line = *skipwhite((const char *)line) == NUL; STRCPY(buf, line); if (lnum < wp->w_buffer->b_ml.ml_line_count) { spell_cat_line(buf + STRLEN(buf), ml_get_buf(wp->w_buffer, lnum + 1, false), MAXWLEN); } p = buf + skip; endp = buf + len; while (p < endp) { // When searching backward don't search after the cursor. Unless // we wrapped around the end of the buffer. if (dir == BACKWARD && lnum == wp->w_cursor.lnum && !wrapped && (colnr_T)(p - buf) >= wp->w_cursor.col) { break; } // start of word attr = HLF_COUNT; len = spell_check(wp, p, &attr, &capcol, false); if (attr != HLF_COUNT) { // We found a bad word. Check the attribute. if (allwords || attr == HLF_SPB) { // When searching forward only accept a bad word after // the cursor. if (dir == BACKWARD || lnum != wp->w_cursor.lnum || wrapped || ((colnr_T)(curline ? p - buf + (ptrdiff_t)len : p - buf) > wp->w_cursor.col)) { if (has_syntax) { col = (int)(p - buf); (void)syn_get_id(wp, lnum, (colnr_T)col, FALSE, &can_spell, FALSE); if (!can_spell) { attr = HLF_COUNT; } } else { can_spell = true; } if (can_spell) { found_one = true; found_pos.lnum = lnum; found_pos.col = (int)(p - buf); found_pos.coladd = 0; if (dir == FORWARD) { // No need to search further. wp->w_cursor = found_pos; xfree(buf); if (attrp != NULL) { *attrp = attr; } return len; } else if (curline) { // Insert mode completion: put cursor after // the bad word. assert(len <= INT_MAX); found_pos.col += (int)len; } found_len = len; } } else { found_one = true; } } } // advance to character after the word p += len; assert(len <= INT_MAX); capcol -= (int)len; } if (dir == BACKWARD && found_pos.lnum != 0) { // Use the last match in the line (before the cursor). wp->w_cursor = found_pos; xfree(buf); return found_len; } if (curline) { break; // only check cursor line } // If we are back at the starting line and searched it again there // is no match, give up. if (lnum == wp->w_cursor.lnum && wrapped) { break; } // Advance to next line. if (dir == BACKWARD) { if (lnum > 1) { lnum--; } else if (!p_ws) { break; // at first line and 'nowrapscan' } else { // Wrap around to the end of the buffer. May search the // starting line again and accept the last match. lnum = wp->w_buffer->b_ml.ml_line_count; wrapped = true; if (!shortmess(SHM_SEARCH)) { give_warning(_(top_bot_msg), true); } } capcol = -1; } else { if (lnum < wp->w_buffer->b_ml.ml_line_count) { lnum++; } else if (!p_ws) { break; // at first line and 'nowrapscan' } else { // Wrap around to the start of the buffer. May search the // starting line again and accept the first match. lnum = 1; wrapped = true; if (!shortmess(SHM_SEARCH)) { give_warning(_(bot_top_msg), true); } } // If we are back at the starting line and there is no match then // give up. if (lnum == wp->w_cursor.lnum && !found_one) { break; } // Skip the characters at the start of the next line that were // included in a match crossing line boundaries. if (attr == HLF_COUNT) { skip = (int)(p - endp); } else { skip = 0; } // Capcol skips over the inserted space. capcol--; // But after empty line check first word in next line if (empty_line) { capcol = 0; } } line_breakcheck(); } xfree(buf); return 0; } // For spell checking: concatenate the start of the following line "line" into // "buf", blanking-out special characters. Copy less than "maxlen" bytes. // Keep the blanks at the start of the next line, this is used in win_line() // to skip those bytes if the word was OK. void spell_cat_line(char_u *buf, char_u *line, int maxlen) { char_u *p; int n; p = (char_u *)skipwhite((char *)line); while (vim_strchr("*#/\"\t", *p) != NULL) { p = (char_u *)skipwhite((char *)p + 1); } if (*p != NUL) { // Only worth concatenating if there is something else than spaces to // concatenate. n = (int)(p - line) + 1; if (n < maxlen - 1) { memset(buf, ' ', (size_t)n); STRLCPY(buf + n, p, maxlen - n); } } } // Load word list(s) for "lang" from Vim spell file(s). // "lang" must be the language without the region: e.g., "en". static void spell_load_lang(char_u *lang) { char fname_enc[85]; int r; spelload_T sl; int round; // Copy the language name to pass it to spell_load_cb() as a cookie. // It's truncated when an error is detected. STRCPY(sl.sl_lang, lang); sl.sl_slang = NULL; sl.sl_nobreak = false; // We may retry when no spell file is found for the language, an // autocommand may load it then. for (round = 1; round <= 2; ++round) { // Find the first spell file for "lang" in 'runtimepath' and load it. vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5, "spell/%s.%s.spl", lang, spell_enc()); r = do_in_runtimepath((char *)fname_enc, 0, spell_load_cb, &sl); if (r == FAIL && *sl.sl_lang != NUL) { // Try loading the ASCII version. vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5, "spell/%s.ascii.spl", lang); r = do_in_runtimepath((char *)fname_enc, 0, spell_load_cb, &sl); if (r == FAIL && *sl.sl_lang != NUL && round == 1 && apply_autocmds(EVENT_SPELLFILEMISSING, (char *)lang, curbuf->b_fname, false, curbuf)) { continue; } break; } break; } if (r == FAIL) { if (starting) { // Prompt the user at VimEnter if spell files are missing. #3027 // Plugins aren't loaded yet, so spellfile.vim cannot handle this case. char autocmd_buf[512] = { 0 }; snprintf(autocmd_buf, sizeof(autocmd_buf), "autocmd VimEnter * call spellfile#LoadFile('%s')|set spell", lang); do_cmdline_cmd(autocmd_buf); } else { smsg(_("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""), lang, spell_enc(), lang); } } else if (sl.sl_slang != NULL) { // At least one file was loaded, now load ALL the additions. STRCPY(fname_enc + STRLEN(fname_enc) - 3, "add.spl"); do_in_runtimepath((char *)fname_enc, DIP_ALL, spell_load_cb, &sl); } } // Return the encoding used for spell checking: Use 'encoding', except that we // use "latin1" for "latin9". And limit to 60 characters (just in case). char_u *spell_enc(void) { if (STRLEN(p_enc) < 60 && STRCMP(p_enc, "iso-8859-15") != 0) { return p_enc; } return (char_u *)"latin1"; } // Get the name of the .spl file for the internal wordlist into // "fname[MAXPATHL]". static void int_wordlist_spl(char_u *fname) { vim_snprintf((char *)fname, MAXPATHL, SPL_FNAME_TMPL, int_wordlist, spell_enc()); } // Allocate a new slang_T for language "lang". "lang" can be NULL. // Caller must fill "sl_next". slang_T *slang_alloc(char_u *lang) FUNC_ATTR_NONNULL_RET { slang_T *lp = xcalloc(1, sizeof(slang_T)); if (lang != NULL) { lp->sl_name = vim_strsave(lang); } ga_init(&lp->sl_rep, sizeof(fromto_T), 10); ga_init(&lp->sl_repsal, sizeof(fromto_T), 10); lp->sl_compmax = MAXWLEN; lp->sl_compsylmax = MAXWLEN; hash_init(&lp->sl_wordcount); return lp; } // Free the contents of an slang_T and the structure itself. void slang_free(slang_T *lp) { xfree(lp->sl_name); xfree(lp->sl_fname); slang_clear(lp); xfree(lp); } /// Frees a salitem_T static void free_salitem(salitem_T *smp) { xfree(smp->sm_lead); // Don't free sm_oneof and sm_rules, they point into sm_lead. xfree(smp->sm_to); xfree(smp->sm_lead_w); xfree(smp->sm_oneof_w); xfree(smp->sm_to_w); } /// Frees a fromto_T static void free_fromto(fromto_T *ftp) { xfree(ftp->ft_from); xfree(ftp->ft_to); } // Clear an slang_T so that the file can be reloaded. void slang_clear(slang_T *lp) { garray_T *gap; XFREE_CLEAR(lp->sl_fbyts); XFREE_CLEAR(lp->sl_kbyts); XFREE_CLEAR(lp->sl_pbyts); XFREE_CLEAR(lp->sl_fidxs); XFREE_CLEAR(lp->sl_kidxs); XFREE_CLEAR(lp->sl_pidxs); GA_DEEP_CLEAR(&lp->sl_rep, fromto_T, free_fromto); GA_DEEP_CLEAR(&lp->sl_repsal, fromto_T, free_fromto); gap = &lp->sl_sal; if (lp->sl_sofo) { // "ga_len" is set to 1 without adding an item for latin1 GA_DEEP_CLEAR_PTR(gap); } else { // SAL items: free salitem_T items GA_DEEP_CLEAR(gap, salitem_T, free_salitem); } for (int i = 0; i < lp->sl_prefixcnt; ++i) { vim_regfree(lp->sl_prefprog[i]); } lp->sl_prefixcnt = 0; XFREE_CLEAR(lp->sl_prefprog); XFREE_CLEAR(lp->sl_info); XFREE_CLEAR(lp->sl_midword); vim_regfree(lp->sl_compprog); lp->sl_compprog = NULL; XFREE_CLEAR(lp->sl_comprules); XFREE_CLEAR(lp->sl_compstartflags); XFREE_CLEAR(lp->sl_compallflags); XFREE_CLEAR(lp->sl_syllable); ga_clear(&lp->sl_syl_items); ga_clear_strings(&lp->sl_comppat); hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF); hash_init(&lp->sl_wordcount); hash_clear_all(&lp->sl_map_hash, 0); // Clear info from .sug file. slang_clear_sug(lp); lp->sl_compmax = MAXWLEN; lp->sl_compminlen = 0; lp->sl_compsylmax = MAXWLEN; lp->sl_regions[0] = NUL; } // Clear the info from the .sug file in "lp". void slang_clear_sug(slang_T *lp) { XFREE_CLEAR(lp->sl_sbyts); XFREE_CLEAR(lp->sl_sidxs); close_spellbuf(lp->sl_sugbuf); lp->sl_sugbuf = NULL; lp->sl_sugloaded = false; lp->sl_sugtime = 0; } // Load one spell file and store the info into a slang_T. // Invoked through do_in_runtimepath(). static void spell_load_cb(char *fname, void *cookie) { spelload_T *slp = (spelload_T *)cookie; slang_T *slang; slang = spell_load_file((char_u *)fname, slp->sl_lang, NULL, false); if (slang != NULL) { // When a previously loaded file has NOBREAK also use it for the // ".add" files. if (slp->sl_nobreak && slang->sl_add) { slang->sl_nobreak = true; } else if (slang->sl_nobreak) { slp->sl_nobreak = true; } slp->sl_slang = slang; } } /// Add a word to the hashtable of common words. /// If it's already there then the counter is increased. /// /// @param[in] lp /// @param[in] word added to common words hashtable /// @param[in] len length of word or -1 for NUL terminated /// @param[in] count 1 to count once, 10 to init void count_common_word(slang_T *lp, char_u *word, int len, uint8_t count) { hash_T hash; hashitem_T *hi; wordcount_T *wc; char_u buf[MAXWLEN]; char_u *p; if (len == -1) { p = word; } else if (len >= MAXWLEN) { return; } else { STRLCPY(buf, word, len + 1); p = buf; } hash = hash_hash(p); const size_t p_len = STRLEN(p); hi = hash_lookup(&lp->sl_wordcount, (const char *)p, p_len, hash); if (HASHITEM_EMPTY(hi)) { wc = xmalloc(sizeof(wordcount_T) + p_len); memcpy(wc->wc_word, p, p_len + 1); wc->wc_count = count; hash_add_item(&lp->sl_wordcount, hi, wc->wc_word, hash); } else { wc = HI2WC(hi); wc->wc_count = (uint16_t)(wc->wc_count + count); if (wc->wc_count < count) { // check for overflow wc->wc_count = MAXWORDCOUNT; } } } // Returns true if byte "n" appears in "str". // Like strchr() but independent of locale. bool byte_in_str(char_u *str, int n) { char_u *p; for (p = str; *p != NUL; ++p) { if (*p == n) { return true; } } return false; } // Truncate "slang->sl_syllable" at the first slash and put the following items // in "slang->sl_syl_items". int init_syl_tab(slang_T *slang) { char_u *p; char_u *s; int l; ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4); p = (char_u *)vim_strchr((char *)slang->sl_syllable, '/'); while (p != NULL) { *p++ = NUL; if (*p == NUL) { // trailing slash break; } s = p; p = (char_u *)vim_strchr((char *)p, '/'); if (p == NULL) { l = (int)STRLEN(s); } else { l = (int)(p - s); } if (l >= SY_MAXLEN) { return SP_FORMERROR; } syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items); STRLCPY(syl->sy_chars, s, l + 1); syl->sy_len = l; } return OK; } // Count the number of syllables in "word". // When "word" contains spaces the syllables after the last space are counted. // Returns zero if syllables are not defines. static int count_syllables(slang_T *slang, const char_u *word) FUNC_ATTR_NONNULL_ALL { int cnt = 0; bool skip = false; int len; syl_item_T *syl; int c; if (slang->sl_syllable == NULL) { return 0; } for (const char_u *p = word; *p != NUL; p += len) { // When running into a space reset counter. if (*p == ' ') { len = 1; cnt = 0; continue; } // Find longest match of syllable items. len = 0; for (int i = 0; i < slang->sl_syl_items.ga_len; ++i) { syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i; if (syl->sy_len > len && STRNCMP(p, syl->sy_chars, syl->sy_len) == 0) { len = syl->sy_len; } } if (len != 0) { // found a match, count syllable cnt++; skip = false; } else { // No recognized syllable item, at least a syllable char then? c = utf_ptr2char((char *)p); len = utfc_ptr2len((char *)p); if (vim_strchr((char *)slang->sl_syllable, c) == NULL) { skip = false; // No, search for next syllable } else if (!skip) { ++cnt; // Yes, count it skip = true; // don't count following syllable chars } } } return cnt; } // Parse 'spelllang' and set w_s->b_langp accordingly. // Returns NULL if it's OK, an error message otherwise. char *did_set_spelllang(win_T *wp) { garray_T ga; char *splp; char_u *region; char_u region_cp[3]; bool filename; int region_mask; slang_T *slang; int c; char_u lang[MAXWLEN + 1]; char_u spf_name[MAXPATHL]; int len; char_u *p; int round; char *spf; char_u *use_region = NULL; bool dont_use_region = false; bool nobreak = false; langp_T *lp, *lp2; static bool recursive = false; char *ret_msg = NULL; char_u *spl_copy; bufref_T bufref; set_bufref(&bufref, wp->w_buffer); // We don't want to do this recursively. May happen when a language is // not available and the SpellFileMissing autocommand opens a new buffer // in which 'spell' is set. if (recursive) { return NULL; } recursive = true; ga_init(&ga, sizeof(langp_T), 2); clear_midword(wp); // Make a copy of 'spelllang', the SpellFileMissing autocommands may change // it under our fingers. spl_copy = vim_strsave(wp->w_s->b_p_spl); wp->w_s->b_cjk = 0; // Loop over comma separated language names. for (splp = (char *)spl_copy; *splp != NUL;) { // Get one language name. copy_option_part(&splp, (char *)lang, MAXWLEN, ","); region = NULL; len = (int)STRLEN(lang); if (!valid_spelllang(lang)) { continue; } if (STRCMP(lang, "cjk") == 0) { wp->w_s->b_cjk = 1; continue; } // If the name ends in ".spl" use it as the name of the spell file. // If there is a region name let "region" point to it and remove it // from the name. if (len > 4 && FNAMECMP(lang + len - 4, ".spl") == 0) { filename = true; // Locate a region and remove it from the file name. p = (char_u *)vim_strchr(path_tail((char *)lang), '_'); if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2]) && !ASCII_ISALPHA(p[3])) { STRLCPY(region_cp, p + 1, 3); memmove(p, p + 3, (size_t)(len - (p - lang) - 2)); region = region_cp; } else { dont_use_region = true; } // Check if we loaded this language before. for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare((char *)lang, (char *)slang->sl_fname, false, true) == kEqualFiles) { break; } } } else { filename = false; if (len > 3 && lang[len - 3] == '_') { region = lang + len - 2; lang[len - 3] = NUL; } else { dont_use_region = true; } // Check if we loaded this language before. for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (STRICMP(lang, slang->sl_name) == 0) { break; } } } if (region != NULL) { // If the region differs from what was used before then don't // use it for 'spellfile'. if (use_region != NULL && STRCMP(region, use_region) != 0) { dont_use_region = true; } use_region = region; } // If not found try loading the language now. if (slang == NULL) { if (filename) { (void)spell_load_file(lang, lang, NULL, false); } else { spell_load_lang(lang); // SpellFileMissing autocommands may do anything, including // destroying the buffer we are using... if (!bufref_valid(&bufref)) { ret_msg = N_("E797: SpellFileMissing autocommand deleted buffer"); goto theend; } } } // Loop over the languages, there can be several files for "lang". for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (filename ? path_full_compare((char *)lang, (char *)slang->sl_fname, false, true) == kEqualFiles : STRICMP(lang, slang->sl_name) == 0) { region_mask = REGION_ALL; if (!filename && region != NULL) { // find region in sl_regions c = find_region(slang->sl_regions, region); if (c == REGION_ALL) { if (slang->sl_add) { if (*slang->sl_regions != NUL) { // This addition file is for other regions. region_mask = 0; } } else { // This is probably an error. Give a warning and // accept the words anyway. smsg(_("Warning: region %s not supported"), region); } } else { region_mask = 1 << c; } } if (region_mask != 0) { langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga); p_->lp_slang = slang; p_->lp_region = region_mask; use_midword(slang, wp); if (slang->sl_nobreak) { nobreak = true; } } } } } // round 0: load int_wordlist, if possible. // round 1: load first name in 'spellfile'. // round 2: load second name in 'spellfile. // etc. spf = (char *)curwin->w_s->b_p_spf; for (round = 0; round == 0 || *spf != NUL; round++) { if (round == 0) { // Internal wordlist, if there is one. if (int_wordlist == NULL) { continue; } int_wordlist_spl(spf_name); } else { // One entry in 'spellfile'. copy_option_part(&spf, (char *)spf_name, MAXPATHL - 5, ","); STRCAT(spf_name, ".spl"); // If it was already found above then skip it. for (c = 0; c < ga.ga_len; ++c) { p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname; if (p != NULL && path_full_compare((char *)spf_name, (char *)p, false, true) == kEqualFiles) { break; } } if (c < ga.ga_len) { continue; } } // Check if it was loaded already. for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare((char *)spf_name, (char *)slang->sl_fname, false, true) == kEqualFiles) { break; } } if (slang == NULL) { // Not loaded, try loading it now. The language name includes the // region name, the region is ignored otherwise. for int_wordlist // use an arbitrary name. if (round == 0) { STRCPY(lang, "internal wordlist"); } else { STRLCPY(lang, path_tail((char *)spf_name), MAXWLEN + 1); p = (char_u *)vim_strchr((char *)lang, '.'); if (p != NULL) { *p = NUL; // truncate at ".encoding.add" } } slang = spell_load_file(spf_name, lang, NULL, true); // If one of the languages has NOBREAK we assume the addition // files also have this. if (slang != NULL && nobreak) { slang->sl_nobreak = true; } } if (slang != NULL) { region_mask = REGION_ALL; if (use_region != NULL && !dont_use_region) { // find region in sl_regions c = find_region(slang->sl_regions, use_region); if (c != REGION_ALL) { region_mask = 1 << c; } else if (*slang->sl_regions != NUL) { // This spell file is for other regions. region_mask = 0; } } if (region_mask != 0) { langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga); p_->lp_slang = slang; p_->lp_sallang = NULL; p_->lp_replang = NULL; p_->lp_region = region_mask; use_midword(slang, wp); } } } // Everything is fine, store the new b_langp value. ga_clear(&wp->w_s->b_langp); wp->w_s->b_langp = ga; // For each language figure out what language to use for sound folding and // REP items. If the language doesn't support it itself use another one // with the same name. E.g. for "en-math" use "en". for (int i = 0; i < ga.ga_len; ++i) { lp = LANGP_ENTRY(ga, i); // sound folding if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // language does sound folding itself lp->lp_sallang = lp->lp_slang; } else { // find first similar language that does sound folding for (int j = 0; j < ga.ga_len; ++j) { lp2 = LANGP_ENTRY(ga, j); if (!GA_EMPTY(&lp2->lp_slang->sl_sal) && STRNCMP(lp->lp_slang->sl_name, lp2->lp_slang->sl_name, 2) == 0) { lp->lp_sallang = lp2->lp_slang; break; } } } // REP items if (!GA_EMPTY(&lp->lp_slang->sl_rep)) { // language has REP items itself lp->lp_replang = lp->lp_slang; } else { // find first similar language that has REP items for (int j = 0; j < ga.ga_len; ++j) { lp2 = LANGP_ENTRY(ga, j); if (!GA_EMPTY(&lp2->lp_slang->sl_rep) && STRNCMP(lp->lp_slang->sl_name, lp2->lp_slang->sl_name, 2) == 0) { lp->lp_replang = lp2->lp_slang; break; } } } } redraw_later(wp, NOT_VALID); theend: xfree(spl_copy); recursive = false; return ret_msg; } // Clear the midword characters for buffer "buf". static void clear_midword(win_T *wp) { CLEAR_FIELD(wp->w_s->b_spell_ismw); XFREE_CLEAR(wp->w_s->b_spell_ismw_mb); } // Use the "sl_midword" field of language "lp" for buffer "buf". // They add up to any currently used midword characters. static void use_midword(slang_T *lp, win_T *wp) FUNC_ATTR_NONNULL_ALL { if (lp->sl_midword == NULL) { // there aren't any return; } for (char_u *p = lp->sl_midword; *p != NUL;) { const int c = utf_ptr2char((char *)p); const int l = utfc_ptr2len((char *)p); if (c < 256 && l <= 2) { wp->w_s->b_spell_ismw[c] = true; } else if (wp->w_s->b_spell_ismw_mb == NULL) { // First multi-byte char in "b_spell_ismw_mb". wp->w_s->b_spell_ismw_mb = vim_strnsave(p, (size_t)l); } else { // Append multi-byte chars to "b_spell_ismw_mb". const int n = (int)STRLEN(wp->w_s->b_spell_ismw_mb); char_u *bp = vim_strnsave(wp->w_s->b_spell_ismw_mb, (size_t)n + (size_t)l); xfree(wp->w_s->b_spell_ismw_mb); wp->w_s->b_spell_ismw_mb = bp; STRLCPY(bp + n, p, l + 1); } p += l; } } // Find the region "region[2]" in "rp" (points to "sl_regions"). // Each region is simply stored as the two characters of its name. // Returns the index if found (first is 0), REGION_ALL if not found. static int find_region(char_u *rp, char_u *region) { int i; for (i = 0;; i += 2) { if (rp[i] == NUL) { return REGION_ALL; } if (rp[i] == region[0] && rp[i + 1] == region[1]) { break; } } return i / 2; } /// Return case type of word: /// w word 0 /// Word WF_ONECAP /// W WORD WF_ALLCAP /// WoRd wOrd WF_KEEPCAP /// /// @param[in] word /// @param[in] end End of word or NULL for NUL delimited string /// /// @returns Case type of word int captype(char_u *word, char_u *end) FUNC_ATTR_NONNULL_ARG(1) { char_u *p; int firstcap; bool allcap; bool past_second = false; // past second word char // find first letter for (p = word; !spell_iswordp_nmw(p, curwin); MB_PTR_ADV(p)) { if (end == NULL ? *p == NUL : p >= end) { return 0; // only non-word characters, illegal word } } int c = mb_ptr2char_adv((const char_u **)&p); firstcap = allcap = SPELL_ISUPPER(c); // Need to check all letters to find a word with mixed upper/lower. // But a word with an upper char only at start is a ONECAP. for (; end == NULL ? *p != NUL : p < end; MB_PTR_ADV(p)) { if (spell_iswordp_nmw(p, curwin)) { c = utf_ptr2char((char *)p); if (!SPELL_ISUPPER(c)) { // UUl -> KEEPCAP if (past_second && allcap) { return WF_KEEPCAP; } allcap = false; } else if (!allcap) { // UlU -> KEEPCAP return WF_KEEPCAP; } past_second = true; } } if (allcap) { return WF_ALLCAP; } if (firstcap) { return WF_ONECAP; } return 0; } // Delete the internal wordlist and its .spl file. void spell_delete_wordlist(void) { char_u fname[MAXPATHL] = { 0 }; if (int_wordlist != NULL) { os_remove((char *)int_wordlist); int_wordlist_spl(fname); os_remove((char *)fname); XFREE_CLEAR(int_wordlist); } } // Free all languages. void spell_free_all(void) { slang_T *slang; // Go through all buffers and handle 'spelllang'. FOR_ALL_BUFFERS(buf) { ga_clear(&buf->b_s.b_langp); } while (first_lang != NULL) { slang = first_lang; first_lang = slang->sl_next; slang_free(slang); } spell_delete_wordlist(); XFREE_CLEAR(repl_to); XFREE_CLEAR(repl_from); } // Clear all spelling tables and reload them. // Used after 'encoding' is set and when ":mkspell" was used. void spell_reload(void) { // Initialize the table for spell_iswordp(). init_spell_chartab(); // Unload all allocated memory. spell_free_all(); // Go through all buffers and handle 'spelllang'. FOR_ALL_WINDOWS_IN_TAB(wp, curtab) { // Only load the wordlists when 'spelllang' is set and there is a // window for this buffer in which 'spell' is set. if (*wp->w_s->b_p_spl != NUL) { if (wp->w_p_spell) { (void)did_set_spelllang(wp); break; } } } } // Open a spell buffer. This is a nameless buffer that is not in the buffer // list and only contains text lines. Can use a swapfile to reduce memory // use. // Most other fields are invalid! Esp. watch out for string options being // NULL and there is no undo info. buf_T *open_spellbuf(void) { buf_T *buf = xcalloc(1, sizeof(buf_T)); buf->b_spell = true; buf->b_p_swf = true; // may create a swap file if (ml_open(buf) == FAIL) { ELOG("Error opening a new memline"); } ml_open_file(buf); // create swap file now return buf; } // Close the buffer used for spell info. void close_spellbuf(buf_T *buf) { if (buf != NULL) { ml_close(buf, TRUE); xfree(buf); } } // Init the chartab used for spelling for ASCII. void clear_spell_chartab(spelltab_T *sp) { int i; // Init everything to false (zero). CLEAR_FIELD(sp->st_isw); CLEAR_FIELD(sp->st_isu); for (i = 0; i < 256; i++) { sp->st_fold[i] = (char_u)i; sp->st_upper[i] = (char_u)i; } // We include digits. A word shouldn't start with a digit, but handling // that is done separately. for (i = '0'; i <= '9'; ++i) { sp->st_isw[i] = true; } for (i = 'A'; i <= 'Z'; ++i) { sp->st_isw[i] = true; sp->st_isu[i] = true; sp->st_fold[i] = (char_u)(i + 0x20); } for (i = 'a'; i <= 'z'; ++i) { sp->st_isw[i] = true; sp->st_upper[i] = (char_u)(i - 0x20); } } // Init the chartab used for spelling. Called once while starting up. // The default is to use isalpha(), but the spell file should define the word // characters to make it possible that 'encoding' differs from the current // locale. For utf-8 we don't use isalpha() but our own functions. void init_spell_chartab(void) { int i; did_set_spelltab = false; clear_spell_chartab(&spelltab); for (i = 128; i < 256; i++) { int f = utf_fold(i); int u = mb_toupper(i); spelltab.st_isu[i] = mb_isupper(i); spelltab.st_isw[i] = spelltab.st_isu[i] || mb_islower(i); // The folded/upper-cased value is different between latin1 and // utf8 for 0xb5, causing E763 for no good reason. Use the latin1 // value for utf-8 to avoid this. spelltab.st_fold[i] = (f < 256) ? (char_u)f : (char_u)i; spelltab.st_upper[i] = (u < 256) ? (char_u)u : (char_u)i; } } /// Returns true if "p" points to a word character. /// As a special case we see "midword" characters as word character when it is /// followed by a word character. This finds they'there but not 'they there'. /// Thus this only works properly when past the first character of the word. /// /// @param wp Buffer used. bool spell_iswordp(const char_u *p, const win_T *wp) FUNC_ATTR_NONNULL_ALL { int c; const int l = utfc_ptr2len((char *)p); const char_u *s = p; if (l == 1) { // be quick for ASCII if (wp->w_s->b_spell_ismw[*p]) { s = p + 1; // skip a mid-word character } } else { c = utf_ptr2char((char *)p); if (c < 256 ? wp->w_s->b_spell_ismw[c] : (wp->w_s->b_spell_ismw_mb != NULL && vim_strchr((char *)wp->w_s->b_spell_ismw_mb, c) != NULL)) { s = p + l; } } c = utf_ptr2char((char *)s); if (c > 255) { return spell_mb_isword_class(mb_get_class(s), wp); } return spelltab.st_isw[c]; } // Returns true if "p" points to a word character. // Unlike spell_iswordp() this doesn't check for "midword" characters. bool spell_iswordp_nmw(const char_u *p, win_T *wp) { int c = utf_ptr2char((char *)p); if (c > 255) { return spell_mb_isword_class(mb_get_class(p), wp); } return spelltab.st_isw[c]; } // Returns true if word class indicates a word character. // Only for characters above 255. // Unicode subscript and superscript are not considered word characters. // See also utf_class() in mbyte.c. static bool spell_mb_isword_class(int cl, const win_T *wp) FUNC_ATTR_PURE FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT { if (wp->w_s->b_cjk) { // East Asian characters are not considered word characters. return cl == 2 || cl == 0x2800; } return cl >= 2 && cl != 0x2070 && cl != 0x2080 && cl != 3; } // Returns true if "p" points to a word character. // Wide version of spell_iswordp(). static bool spell_iswordp_w(const int *p, const win_T *wp) FUNC_ATTR_NONNULL_ALL { const int *s; if (*p < 256 ? wp->w_s->b_spell_ismw[*p] : (wp->w_s->b_spell_ismw_mb != NULL && vim_strchr((char *)wp->w_s->b_spell_ismw_mb, *p) != NULL)) { s = p + 1; } else { s = p; } if (*s > 255) { return spell_mb_isword_class(utf_class(*s), wp); } return spelltab.st_isw[*s]; } // Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated. // Uses the character definitions from the .spl file. // When using a multi-byte 'encoding' the length may change! // Returns FAIL when something wrong. int spell_casefold(const win_T *wp, char_u *str, int len, char_u *buf, int buflen) FUNC_ATTR_NONNULL_ALL { if (len >= buflen) { buf[0] = NUL; return FAIL; // result will not fit } int outi = 0; // Fold one character at a time. for (char_u *p = str; p < str + len;) { if (outi + MB_MAXBYTES > buflen) { buf[outi] = NUL; return FAIL; } int c = mb_cptr2char_adv((const char_u **)&p); // Exception: greek capital sigma 0x03A3 folds to 0x03C3, except // when it is the last character in a word, then it folds to // 0x03C2. if (c == 0x03a3 || c == 0x03c2) { if (p == str + len || !spell_iswordp(p, wp)) { c = 0x03c2; } else { c = 0x03c3; } } else { c = SPELL_TOFOLD(c); } outi += utf_char2bytes(c, (char *)buf + outi); } buf[outi] = NUL; return OK; } // Check if the word at line "lnum" column "col" is required to start with a // capital. This uses 'spellcapcheck' of the current buffer. bool check_need_cap(linenr_T lnum, colnr_T col) { bool need_cap = false; char_u *line; char_u *line_copy = NULL; char_u *p; colnr_T endcol; regmatch_T regmatch; if (curwin->w_s->b_cap_prog == NULL) { return false; } line = get_cursor_line_ptr(); endcol = 0; if (getwhitecols(line) >= (int)col) { // At start of line, check if previous line is empty or sentence // ends there. if (lnum == 1) { need_cap = true; } else { line = ml_get(lnum - 1); if (*skipwhite((char *)line) == NUL) { need_cap = true; } else { // Append a space in place of the line break. line_copy = concat_str(line, (char_u *)" "); line = line_copy; endcol = (colnr_T)STRLEN(line); } } } else { endcol = col; } if (endcol > 0) { // Check if sentence ends before the bad word. regmatch.regprog = curwin->w_s->b_cap_prog; regmatch.rm_ic = FALSE; p = line + endcol; for (;;) { MB_PTR_BACK(line, p); if (p == line || spell_iswordp_nmw(p, curwin)) { break; } if (vim_regexec(®match, (char *)p, 0) && regmatch.endp[0] == line + endcol) { need_cap = true; break; } } curwin->w_s->b_cap_prog = regmatch.regprog; } xfree(line_copy); return need_cap; } // ":spellrepall" void ex_spellrepall(exarg_T *eap) { pos_T pos = curwin->w_cursor; char_u *frompat; int addlen; char_u *line; char_u *p; bool save_ws = p_ws; linenr_T prev_lnum = 0; if (repl_from == NULL || repl_to == NULL) { emsg(_("E752: No previous spell replacement")); return; } addlen = (int)(STRLEN(repl_to) - STRLEN(repl_from)); frompat = xmalloc(STRLEN(repl_from) + 7); sprintf((char *)frompat, "\\V\\<%s\\>", repl_from); p_ws = false; sub_nsubs = 0; sub_nlines = 0; curwin->w_cursor.lnum = 0; while (!got_int) { if (do_search(NULL, '/', '/', frompat, 1L, SEARCH_KEEP, NULL) == 0 || u_save_cursor() == FAIL) { break; } // Only replace when the right word isn't there yet. This happens // when changing "etc" to "etc.". line = get_cursor_line_ptr(); if (addlen <= 0 || STRNCMP(line + curwin->w_cursor.col, repl_to, STRLEN(repl_to)) != 0) { p = xmalloc(STRLEN(line) + (size_t)addlen + 1); memmove(p, line, (size_t)curwin->w_cursor.col); STRCPY(p + curwin->w_cursor.col, repl_to); STRCAT(p, line + curwin->w_cursor.col + STRLEN(repl_from)); ml_replace(curwin->w_cursor.lnum, (char *)p, false); changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col); if (curwin->w_cursor.lnum != prev_lnum) { sub_nlines++; prev_lnum = curwin->w_cursor.lnum; } sub_nsubs++; } curwin->w_cursor.col += (colnr_T)STRLEN(repl_to); } p_ws = save_ws; curwin->w_cursor = pos; xfree(frompat); if (sub_nsubs == 0) { semsg(_("E753: Not found: %s"), repl_from); } else { do_sub_msg(false); } } /// Make a copy of "word", with the first letter upper or lower cased, to /// "wcopy[MAXWLEN]". "word" must not be empty. /// The result is NUL terminated. /// /// @param[in] word source string to copy /// @param[in,out] wcopy copied string, with case of first letter changed /// @param[in] upper True to upper case, otherwise lower case void onecap_copy(char_u *word, char_u *wcopy, bool upper) { char_u *p = word; int c = mb_cptr2char_adv((const char_u **)&p); if (upper) { c = SPELL_TOUPPER(c); } else { c = SPELL_TOFOLD(c); } int l = utf_char2bytes(c, (char *)wcopy); STRLCPY(wcopy + l, p, MAXWLEN - l); } // Make a copy of "word" with all the letters upper cased into // "wcopy[MAXWLEN]". The result is NUL terminated. void allcap_copy(char_u *word, char_u *wcopy) { char_u *d = wcopy; for (char_u *s = word; *s != NUL;) { int c = mb_cptr2char_adv((const char_u **)&s); if (c == 0xdf) { c = 'S'; if (d - wcopy >= MAXWLEN - 1) { break; } *d++ = (char_u)c; } else { c = SPELL_TOUPPER(c); } if (d - wcopy >= MAXWLEN - MB_MAXBYTES) { break; } d += utf_char2bytes(c, (char *)d); } *d = NUL; } // Case-folding may change the number of bytes: Count nr of chars in // fword[flen] and return the byte length of that many chars in "word". int nofold_len(char_u *fword, int flen, char_u *word) { char_u *p; int i = 0; for (p = fword; p < fword + flen; MB_PTR_ADV(p)) { i++; } for (p = word; i > 0; MB_PTR_ADV(p)) { i--; } return (int)(p - word); } // Copy "fword" to "cword", fixing case according to "flags". void make_case_word(char_u *fword, char_u *cword, int flags) { if (flags & WF_ALLCAP) { // Make it all upper-case allcap_copy(fword, cword); } else if (flags & WF_ONECAP) { // Make the first letter upper-case onecap_copy(fword, cword, true); } else { // Use goodword as-is. STRCPY(cword, fword); } } /// Soundfold a string, for soundfold() /// /// @param[in] word Word to soundfold. /// /// @return [allocated] soundfolded string or NULL in case of error. May return /// copy of the input string if soundfolding is not /// supported by any of the languages in &spellang. char *eval_soundfold(const char *const word) FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_MALLOC FUNC_ATTR_NONNULL_ALL { if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) { // Use the sound-folding of the first language that supports it. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) { langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the word char_u sound[MAXWLEN]; spell_soundfold(lp->lp_slang, (char_u *)word, false, sound); return xstrdup((const char *)sound); } } } // No language with sound folding, return word as-is. return xstrdup(word); } /// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]". /// /// There are many ways to turn a word into a sound-a-like representation. The /// oldest is Soundex (1918!). A nice overview can be found in "Approximate /// swedish name matching - survey and test of different algorithms" by Klas /// Erikson. /// /// We support two methods: /// 1. SOFOFROM/SOFOTO do a simple character mapping. /// 2. SAL items define a more advanced sound-folding (and much slower). /// /// @param[in] slang /// @param[in] inword word to soundfold /// @param[in] folded whether inword is already case-folded /// @param[in,out] res destination for soundfolded word void spell_soundfold(slang_T *slang, char_u *inword, bool folded, char_u *res) { char_u fword[MAXWLEN]; char_u *word; if (slang->sl_sofo) { // SOFOFROM and SOFOTO used spell_soundfold_sofo(slang, inword, res); } else { // SAL items used. Requires the word to be case-folded. if (folded) { word = inword; } else { (void)spell_casefold(curwin, inword, (int)STRLEN(inword), fword, MAXWLEN); word = fword; } spell_soundfold_wsal(slang, word, res); } } // Perform sound folding of "inword" into "res" according to SOFOFROM and // SOFOTO lines. static void spell_soundfold_sofo(slang_T *slang, char_u *inword, char_u *res) { int ri = 0; int prevc = 0; // The sl_sal_first[] table contains the translation for chars up to // 255, sl_sal the rest. for (char_u *s = inword; *s != NUL;) { int c = mb_cptr2char_adv((const char_u **)&s); if (utf_class(c) == 0) { c = ' '; } else if (c < 256) { c = slang->sl_sal_first[c]; } else { int *ip = ((int **)slang->sl_sal.ga_data)[c & 0xff]; if (ip == NULL) { // empty list, can't match c = NUL; } else { for (;;) { // find "c" in the list if (*ip == 0) { // not found c = NUL; break; } if (*ip == c) { // match! c = ip[1]; break; } ip += 2; } } } if (c != NUL && c != prevc) { ri += utf_char2bytes(c, (char *)res + ri); if (ri + MB_MAXBYTES > MAXWLEN) { break; } prevc = c; } } res[ri] = NUL; } // Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]". // Multi-byte version of spell_soundfold(). static void spell_soundfold_wsal(slang_T *slang, char_u *inword, char_u *res) { salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data; int word[MAXWLEN] = { 0 }; int wres[MAXWLEN] = { 0 }; int l; int *ws; int *pf; int i, j, z; int reslen; int n, k = 0; int z0; int k0; int n0; int c; int pri; int p0 = -333; int c0; bool did_white = false; int wordlen; // Convert the multi-byte string to a wide-character string. // Remove accents, if wanted. We actually remove all non-word characters. // But keep white space. wordlen = 0; for (const char_u *s = inword; *s != NUL;) { const char_u *t = s; c = mb_cptr2char_adv(&s); if (slang->sl_rem_accents) { if (utf_class(c) == 0) { if (did_white) { continue; } c = ' '; did_white = true; } else { did_white = false; if (!spell_iswordp_nmw(t, curwin)) { continue; } } } word[wordlen++] = c; } word[wordlen] = NUL; // This algorithm comes from Aspell phonet.cpp. // Converted from C++ to C. Added support for multi-byte chars. // Changed to keep spaces. i = reslen = z = 0; while ((c = word[i]) != NUL) { // Start with the first rule that has the character in the word. n = slang->sl_sal_first[c & 0xff]; z0 = 0; if (n >= 0) { // Check all rules for the same index byte. // If c is 0x300 need extra check for the end of the array, as // (c & 0xff) is NUL. for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff) && ws[0] != NUL; ++n) { // Quickly skip entries that don't match the word. Most // entries are less than three chars, optimize for that. if (c != ws[0]) { continue; } k = smp[n].sm_leadlen; if (k > 1) { if (word[i + 1] != ws[1]) { continue; } if (k > 2) { for (j = 2; j < k; ++j) { if (word[i + j] != ws[j]) { break; } } if (j < k) { continue; } } } if ((pf = smp[n].sm_oneof_w) != NULL) { // Check for match with one of the chars in "sm_oneof". while (*pf != NUL && *pf != word[i + k]) { pf++; } if (*pf == NUL) { continue; } k++; } char_u *s = smp[n].sm_rules; pri = 5; // default priority p0 = *s; k0 = k; while (*s == '-' && k > 1) { k--; s++; } if (*s == '<') { s++; } if (ascii_isdigit(*s)) { // determine priority pri = *s - '0'; s++; } if (*s == '^' && *(s + 1) == '^') { s++; } if (*s == NUL || (*s == '^' && (i == 0 || !(word[i - 1] == ' ' || spell_iswordp_w(word + i - 1, curwin))) && (*(s + 1) != '$' || (!spell_iswordp_w(word + i + k0, curwin)))) || (*s == '$' && i > 0 && spell_iswordp_w(word + i - 1, curwin) && (!spell_iswordp_w(word + i + k0, curwin)))) { // search for followup rules, if: // followup and k > 1 and NO '-' in searchstring c0 = word[i + k - 1]; n0 = slang->sl_sal_first[c0 & 0xff]; if (slang->sl_followup && k > 1 && n0 >= 0 && p0 != '-' && word[i + k] != NUL) { // Test follow-up rule for "word[i + k]"; loop over // all entries with the same index byte. for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff) == (c0 & 0xff); ++n0) { // Quickly skip entries that don't match the word. if (c0 != ws[0]) { continue; } k0 = smp[n0].sm_leadlen; if (k0 > 1) { if (word[i + k] != ws[1]) { continue; } if (k0 > 2) { pf = word + i + k + 1; for (j = 2; j < k0; ++j) { if (*pf++ != ws[j]) { break; } } if (j < k0) { continue; } } } k0 += k - 1; if ((pf = smp[n0].sm_oneof_w) != NULL) { // Check for match with one of the chars in // "sm_oneof". while (*pf != NUL && *pf != word[i + k0]) { pf++; } if (*pf == NUL) { continue; } k0++; } p0 = 5; s = smp[n0].sm_rules; while (*s == '-') { // "k0" gets NOT reduced because // "if (k0 == k)" s++; } if (*s == '<') { s++; } if (ascii_isdigit(*s)) { p0 = *s - '0'; s++; } if (*s == NUL // *s == '^' cuts || (*s == '$' && !spell_iswordp_w(word + i + k0, curwin))) { if (k0 == k) { // this is just a piece of the string continue; } if (p0 < pri) { // priority too low continue; } // rule fits; stop search break; } } if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff) == (c0 & 0xff)) { continue; } } // replace string ws = smp[n].sm_to_w; s = smp[n].sm_rules; p0 = (vim_strchr((char *)s, '<') != NULL) ? 1 : 0; if (p0 == 1 && z == 0) { // rule with '<' is used if (reslen > 0 && ws != NULL && *ws != NUL && (wres[reslen - 1] == c || wres[reslen - 1] == *ws)) { reslen--; } z0 = 1; z = 1; k0 = 0; if (ws != NULL) { while (*ws != NUL && word[i + k0] != NUL) { word[i + k0] = *ws; k0++; ws++; } } if (k > k0) { memmove(word + i + k0, word + i + k, sizeof(int) * (size_t)(wordlen - (i + k) + 1)); } // new "actual letter" c = word[i]; } else { // no '<' rule used i += k - 1; z = 0; if (ws != NULL) { while (*ws != NUL && ws[1] != NUL && reslen < MAXWLEN) { if (reslen == 0 || wres[reslen - 1] != *ws) { wres[reslen++] = *ws; } ws++; } } // new "actual letter" if (ws == NULL) { c = NUL; } else { c = *ws; } if (strstr((char *)s, "^^") != NULL) { if (c != NUL) { wres[reslen++] = c; } memmove(word, word + i + 1, sizeof(int) * (size_t)(wordlen - (i + 1) + 1)); i = 0; z0 = 1; } } break; } } } else if (ascii_iswhite(c)) { c = ' '; k = 1; } if (z0 == 0) { if (k && !p0 && reslen < MAXWLEN && c != NUL && (!slang->sl_collapse || reslen == 0 || wres[reslen - 1] != c)) { // condense only double letters wres[reslen++] = c; } i++; z = 0; k = 0; } } // Convert wide characters in "wres" to a multi-byte string in "res". l = 0; for (n = 0; n < reslen; n++) { l += utf_char2bytes(wres[n], (char *)res + l); if (l + MB_MAXBYTES > MAXWLEN) { break; } } res[l] = NUL; } // ":spellinfo" void ex_spellinfo(exarg_T *eap) { if (no_spell_checking(curwin)) { return; } msg_start(); for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; lpi++) { langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); msg_puts("file: "); msg_puts((const char *)lp->lp_slang->sl_fname); msg_putchar('\n'); const char *const p = (const char *)lp->lp_slang->sl_info; if (p != NULL) { msg_puts(p); msg_putchar('\n'); } } msg_end(); } #define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree #define DUMPFLAG_COUNT 2 // include word count #define DUMPFLAG_ICASE 4 // ignore case when finding matches #define DUMPFLAG_ONECAP 8 // pattern starts with capital #define DUMPFLAG_ALLCAP 16 // pattern is all capitals // ":spelldump" void ex_spelldump(exarg_T *eap) { char *spl; long dummy; if (no_spell_checking(curwin)) { return; } (void)get_option_value("spl", &dummy, &spl, OPT_LOCAL); // Create a new empty buffer in a new window. do_cmdline_cmd("new"); // enable spelling locally in the new window set_option_value("spell", true, "", OPT_LOCAL); set_option_value("spl", dummy, spl, OPT_LOCAL); xfree(spl); if (!buf_is_empty(curbuf)) { return; } spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0); // Delete the empty line that we started with. if (curbuf->b_ml.ml_line_count > 1) { ml_delete(curbuf->b_ml.ml_line_count, false); } redraw_later(curwin, NOT_VALID); } /// Go through all possible words and: /// 1. When "pat" is NULL: dump a list of all words in the current buffer. /// "ic" and "dir" are not used. /// 2. When "pat" is not NULL: add matching words to insert mode completion. /// /// @param pat leading part of the word /// @param ic ignore case /// @param dir direction for adding matches /// @param dumpflags_arg DUMPFLAG_* void spell_dump_compl(char_u *pat, int ic, Direction *dir, int dumpflags_arg) { langp_T *lp; slang_T *slang; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u word[MAXWLEN]; int c; char_u *byts; idx_T *idxs; linenr_T lnum = 0; int round; int depth; int n; int flags; char_u *region_names = NULL; // region names being used bool do_region = true; // dump region names and numbers char_u *p; int dumpflags = dumpflags_arg; int patlen; // When ignoring case or when the pattern starts with capital pass this on // to dump_word(). if (pat != NULL) { if (ic) { dumpflags |= DUMPFLAG_ICASE; } else { n = captype(pat, NULL); if (n == WF_ONECAP) { dumpflags |= DUMPFLAG_ONECAP; } else if (n == WF_ALLCAP && (int)STRLEN(pat) > utfc_ptr2len((char *)pat)) { dumpflags |= DUMPFLAG_ALLCAP; } } } // Find out if we can support regions: All languages must support the same // regions or none at all. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); p = lp->lp_slang->sl_regions; if (p[0] != 0) { if (region_names == NULL) { // first language with regions region_names = p; } else if (STRCMP(region_names, p) != 0) { do_region = false; // region names are different break; } } } if (do_region && region_names != NULL) { if (pat == NULL) { vim_snprintf((char *)IObuff, IOSIZE, "/regions=%s", region_names); ml_append(lnum++, (char *)IObuff, (colnr_T)0, false); } } else { do_region = false; } // Loop over all files loaded for the entries in 'spelllang'. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (slang->sl_fbyts == NULL) { // reloading failed continue; } if (pat == NULL) { vim_snprintf((char *)IObuff, IOSIZE, "# file: %s", slang->sl_fname); ml_append(lnum++, (char *)IObuff, (colnr_T)0, false); } // When matching with a pattern and there are no prefixes only use // parts of the tree that match "pat". if (pat != NULL && slang->sl_pbyts == NULL) { patlen = (int)STRLEN(pat); } else { patlen = -1; } // round 1: case-folded tree // round 2: keep-case tree for (round = 1; round <= 2; ++round) { if (round == 1) { dumpflags &= ~DUMPFLAG_KEEPCASE; byts = slang->sl_fbyts; idxs = slang->sl_fidxs; } else { dumpflags |= DUMPFLAG_KEEPCASE; byts = slang->sl_kbyts; idxs = slang->sl_kidxs; } if (byts == NULL) { continue; // array is empty } depth = 0; arridx[0] = 0; curi[0] = 1; while (depth >= 0 && !got_int && (pat == NULL || !ins_compl_interrupted())) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. depth--; line_breakcheck(); ins_compl_check_keys(50, false); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0 || depth >= MAXWLEN - 1) { // End of word or reached maximum length, deal with the // word. // Don't use keep-case words in the fold-case tree, // they will appear in the keep-case tree. // Only use the word when the region matches. flags = (int)idxs[n]; if ((round == 2 || (flags & WF_KEEPCAP) == 0) && (flags & WF_NEEDCOMP) == 0 && (do_region || (flags & WF_REGION) == 0 || (((unsigned)flags >> 16) & (unsigned)lp->lp_region) != 0)) { word[depth] = NUL; if (!do_region) { flags &= ~WF_REGION; } // Dump the basic word if there is no prefix or // when it's the first one. c = (int)((unsigned)flags >> 24); if (c == 0 || curi[depth] == 2) { dump_word(slang, word, pat, dir, dumpflags, flags, lnum); if (pat == NULL) { lnum++; } } // Apply the prefix, if there is one. if (c != 0) { lnum = dump_prefixes(slang, word, pat, dir, dumpflags, flags, lnum); } } } else { // Normal char, go one level deeper. word[depth++] = (char_u)c; arridx[depth] = idxs[n]; curi[depth] = 1; // Check if this character matches with the pattern. // If not skip the whole tree below it. // Always ignore case here, dump_word() will check // proper case later. This isn't exactly right when // length changes for multi-byte characters with // ignore case... assert(depth >= 0); if (depth <= patlen && mb_strnicmp(word, pat, (size_t)depth) != 0) { depth--; } } } } } } } // Dumps one word: apply case modifications and append a line to the buffer. // When "lnum" is zero add insert mode completion. static void dump_word(slang_T *slang, char_u *word, char_u *pat, Direction *dir, int dumpflags, int wordflags, linenr_T lnum) { bool keepcap = false; char_u *p; char_u *tw; char_u cword[MAXWLEN]; char_u badword[MAXWLEN + 10]; int i; int flags = wordflags; if (dumpflags & DUMPFLAG_ONECAP) { flags |= WF_ONECAP; } if (dumpflags & DUMPFLAG_ALLCAP) { flags |= WF_ALLCAP; } if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) { // Need to fix case according to "flags". make_case_word(word, cword, flags); p = cword; } else { p = word; if ((dumpflags & DUMPFLAG_KEEPCASE) && ((captype(word, NULL) & WF_KEEPCAP) == 0 || (flags & WF_FIXCAP) != 0)) { keepcap = true; } } tw = p; if (pat == NULL) { // Add flags and regions after a slash. if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) { STRCPY(badword, p); STRCAT(badword, "/"); if (keepcap) { STRCAT(badword, "="); } if (flags & WF_BANNED) { STRCAT(badword, "!"); } else if (flags & WF_RARE) { STRCAT(badword, "?"); } if (flags & WF_REGION) { for (i = 0; i < 7; i++) { if (flags & (0x10000 << i)) { const size_t badword_len = STRLEN(badword); snprintf((char *)badword + badword_len, sizeof(badword) - badword_len, "%d", i + 1); } } } p = badword; } if (dumpflags & DUMPFLAG_COUNT) { hashitem_T *hi; // Include the word count for ":spelldump!". hi = hash_find(&slang->sl_wordcount, (char *)tw); if (!HASHITEM_EMPTY(hi)) { vim_snprintf((char *)IObuff, IOSIZE, "%s\t%d", tw, HI2WC(hi)->wc_count); p = IObuff; } } ml_append(lnum, (char *)p, (colnr_T)0, false); } else if (((dumpflags & DUMPFLAG_ICASE) ? mb_strnicmp(p, pat, STRLEN(pat)) == 0 : STRNCMP(p, pat, STRLEN(pat)) == 0) && ins_compl_add_infercase(p, (int)STRLEN(p), p_ic, NULL, *dir, false) == OK) { // if dir was BACKWARD then honor it just once *dir = FORWARD; } } /// For ":spelldump": Find matching prefixes for "word". Prepend each to /// "word" and append a line to the buffer. /// When "lnum" is zero add insert mode completion. /// /// @param word case-folded word /// @param flags flags with prefix ID /// /// @return the updated line number. static linenr_T dump_prefixes(slang_T *slang, char_u *word, char_u *pat, Direction *dir, int dumpflags, int flags, linenr_T startlnum) { idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u prefix[MAXWLEN]; char_u word_up[MAXWLEN]; bool has_word_up = false; int c; char_u *byts; idx_T *idxs; linenr_T lnum = startlnum; int depth; int n; int len; int i; // If the word starts with a lower-case letter make the word with an // upper-case letter in word_up[]. c = utf_ptr2char((char *)word); if (SPELL_TOUPPER(c) != c) { onecap_copy(word, word_up, true); has_word_up = true; } byts = slang->sl_pbyts; idxs = slang->sl_pidxs; if (byts != NULL) { // array not is empty // Loop over all prefixes, building them byte-by-byte in prefix[]. // When at the end of a prefix check that it supports "flags". depth = 0; arridx[0] = 0; curi[0] = 1; while (depth >= 0 && !got_int) { n = arridx[depth]; len = byts[n]; if (curi[depth] > len) { // Done all bytes at this node, go up one level. depth--; line_breakcheck(); } else { // Do one more byte at this node. n += curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // End of prefix, find out how many IDs there are. for (i = 1; i < len; ++i) { if (byts[n + i] != 0) { break; } } curi[depth] += i - 1; c = valid_word_prefix(i, n, flags, word, slang, false); if (c != 0) { STRLCPY(prefix + depth, word, MAXWLEN - depth); dump_word(slang, prefix, pat, dir, dumpflags, (c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum); if (lnum != 0) { lnum++; } } // Check for prefix that matches the word when the // first letter is upper-case, but only if the prefix has // a condition. if (has_word_up) { c = valid_word_prefix(i, n, flags, word_up, slang, true); if (c != 0) { STRLCPY(prefix + depth, word_up, MAXWLEN - depth); dump_word(slang, prefix, pat, dir, dumpflags, (c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum); if (lnum != 0) { lnum++; } } } } else { // Normal char, go one level deeper. prefix[depth++] = (char_u)c; arridx[depth] = idxs[n]; curi[depth] = 1; } } } } return lnum; } // Move "p" to the end of word "start". // Uses the spell-checking word characters. char_u *spell_to_word_end(char_u *start, win_T *win) { char_u *p = start; while (*p != NUL && spell_iswordp(p, win)) { MB_PTR_ADV(p); } return p; } // For Insert mode completion CTRL-X s: // Find start of the word in front of column "startcol". // We don't check if it is badly spelled, with completion we can only change // the word in front of the cursor. // Returns the column number of the word. int spell_word_start(int startcol) { char_u *line; char_u *p; int col = 0; if (no_spell_checking(curwin)) { return startcol; } // Find a word character before "startcol". line = get_cursor_line_ptr(); for (p = line + startcol; p > line;) { MB_PTR_BACK(line, p); if (spell_iswordp_nmw(p, curwin)) { break; } } // Go back to start of the word. while (p > line) { col = (int)(p - line); MB_PTR_BACK(line, p); if (!spell_iswordp(p, curwin)) { break; } col = 0; } return col; } // Need to check for 'spellcapcheck' now, the word is removed before // expand_spelling() is called. Therefore the ugly global variable. static bool spell_expand_need_cap; void spell_expand_check_cap(colnr_T col) { spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col); } // Get list of spelling suggestions. // Used for Insert mode completion CTRL-X ?. // Returns the number of matches. The matches are in "matchp[]", array of // allocated strings. int expand_spelling(linenr_T lnum, char_u *pat, char ***matchp) { garray_T ga; spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true); *matchp = ga.ga_data; return ga.ga_len; } /// Return true if "val" is a valid 'spelllang' value. bool valid_spelllang(const char_u *val) FUNC_ATTR_NONNULL_ALL FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT { return valid_name(val, ".-_,@"); } /// Return true if "val" is a valid 'spellfile' value. bool valid_spellfile(const char_u *val) FUNC_ATTR_NONNULL_ALL FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT { for (const char_u *s = val; *s != NUL; s++) { if (!vim_isfilec(*s) && *s != ',' && *s != ' ') { return false; } } return true; } char *did_set_spell_option(bool is_spellfile) { char *errmsg = NULL; if (is_spellfile) { int l = (int)STRLEN(curwin->w_s->b_p_spf); if (l > 0 && (l < 4 || STRCMP(curwin->w_s->b_p_spf + l - 4, ".add") != 0)) { errmsg = e_invarg; } } if (errmsg == NULL) { FOR_ALL_WINDOWS_IN_TAB(wp, curtab) { if (wp->w_buffer == curbuf && wp->w_p_spell) { errmsg = did_set_spelllang(wp); break; } } } return errmsg; } /// Set curbuf->b_cap_prog to the regexp program for 'spellcapcheck'. /// Return error message when failed, NULL when OK. char *compile_cap_prog(synblock_T *synblock) FUNC_ATTR_NONNULL_ALL { regprog_T *rp = synblock->b_cap_prog; char_u *re; if (synblock->b_p_spc == NULL || *synblock->b_p_spc == NUL) { synblock->b_cap_prog = NULL; } else { // Prepend a ^ so that we only match at one column re = concat_str((char_u *)"^", synblock->b_p_spc); synblock->b_cap_prog = vim_regcomp((char *)re, RE_MAGIC); xfree(re); if (synblock->b_cap_prog == NULL) { synblock->b_cap_prog = rp; // restore the previous program return e_invarg; } } vim_regfree(rp); return NULL; }