// spell.c: code for spell checking // // The spell checking mechanism uses a tree (aka trie). Each node in the tree // has a list of bytes that can appear (siblings). For each byte there is a // pointer to the node with the byte that follows in the word (child). // // A NUL byte is used where the word may end. The bytes are sorted, so that // binary searching can be used and the NUL bytes are at the start. The // number of possible bytes is stored before the list of bytes. // // The tree uses two arrays: "byts" stores the characters, "idxs" stores // either the next index or flags. The tree starts at index 0. For example, // to lookup "vi" this sequence is followed: // i = 0 // len = byts[i] // n = where "v" appears in byts[i + 1] to byts[i + len] // i = idxs[n] // len = byts[i] // n = where "i" appears in byts[i + 1] to byts[i + len] // i = idxs[n] // len = byts[i] // find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi". // // There are two word trees: one with case-folded words and one with words in // original case. The second one is only used for keep-case words and is // usually small. // // There is one additional tree for when not all prefixes are applied when // generating the .spl file. This tree stores all the possible prefixes, as // if they were words. At each word (prefix) end the prefix nr is stored, the // following word must support this prefix nr. And the condition nr is // stored, used to lookup the condition that the word must match with. // // Thanks to Olaf Seibert for providing an example implementation of this tree // and the compression mechanism. // LZ trie ideas: // http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf // More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html // // Matching involves checking the caps type: Onecap ALLCAP KeepCap. // // Why doesn't Vim use aspell/ispell/myspell/etc.? // See ":help develop-spell". // Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word. // Only use it for small word lists! // Use SPELL_COMPRESS_ALLWAYS for debugging: compress the word tree after // adding a word. Only use it for small word lists! // Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a // specific word. // Use this to adjust the score after finding suggestions, based on the // suggested word sounding like the bad word. This is much faster than doing // it for every possible suggestion. // Disadvantage: When "the" is typed as "hte" it sounds quite different ("@" // vs "ht") and goes down in the list. // Used when 'spellsuggest' is set to "best". #define RESCORE(word_score, sound_score) ((3 * word_score + sound_score) / 4) // Do the opposite: based on a maximum end score and a known sound score, // compute the maximum word score that can be used. #define MAXSCORE(word_score, sound_score) ((4 * word_score - sound_score) / 3) // Vim spell file format:
// // // // // //
: // // 8 bytes "VIMspell" // 1 byte VIMSPELLVERSION // // // Sections make it possible to add information to the .spl file without // making it incompatible with previous versions. There are two kinds of // sections: // 1. Not essential for correct spell checking. E.g. for making suggestions. // These are skipped when not supported. // 2. Optional information, but essential for spell checking when present. // E.g. conditions for affixes. When this section is present but not // supported an error message is given. // // :
... // //
: (section contents) // // 1 byte number from 0 to 254 identifying the section // // 1 byte SNF_REQUIRED: this section is required for correct // spell checking // // 4 bytes length of section contents, MSB first // // 1 byte SN_END // // // sectionID == SN_INFO: // N bytes free format text with spell file info (version, // website, etc) // // sectionID == SN_REGION: ... // 2 bytes Up to 8 region names: ca, au, etc. Lower case. // First is region 1. // // sectionID == SN_CHARFLAGS: // // 1 byte Number of bytes in (should be 128). // N bytes List of flags (first one is for character 128): // 0x01 word character CF_WORD // 0x02 upper-case character CF_UPPER // 2 bytes Number of bytes in . // N bytes Folded characters, first one is for character 128. // // sectionID == SN_MIDWORD: // N bytes Characters that are word characters only when used // in the middle of a word. // // sectionID == SN_PREFCOND: ... // 2 bytes Number of items following. // : // 1 byte Length of . // N bytes Condition for the prefix. // // sectionID == SN_REP: ... // 2 bytes number of items, MSB first. // : // 1 byte length of // N bytes "from" part of replacement // 1 byte length of // N bytes "to" part of replacement // // sectionID == SN_REPSAL: ... // just like SN_REP but for soundfolded words // // sectionID == SN_SAL: ... // 1 byte flags for soundsalike conversion: // SAL_F0LLOWUP // SAL_COLLAPSE // SAL_REM_ACCENTS // 2 bytes number of items following // : // 1 byte length of // N bytes "from" part of soundsalike // 1 byte length of // N bytes "to" part of soundsalike // // sectionID == SN_SOFO: // 2 bytes length of // N bytes "from" part of soundfold // 2 bytes length of // N bytes "to" part of soundfold // // sectionID == SN_SUGFILE: // 8 bytes time in seconds that must match with .sug file // // sectionID == SN_NOSPLITSUGS: nothing // // sectionID == SN_NOCOMPOUNDSUGS: nothing // // sectionID == SN_WORDS: ... // N bytes NUL terminated common word // // sectionID == SN_MAP: // N bytes String with sequences of similar characters, // separated by slashes. // // sectionID == SN_COMPOUND: // ... // 1 byte Maximum nr of words in compound word. // 1 byte Minimal word length for compounding. // 1 byte Maximum nr of syllables in compound word. // 2 bytes COMP_ flags. // 2 bytes number of following // N bytes Flags from COMPOUNDRULE items, separated by // slashes. // // : // 1 byte length of // N bytes end or begin chars from CHECKCOMPOUNDPATTERN // // sectionID == SN_NOBREAK: (empty, its presence is what matters) // // sectionID == SN_SYLLABLE: // N bytes String from SYLLABLE item. // // : // // : // // : // // // : ... // // 4 bytes Number of nodes following. MSB first. // // : ... // // 1 byte Number of siblings in this node. The siblings // follow in sorted order. // // : [ // | [] [] [] // | [] ] // // 1 byte Byte value of the sibling. Special cases: // BY_NOFLAGS: End of word without flags and for all // regions. // For PREFIXTREE and // follow. // BY_FLAGS: End of word, follow. // For PREFIXTREE , // and follow. // BY_FLAGS2: End of word, and // follow. Not used in PREFIXTREE. // BY_INDEX: Child of sibling is shared, // and follow. // // 3 bytes Index of child for this sibling, MSB first. // // 1 byte Byte value of the sibling. // // 1 byte Bitmask of: // WF_ALLCAP word must have only capitals // WF_ONECAP first char of word must be capital // WF_KEEPCAP keep-case word // WF_FIXCAP keep-case word, all caps not allowed // WF_RARE rare word // WF_BANNED bad word // WF_REGION follows // WF_AFX follows // // 1 byte Bitmask of: // WF_HAS_AFF >> 8 word includes affix // WF_NEEDCOMP >> 8 word only valid in compound // WF_NOSUGGEST >> 8 word not used for suggestions // WF_COMPROOT >> 8 word already a compound // WF_NOCOMPBEF >> 8 no compounding before this word // WF_NOCOMPAFT >> 8 no compounding after this word // // 1 byte Bitmask of: // WFP_RARE rare prefix // WFP_NC non-combining prefix // WFP_UP letter after prefix made upper case // // 1 byte Bitmask for regions in which word is valid. When // omitted it's valid in all regions. // Lowest bit is for region 1. // // 1 byte ID of affix that can be used with this word. In // PREFIXTREE used for the required prefix ID. // // 2 bytes Prefix condition number, index in list // from HEADER. // // All text characters are in 'encoding', but stored as single bytes. // Vim .sug file format: // // // // : // // 6 bytes "VIMsug" // 1 byte VIMSUGVERSION // 8 bytes timestamp that must match with .spl file // // // : (see above, no flags or region used) // // // : ... // // 4 bytes number of following // // : ... NUL // // : X bytes word number that results in this soundfolded word, // stored as an offset to the previous number in as // few bytes as possible, see offset2bytes()) #include #include #include #include #include #include #include #include #include "nvim/vim.h" #include "nvim/ascii.h" #include "nvim/spell.h" #include "nvim/buffer.h" #include "nvim/charset.h" #include "nvim/cursor.h" #include "nvim/edit.h" #include "nvim/eval.h" #include "nvim/ex_cmds.h" #include "nvim/ex_cmds2.h" #include "nvim/ex_docmd.h" #include "nvim/fileio.h" #include "nvim/func_attr.h" #include "nvim/getchar.h" #include "nvim/hashtab.h" #include "nvim/mbyte.h" #include "nvim/memline.h" #include "nvim/memory.h" #include "nvim/message.h" #include "nvim/misc1.h" #include "nvim/garray.h" #include "nvim/normal.h" #include "nvim/option.h" #include "nvim/os_unix.h" #include "nvim/path.h" #include "nvim/regexp.h" #include "nvim/screen.h" #include "nvim/search.h" #include "nvim/strings.h" #include "nvim/syntax.h" #include "nvim/ui.h" #include "nvim/undo.h" #include "nvim/os/os.h" #include "nvim/os/input.h" #ifndef UNIX // it's in os/unix_defs.h for Unix # include // for time_t #endif #define MAXWLEN 254 // Assume max. word len is this many bytes. // Some places assume a word length fits in a // byte, thus it can't be above 255. // Type used for indexes in the word tree need to be at least 4 bytes. If int // is 8 bytes we could use something smaller, but what? typedef int idx_T; # define SPL_FNAME_TMPL "%s.%s.spl" # define SPL_FNAME_ADD ".add." # define SPL_FNAME_ASCII ".ascii." // Flags used for a word. Only the lowest byte can be used, the region byte // comes above it. #define WF_REGION 0x01 // region byte follows #define WF_ONECAP 0x02 // word with one capital (or all capitals) #define WF_ALLCAP 0x04 // word must be all capitals #define WF_RARE 0x08 // rare word #define WF_BANNED 0x10 // bad word #define WF_AFX 0x20 // affix ID follows #define WF_FIXCAP 0x40 // keep-case word, allcap not allowed #define WF_KEEPCAP 0x80 // keep-case word // for , shifted up one byte to be used in wn_flags #define WF_HAS_AFF 0x0100 // word includes affix #define WF_NEEDCOMP 0x0200 // word only valid in compound #define WF_NOSUGGEST 0x0400 // word not to be suggested #define WF_COMPROOT 0x0800 // already compounded word, COMPOUNDROOT #define WF_NOCOMPBEF 0x1000 // no compounding before this word #define WF_NOCOMPAFT 0x2000 // no compounding after this word // only used for su_badflags #define WF_MIXCAP 0x20 // mix of upper and lower case: macaRONI #define WF_CAPMASK (WF_ONECAP | WF_ALLCAP | WF_KEEPCAP | WF_FIXCAP) // flags for #define WFP_RARE 0x01 // rare prefix #define WFP_NC 0x02 // prefix is not combining #define WFP_UP 0x04 // to-upper prefix #define WFP_COMPPERMIT 0x08 // prefix with COMPOUNDPERMITFLAG #define WFP_COMPFORBID 0x10 // prefix with COMPOUNDFORBIDFLAG // Flags for postponed prefixes in "sl_pidxs". Must be above affixID (one // byte) and prefcondnr (two bytes). #define WF_RAREPFX (WFP_RARE << 24) // rare postponed prefix #define WF_PFX_NC (WFP_NC << 24) // non-combining postponed prefix #define WF_PFX_UP (WFP_UP << 24) // to-upper postponed prefix #define WF_PFX_COMPPERMIT (WFP_COMPPERMIT << 24) // postponed prefix with // COMPOUNDPERMITFLAG #define WF_PFX_COMPFORBID (WFP_COMPFORBID << 24) // postponed prefix with // COMPOUNDFORBIDFLAG // flags for #define COMP_CHECKDUP 1 // CHECKCOMPOUNDDUP #define COMP_CHECKREP 2 // CHECKCOMPOUNDREP #define COMP_CHECKCASE 4 // CHECKCOMPOUNDCASE #define COMP_CHECKTRIPLE 8 // CHECKCOMPOUNDTRIPLE // Special byte values for . Some are only used in the tree for // postponed prefixes, some only in the other trees. This is a bit messy... #define BY_NOFLAGS 0 // end of word without flags or region; for // postponed prefix: no #define BY_INDEX 1 // child is shared, index follows #define BY_FLAGS 2 // end of word, byte follows; for // postponed prefix: follows #define BY_FLAGS2 3 // end of word, and bytes // follow; never used in prefix tree #define BY_SPECIAL BY_FLAGS2 // highest special byte value // Info from "REP", "REPSAL" and "SAL" entries in ".aff" file used in si_rep, // si_repsal, sl_rep, and si_sal. Not for sl_sal! // One replacement: from "ft_from" to "ft_to". typedef struct fromto_S { char_u *ft_from; char_u *ft_to; } fromto_T; // Info from "SAL" entries in ".aff" file used in sl_sal. // The info is split for quick processing by spell_soundfold(). // Note that "sm_oneof" and "sm_rules" point into sm_lead. typedef struct salitem_S { char_u *sm_lead; // leading letters int sm_leadlen; // length of "sm_lead" char_u *sm_oneof; // letters from () or NULL char_u *sm_rules; // rules like ^, $, priority char_u *sm_to; // replacement. int *sm_lead_w; // wide character copy of "sm_lead" int *sm_oneof_w; // wide character copy of "sm_oneof" int *sm_to_w; // wide character copy of "sm_to" } salitem_T; typedef int salfirst_T; // Values for SP_*ERROR are negative, positive values are used by // read_cnt_string(). #define SP_TRUNCERROR -1 // spell file truncated error #define SP_FORMERROR -2 // format error in spell file #define SP_OTHERERROR -3 // other error while reading spell file // Structure used to store words and other info for one language, loaded from // a .spl file. // The main access is through the tree in "sl_fbyts/sl_fidxs", storing the // case-folded words. "sl_kbyts/sl_kidxs" is for keep-case words. // // The "byts" array stores the possible bytes in each tree node, preceded by // the number of possible bytes, sorted on byte value: // ... // The "idxs" array stores the index of the child node corresponding to the // byte in "byts". // Exception: when the byte is zero, the word may end here and "idxs" holds // the flags, region mask and affixID for the word. There may be several // zeros in sequence for alternative flag/region/affixID combinations. typedef struct slang_S slang_T; struct slang_S { slang_T *sl_next; // next language char_u *sl_name; // language name "en", "en.rare", "nl", etc. char_u *sl_fname; // name of .spl file bool sl_add; // true if it's a .add file. char_u *sl_fbyts; // case-folded word bytes idx_T *sl_fidxs; // case-folded word indexes char_u *sl_kbyts; // keep-case word bytes idx_T *sl_kidxs; // keep-case word indexes char_u *sl_pbyts; // prefix tree word bytes idx_T *sl_pidxs; // prefix tree word indexes char_u *sl_info; // infotext string or NULL char_u sl_regions[17]; // table with up to 8 region names plus NUL char_u *sl_midword; // MIDWORD string or NULL hashtab_T sl_wordcount; // hashtable with word count, wordcount_T int sl_compmax; // COMPOUNDWORDMAX (default: MAXWLEN) int sl_compminlen; // COMPOUNDMIN (default: 0) int sl_compsylmax; // COMPOUNDSYLMAX (default: MAXWLEN) int sl_compoptions; // COMP_* flags garray_T sl_comppat; // CHECKCOMPOUNDPATTERN items regprog_T *sl_compprog; // COMPOUNDRULE turned into a regexp progrm // (NULL when no compounding) char_u *sl_comprules; // all COMPOUNDRULE concatenated (or NULL) char_u *sl_compstartflags; // flags for first compound word char_u *sl_compallflags; // all flags for compound words bool sl_nobreak; // When true: no spaces between words char_u *sl_syllable; // SYLLABLE repeatable chars or NULL garray_T sl_syl_items; // syllable items int sl_prefixcnt; // number of items in "sl_prefprog" regprog_T **sl_prefprog; // table with regprogs for prefixes garray_T sl_rep; // list of fromto_T entries from REP lines int16_t sl_rep_first[256]; // indexes where byte first appears, -1 if // there is none garray_T sl_sal; // list of salitem_T entries from SAL lines salfirst_T sl_sal_first[256]; // indexes where byte first appears, -1 if // there is none bool sl_followup; // SAL followup bool sl_collapse; // SAL collapse_result bool sl_rem_accents; // SAL remove_accents bool sl_sofo; // SOFOFROM and SOFOTO instead of SAL items: // "sl_sal_first" maps chars, when has_mbyte // "sl_sal" is a list of wide char lists. garray_T sl_repsal; // list of fromto_T entries from REPSAL lines int16_t sl_repsal_first[256]; // sl_rep_first for REPSAL lines bool sl_nosplitsugs; // don't suggest splitting a word bool sl_nocompoundsugs; // don't suggest compounding // Info from the .sug file. Loaded on demand. time_t sl_sugtime; // timestamp for .sug file char_u *sl_sbyts; // soundfolded word bytes idx_T *sl_sidxs; // soundfolded word indexes buf_T *sl_sugbuf; // buffer with word number table bool sl_sugloaded; // true when .sug file was loaded or failed to // load bool sl_has_map; // true, if there is a MAP line hashtab_T sl_map_hash; // MAP for multi-byte chars int sl_map_array[256]; // MAP for first 256 chars hashtab_T sl_sounddone; // table with soundfolded words that have // handled, see add_sound_suggest() }; // First language that is loaded, start of the linked list of loaded // languages. static slang_T *first_lang = NULL; // Flags used in .spl file for soundsalike flags. #define SAL_F0LLOWUP 1 #define SAL_COLLAPSE 2 #define SAL_REM_ACCENTS 4 // Structure used in "b_langp", filled from 'spelllang'. typedef struct langp_S { slang_T *lp_slang; // info for this language slang_T *lp_sallang; // language used for sound folding or NULL slang_T *lp_replang; // language used for REP items or NULL int lp_region; // bitmask for region or REGION_ALL } langp_T; #define LANGP_ENTRY(ga, i) (((langp_T *)(ga).ga_data) + (i)) #define REGION_ALL 0xff // word valid in all regions #define VIMSPELLMAGIC "VIMspell" // string at start of Vim spell file #define VIMSPELLMAGICL 8 #define VIMSPELLVERSION 50 #define VIMSUGMAGIC "VIMsug" // string at start of Vim .sug file #define VIMSUGMAGICL 6 #define VIMSUGVERSION 1 // Section IDs. Only renumber them when VIMSPELLVERSION changes! #define SN_REGION 0 // section #define SN_CHARFLAGS 1 // charflags section #define SN_MIDWORD 2 // section #define SN_PREFCOND 3 // section #define SN_REP 4 // REP items section #define SN_SAL 5 // SAL items section #define SN_SOFO 6 // soundfolding section #define SN_MAP 7 // MAP items section #define SN_COMPOUND 8 // compound words section #define SN_SYLLABLE 9 // syllable section #define SN_NOBREAK 10 // NOBREAK section #define SN_SUGFILE 11 // timestamp for .sug file #define SN_REPSAL 12 // REPSAL items section #define SN_WORDS 13 // common words #define SN_NOSPLITSUGS 14 // don't split word for suggestions #define SN_INFO 15 // info section #define SN_NOCOMPOUNDSUGS 16 // don't compound for suggestions #define SN_END 255 // end of sections #define SNF_REQUIRED 1 // : required section // Result values. Lower number is accepted over higher one. #define SP_BANNED -1 #define SP_RARE 0 #define SP_OK 1 #define SP_LOCAL 2 #define SP_BAD 3 // file used for "zG" and "zW" static char_u *int_wordlist = NULL; typedef struct wordcount_S { uint16_t wc_count; // nr of times word was seen char_u wc_word[1]; // word, actually longer } wordcount_T; static wordcount_T dumwc; #define WC_KEY_OFF (unsigned)(dumwc.wc_word - (char_u *)&dumwc) #define HI2WC(hi) ((wordcount_T *)((hi)->hi_key - WC_KEY_OFF)) #define MAXWORDCOUNT 0xffff // Information used when looking for suggestions. typedef struct suginfo_S { garray_T su_ga; // suggestions, contains "suggest_T" int su_maxcount; // max. number of suggestions displayed int su_maxscore; // maximum score for adding to su_ga int su_sfmaxscore; // idem, for when doing soundfold words garray_T su_sga; // like su_ga, sound-folded scoring char_u *su_badptr; // start of bad word in line int su_badlen; // length of detected bad word in line int su_badflags; // caps flags for bad word char_u su_badword[MAXWLEN]; // bad word truncated at su_badlen char_u su_fbadword[MAXWLEN]; // su_badword case-folded char_u su_sal_badword[MAXWLEN]; // su_badword soundfolded hashtab_T su_banned; // table with banned words slang_T *su_sallang; // default language for sound folding } suginfo_T; // One word suggestion. Used in "si_ga". typedef struct { char_u *st_word; // suggested word, allocated string int st_wordlen; // STRLEN(st_word) int st_orglen; // length of replaced text int st_score; // lower is better int st_altscore; // used when st_score compares equal bool st_salscore; // st_score is for soundalike bool st_had_bonus; // bonus already included in score slang_T *st_slang; // language used for sound folding } suggest_T; #define SUG(ga, i) (((suggest_T *)(ga).ga_data)[i]) // True if a word appears in the list of banned words. #define WAS_BANNED(su, word) (!HASHITEM_EMPTY(hash_find(&su->su_banned, word))) // Number of suggestions kept when cleaning up. We need to keep more than // what is displayed, because when rescore_suggestions() is called the score // may change and wrong suggestions may be removed later. #define SUG_CLEAN_COUNT(su) ((su)->su_maxcount < \ 130 ? 150 : (su)->su_maxcount + 20) // Threshold for sorting and cleaning up suggestions. Don't want to keep lots // of suggestions that are not going to be displayed. #define SUG_MAX_COUNT(su) (SUG_CLEAN_COUNT(su) + 50) // score for various changes #define SCORE_SPLIT 149 // split bad word #define SCORE_SPLIT_NO 249 // split bad word with NOSPLITSUGS #define SCORE_ICASE 52 // slightly different case #define SCORE_REGION 200 // word is for different region #define SCORE_RARE 180 // rare word #define SCORE_SWAP 75 // swap two characters #define SCORE_SWAP3 110 // swap two characters in three #define SCORE_REP 65 // REP replacement #define SCORE_SUBST 93 // substitute a character #define SCORE_SIMILAR 33 // substitute a similar character #define SCORE_SUBCOMP 33 // substitute a composing character #define SCORE_DEL 94 // delete a character #define SCORE_DELDUP 66 // delete a duplicated character #define SCORE_DELCOMP 28 // delete a composing character #define SCORE_INS 96 // insert a character #define SCORE_INSDUP 67 // insert a duplicate character #define SCORE_INSCOMP 30 // insert a composing character #define SCORE_NONWORD 103 // change non-word to word char #define SCORE_FILE 30 // suggestion from a file #define SCORE_MAXINIT 350 // Initial maximum score: higher == slower. // 350 allows for about three changes. #define SCORE_COMMON1 30 // subtracted for words seen before #define SCORE_COMMON2 40 // subtracted for words often seen #define SCORE_COMMON3 50 // subtracted for words very often seen #define SCORE_THRES2 10 // word count threshold for COMMON2 #define SCORE_THRES3 100 // word count threshold for COMMON3 // When trying changed soundfold words it becomes slow when trying more than // two changes. With less then two changes it's slightly faster but we miss a // few good suggestions. In rare cases we need to try three of four changes. #define SCORE_SFMAX1 200 // maximum score for first try #define SCORE_SFMAX2 300 // maximum score for second try #define SCORE_SFMAX3 400 // maximum score for third try #define SCORE_BIG SCORE_INS * 3 // big difference #define SCORE_MAXMAX 999999 // accept any score #define SCORE_LIMITMAX 350 // for spell_edit_score_limit() // for spell_edit_score_limit() we need to know the minimum value of // SCORE_ICASE, SCORE_SWAP, SCORE_DEL, SCORE_SIMILAR and SCORE_INS #define SCORE_EDIT_MIN SCORE_SIMILAR // Structure to store info for word matching. typedef struct matchinf_S { langp_T *mi_lp; // info for language and region // pointers to original text to be checked char_u *mi_word; // start of word being checked char_u *mi_end; // end of matching word so far char_u *mi_fend; // next char to be added to mi_fword char_u *mi_cend; // char after what was used for // mi_capflags // case-folded text char_u mi_fword[MAXWLEN + 1]; // mi_word case-folded int mi_fwordlen; // nr of valid bytes in mi_fword // for when checking word after a prefix int mi_prefarridx; // index in sl_pidxs with list of // affixID/condition int mi_prefcnt; // number of entries at mi_prefarridx int mi_prefixlen; // byte length of prefix int mi_cprefixlen; // byte length of prefix in original // case // for when checking a compound word int mi_compoff; // start of following word offset char_u mi_compflags[MAXWLEN]; // flags for compound words used int mi_complen; // nr of compound words used int mi_compextra; // nr of COMPOUNDROOT words // others int mi_result; // result so far: SP_BAD, SP_OK, etc. int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP win_T *mi_win; // buffer being checked // for NOBREAK int mi_result2; // "mi_resul" without following word char_u *mi_end2; // "mi_end" without following word } matchinf_T; // The tables used for recognizing word characters according to spelling. // These are only used for the first 256 characters of 'encoding'. typedef struct { bool st_isw[256]; // flags: is word char bool st_isu[256]; // flags: is uppercase char char_u st_fold[256]; // chars: folded case char_u st_upper[256]; // chars: upper case } spelltab_T; // For finding suggestions: At each node in the tree these states are tried: typedef enum { STATE_START = 0, // At start of node check for NUL bytes (goodword // ends); if badword ends there is a match, otherwise // try splitting word. STATE_NOPREFIX, // try without prefix STATE_SPLITUNDO, // Undo splitting. STATE_ENDNUL, // Past NUL bytes at start of the node. STATE_PLAIN, // Use each byte of the node. STATE_DEL, // Delete a byte from the bad word. STATE_INS_PREP, // Prepare for inserting bytes. STATE_INS, // Insert a byte in the bad word. STATE_SWAP, // Swap two bytes. STATE_UNSWAP, // Undo swap two characters. STATE_SWAP3, // Swap two characters over three. STATE_UNSWAP3, // Undo Swap two characters over three. STATE_UNROT3L, // Undo rotate three characters left STATE_UNROT3R, // Undo rotate three characters right STATE_REP_INI, // Prepare for using REP items. STATE_REP, // Use matching REP items from the .aff file. STATE_REP_UNDO, // Undo a REP item replacement. STATE_FINAL // End of this node. } state_T; // Struct to keep the state at each level in suggest_try_change(). typedef struct trystate_S { state_T ts_state; // state at this level, STATE_ int ts_score; // score idx_T ts_arridx; // index in tree array, start of node short ts_curi; // index in list of child nodes char_u ts_fidx; // index in fword[], case-folded bad word char_u ts_fidxtry; // ts_fidx at which bytes may be changed char_u ts_twordlen; // valid length of tword[] char_u ts_prefixdepth; // stack depth for end of prefix or // PFD_PREFIXTREE or PFD_NOPREFIX char_u ts_flags; // TSF_ flags char_u ts_tcharlen; // number of bytes in tword character char_u ts_tcharidx; // current byte index in tword character char_u ts_isdiff; // DIFF_ values char_u ts_fcharstart; // index in fword where badword char started char_u ts_prewordlen; // length of word in "preword[]" char_u ts_splitoff; // index in "tword" after last split char_u ts_splitfidx; // "ts_fidx" at word split char_u ts_complen; // nr of compound words used char_u ts_compsplit; // index for "compflags" where word was spit char_u ts_save_badflags; // su_badflags saved here char_u ts_delidx; // index in fword for char that was deleted, // valid when "ts_flags" has TSF_DIDDEL } trystate_T; // Structure used for the cookie argument of do_in_runtimepath(). typedef struct spelload_S { char_u sl_lang[MAXWLEN + 1]; // language name slang_T *sl_slang; // resulting slang_T struct int sl_nobreak; // NOBREAK language found } spelload_T; #define SY_MAXLEN 30 typedef struct syl_item_S { char_u sy_chars[SY_MAXLEN]; // the sequence of chars int sy_len; } syl_item_T; #define MAXLINELEN 500 // Maximum length in bytes of a line in a .aff // and .dic file. // Main structure to store the contents of a ".aff" file. typedef struct afffile_S { char_u *af_enc; // "SET", normalized, alloc'ed string or NULL int af_flagtype; // AFT_CHAR, AFT_LONG, AFT_NUM or AFT_CAPLONG unsigned af_rare; // RARE ID for rare word unsigned af_keepcase; // KEEPCASE ID for keep-case word unsigned af_bad; // BAD ID for banned word unsigned af_needaffix; // NEEDAFFIX ID unsigned af_circumfix; // CIRCUMFIX ID unsigned af_needcomp; // NEEDCOMPOUND ID unsigned af_comproot; // COMPOUNDROOT ID unsigned af_compforbid; // COMPOUNDFORBIDFLAG ID unsigned af_comppermit; // COMPOUNDPERMITFLAG ID unsigned af_nosuggest; // NOSUGGEST ID int af_pfxpostpone; // postpone prefixes without chop string and // without flags bool af_ignoreextra; // IGNOREEXTRA present hashtab_T af_pref; // hashtable for prefixes, affheader_T hashtab_T af_suff; // hashtable for suffixes, affheader_T hashtab_T af_comp; // hashtable for compound flags, compitem_T } afffile_T; #define AFT_CHAR 0 // flags are one character #define AFT_LONG 1 // flags are two characters #define AFT_CAPLONG 2 // flags are one or two characters #define AFT_NUM 3 // flags are numbers, comma separated typedef struct affentry_S affentry_T; // Affix entry from ".aff" file. Used for prefixes and suffixes. struct affentry_S { affentry_T *ae_next; // next affix with same name/number char_u *ae_chop; // text to chop off basic word (can be NULL) char_u *ae_add; // text to add to basic word (can be NULL) char_u *ae_flags; // flags on the affix (can be NULL) char_u *ae_cond; // condition (NULL for ".") regprog_T *ae_prog; // regexp program for ae_cond or NULL char ae_compforbid; // COMPOUNDFORBIDFLAG found char ae_comppermit; // COMPOUNDPERMITFLAG found }; # define AH_KEY_LEN 17 // 2 x 8 bytes + NUL // Affix header from ".aff" file. Used for af_pref and af_suff. typedef struct affheader_S { char_u ah_key[AH_KEY_LEN]; // key for hashtab == name of affix unsigned ah_flag; // affix name as number, uses "af_flagtype" int ah_newID; // prefix ID after renumbering; 0 if not used int ah_combine; // suffix may combine with prefix int ah_follows; // another affix block should be following affentry_T *ah_first; // first affix entry } affheader_T; #define HI2AH(hi) ((affheader_T *)(hi)->hi_key) // Flag used in compound items. typedef struct compitem_S { char_u ci_key[AH_KEY_LEN]; // key for hashtab == name of compound unsigned ci_flag; // affix name as number, uses "af_flagtype" int ci_newID; // affix ID after renumbering. } compitem_T; #define HI2CI(hi) ((compitem_T *)(hi)->hi_key) // Structure that is used to store the items in the word tree. This avoids // the need to keep track of each allocated thing, everything is freed all at // once after ":mkspell" is done. // Note: "sb_next" must be just before "sb_data" to make sure the alignment of // "sb_data" is correct for systems where pointers must be aligned on // pointer-size boundaries and sizeof(pointer) > sizeof(int) (e.g., Sparc). #define SBLOCKSIZE 16000 // size of sb_data typedef struct sblock_S sblock_T; struct sblock_S { int sb_used; // nr of bytes already in use sblock_T *sb_next; // next block in list char_u sb_data[1]; // data, actually longer }; // A node in the tree. typedef struct wordnode_S wordnode_T; struct wordnode_S { union // shared to save space { char_u hashkey[6]; // the hash key, only used while compressing int index; // index in written nodes (valid after first // round) } wn_u1; union // shared to save space { wordnode_T *next; // next node with same hash key wordnode_T *wnode; // parent node that will write this node } wn_u2; wordnode_T *wn_child; // child (next byte in word) wordnode_T *wn_sibling; // next sibling (alternate byte in word, // always sorted) int wn_refs; // Nr. of references to this node. Only // relevant for first node in a list of // siblings, in following siblings it is // always one. char_u wn_byte; // Byte for this node. NUL for word end // Info for when "wn_byte" is NUL. // In PREFIXTREE "wn_region" is used for the prefcondnr. // In the soundfolded word tree "wn_flags" has the MSW of the wordnr and // "wn_region" the LSW of the wordnr. char_u wn_affixID; // supported/required prefix ID or 0 uint16_t wn_flags; // WF_ flags short wn_region; // region mask #ifdef SPELL_PRINTTREE int wn_nr; // sequence nr for printing #endif }; #define WN_MASK 0xffff // mask relevant bits of "wn_flags" #define HI2WN(hi) (wordnode_T *)((hi)->hi_key) // Info used while reading the spell files. typedef struct spellinfo_S { wordnode_T *si_foldroot; // tree with case-folded words long si_foldwcount; // nr of words in si_foldroot wordnode_T *si_keeproot; // tree with keep-case words long si_keepwcount; // nr of words in si_keeproot wordnode_T *si_prefroot; // tree with postponed prefixes long si_sugtree; // creating the soundfolding trie sblock_T *si_blocks; // memory blocks used long si_blocks_cnt; // memory blocks allocated int si_did_emsg; // TRUE when ran out of memory long si_compress_cnt; // words to add before lowering // compression limit wordnode_T *si_first_free; // List of nodes that have been freed during // compression, linked by "wn_child" field. long si_free_count; // number of nodes in si_first_free #ifdef SPELL_PRINTTREE int si_wordnode_nr; // sequence nr for nodes #endif buf_T *si_spellbuf; // buffer used to store soundfold word table int si_ascii; // handling only ASCII words int si_add; // addition file int si_clear_chartab; // when TRUE clear char tables int si_region; // region mask vimconv_T si_conv; // for conversion to 'encoding' int si_memtot; // runtime memory used int si_verbose; // verbose messages int si_msg_count; // number of words added since last message char_u *si_info; // info text chars or NULL int si_region_count; // number of regions supported (1 when there // are no regions) char_u si_region_name[17]; // region names; used only if // si_region_count > 1) garray_T si_rep; // list of fromto_T entries from REP lines garray_T si_repsal; // list of fromto_T entries from REPSAL lines garray_T si_sal; // list of fromto_T entries from SAL lines char_u *si_sofofr; // SOFOFROM text char_u *si_sofoto; // SOFOTO text int si_nosugfile; // NOSUGFILE item found int si_nosplitsugs; // NOSPLITSUGS item found int si_nocompoundsugs; // NOCOMPOUNDSUGS item found int si_followup; // soundsalike: ? int si_collapse; // soundsalike: ? hashtab_T si_commonwords; // hashtable for common words time_t si_sugtime; // timestamp for .sug file int si_rem_accents; // soundsalike: remove accents garray_T si_map; // MAP info concatenated char_u *si_midword; // MIDWORD chars or NULL int si_compmax; // max nr of words for compounding int si_compminlen; // minimal length for compounding int si_compsylmax; // max nr of syllables for compounding int si_compoptions; // COMP_ flags garray_T si_comppat; // CHECKCOMPOUNDPATTERN items, each stored as // a string char_u *si_compflags; // flags used for compounding char_u si_nobreak; // NOBREAK char_u *si_syllable; // syllable string garray_T si_prefcond; // table with conditions for postponed // prefixes, each stored as a string int si_newprefID; // current value for ah_newID int si_newcompID; // current value for compound ID } spellinfo_T; static spelltab_T spelltab; static int did_set_spelltab; #define CF_WORD 0x01 #define CF_UPPER 0x02 // structure used to store soundfolded words that add_sound_suggest() has // handled already. typedef struct { short sft_score; // lowest score used char_u sft_word[1]; // soundfolded word, actually longer } sftword_T; typedef struct { int badi; int goodi; int score; } limitscore_T; #ifdef INCLUDE_GENERATED_DECLARATIONS # include "spell.c.generated.h" #endif // values for ts_isdiff #define DIFF_NONE 0 // no different byte (yet) #define DIFF_YES 1 // different byte found #define DIFF_INSERT 2 // inserting character // values for ts_flags #define TSF_PREFIXOK 1 // already checked that prefix is OK #define TSF_DIDSPLIT 2 // tried split at this point #define TSF_DIDDEL 4 // did a delete, "ts_delidx" has index // special values ts_prefixdepth #define PFD_NOPREFIX 0xff // not using prefixes #define PFD_PREFIXTREE 0xfe // walking through the prefix tree #define PFD_NOTSPECIAL 0xfd // highest value that's not special // mode values for find_word #define FIND_FOLDWORD 0 // find word case-folded #define FIND_KEEPWORD 1 // find keep-case word #define FIND_PREFIX 2 // find word after prefix #define FIND_COMPOUND 3 // find case-folded compound word #define FIND_KEEPCOMPOUND 4 // find keep-case compound word // Use our own character-case definitions, because the current locale may // differ from what the .spl file uses. // These must not be called with negative number! #include // for towupper() and towlower() // Multi-byte implementation. For Unicode we can call utf_*(), but don't do // that for ASCII, because we don't want to use 'casemap' here. Otherwise use // the "w" library function for characters above 255. #define SPELL_TOFOLD(c) (enc_utf8 && (c) >= 128 ? utf_fold(c) \ : (c) < \ 256 ? (int)spelltab.st_fold[c] : (int)towlower(c)) #define SPELL_TOUPPER(c) (enc_utf8 && (c) >= 128 ? utf_toupper(c) \ : (c) < \ 256 ? (int)spelltab.st_upper[c] : (int)towupper(c)) #define SPELL_ISUPPER(c) (enc_utf8 && (c) >= 128 ? utf_isupper(c) \ : (c) < 256 ? spelltab.st_isu[c] : iswupper(c)) static char *e_format = N_("E759: Format error in spell file"); static char *e_spell_trunc = N_("E758: Truncated spell file"); static char *e_afftrailing = N_("Trailing text in %s line %d: %s"); static char *e_affname = N_("Affix name too long in %s line %d: %s"); static char *e_affform = N_("E761: Format error in affix file FOL, LOW or UPP"); static char *e_affrange = N_( "E762: Character in FOL, LOW or UPP is out of range"); static char *msg_compressing = N_("Compressing word tree..."); // Remember what "z?" replaced. static char_u *repl_from = NULL; static char_u *repl_to = NULL; // Main spell-checking function. // "ptr" points to a character that could be the start of a word. // "*attrp" is set to the highlight index for a badly spelled word. For a // non-word or when it's OK it remains unchanged. // This must only be called when 'spelllang' is not empty. // // "capcol" is used to check for a Capitalised word after the end of a // sentence. If it's zero then perform the check. Return the column where to // check next, or -1 when no sentence end was found. If it's NULL then don't // worry. // // Returns the length of the word in bytes, also when it's OK, so that the // caller can skip over the word. size_t spell_check( win_T *wp, // current window char_u *ptr, hlf_T *attrp, int *capcol, // column to check for Capital bool docount // count good words ) { matchinf_T mi; // Most things are put in "mi" so that it can // be passed to functions quickly. size_t nrlen = 0; // found a number first int c; size_t wrongcaplen = 0; int lpi; bool count_word = docount; // A word never starts at a space or a control character. Return quickly // then, skipping over the character. if (*ptr <= ' ') { return 1; } // Return here when loading language files failed. if (GA_EMPTY(&wp->w_s->b_langp)) { return 1; } memset(&mi, 0, sizeof(matchinf_T)); // A number is always OK. Also skip hexadecimal numbers 0xFF99 and // 0X99FF. But always do check spelling to find "3GPP" and "11 // julifeest". if (*ptr >= '0' && *ptr <= '9') { if (*ptr == '0' && (ptr[1] == 'b' || ptr[1] == 'B')) { mi.mi_end = (char_u*) skipbin((char*) ptr + 2); } else if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X')) { mi.mi_end = skiphex(ptr + 2); } else { mi.mi_end = skipdigits(ptr); } nrlen = (size_t)(mi.mi_end - ptr); } // Find the normal end of the word (until the next non-word character). mi.mi_word = ptr; mi.mi_fend = ptr; if (spell_iswordp(mi.mi_fend, wp)) { do { mb_ptr_adv(mi.mi_fend); } while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp)); if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) { // Check word starting with capital letter. c = PTR2CHAR(ptr); if (!SPELL_ISUPPER(c)) { wrongcaplen = (size_t)(mi.mi_fend - ptr); } } } if (capcol != NULL) { *capcol = -1; } // We always use the characters up to the next non-word character, // also for bad words. mi.mi_end = mi.mi_fend; // Check caps type later. mi.mi_capflags = 0; mi.mi_cend = NULL; mi.mi_win = wp; // case-fold the word with one non-word character, so that we can check // for the word end. if (*mi.mi_fend != NUL) { mb_ptr_adv(mi.mi_fend); } (void)spell_casefold(ptr, (int)(mi.mi_fend - ptr), mi.mi_fword, MAXWLEN + 1); mi.mi_fwordlen = (int)STRLEN(mi.mi_fword); // The word is bad unless we recognize it. mi.mi_result = SP_BAD; mi.mi_result2 = SP_BAD; // Loop over the languages specified in 'spelllang'. // We check them all, because a word may be matched longer in another // language. for (lpi = 0; lpi < wp->w_s->b_langp.ga_len; ++lpi) { mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi); // If reloading fails the language is still in the list but everything // has been cleared. if (mi.mi_lp->lp_slang->sl_fidxs == NULL) { continue; } // Check for a matching word in case-folded words. find_word(&mi, FIND_FOLDWORD); // Check for a matching word in keep-case words. find_word(&mi, FIND_KEEPWORD); // Check for matching prefixes. find_prefix(&mi, FIND_FOLDWORD); // For a NOBREAK language, may want to use a word without a following // word as a backup. if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD && mi.mi_result2 != SP_BAD) { mi.mi_result = mi.mi_result2; mi.mi_end = mi.mi_end2; } // Count the word in the first language where it's found to be OK. if (count_word && mi.mi_result == SP_OK) { count_common_word(mi.mi_lp->lp_slang, ptr, (int)(mi.mi_end - ptr), 1); count_word = false; } } if (mi.mi_result != SP_OK) { // If we found a number skip over it. Allows for "42nd". Do flag // rare and local words, e.g., "3GPP". if (nrlen > 0) { if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) { return nrlen; } } else if (!spell_iswordp_nmw(ptr, wp)) { // When we are at a non-word character there is no error, just // skip over the character (try looking for a word after it). if (capcol != NULL && wp->w_s->b_cap_prog != NULL) { regmatch_T regmatch; // Check for end of sentence. regmatch.regprog = wp->w_s->b_cap_prog; regmatch.rm_ic = false; int r = vim_regexec(®match, ptr, 0); wp->w_s->b_cap_prog = regmatch.regprog; if (r) { *capcol = (int)(regmatch.endp[0] - ptr); } } if (has_mbyte) { return (size_t)(*mb_ptr2len)(ptr); } return 1; } else if (mi.mi_end == ptr) { // Always include at least one character. Required for when there // is a mixup in "midword". mb_ptr_adv(mi.mi_end); } else if (mi.mi_result == SP_BAD && LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) { char_u *p, *fp; int save_result = mi.mi_result; // First language in 'spelllang' is NOBREAK. Find first position // at which any word would be valid. mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0); if (mi.mi_lp->lp_slang->sl_fidxs != NULL) { p = mi.mi_word; fp = mi.mi_fword; for (;;) { mb_ptr_adv(p); mb_ptr_adv(fp); if (p >= mi.mi_end) { break; } mi.mi_compoff = (int)(fp - mi.mi_fword); find_word(&mi, FIND_COMPOUND); if (mi.mi_result != SP_BAD) { mi.mi_end = p; break; } } mi.mi_result = save_result; } } if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) { *attrp = HLF_SPB; } else if (mi.mi_result == SP_RARE) { *attrp = HLF_SPR; } else { *attrp = HLF_SPL; } } if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) { // Report SpellCap only when the word isn't badly spelled. *attrp = HLF_SPC; return wrongcaplen; } return (size_t)(mi.mi_end - ptr); } // Check if the word at "mip->mi_word" is in the tree. // When "mode" is FIND_FOLDWORD check in fold-case word tree. // When "mode" is FIND_KEEPWORD check in keep-case word tree. // When "mode" is FIND_PREFIX check for word after prefix in fold-case word // tree. // // For a match mip->mi_result is updated. static void find_word(matchinf_T *mip, int mode) { int wlen = 0; int flen; char_u *ptr; slang_T *slang = mip->mi_lp->lp_slang; char_u *byts; idx_T *idxs; if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) { // Check for word with matching case in keep-case tree. ptr = mip->mi_word; flen = 9999; // no case folding, always enough bytes byts = slang->sl_kbyts; idxs = slang->sl_kidxs; if (mode == FIND_KEEPCOMPOUND) // Skip over the previously found word(s). wlen += mip->mi_compoff; } else { // Check for case-folded in case-folded tree. ptr = mip->mi_fword; flen = mip->mi_fwordlen; // available case-folded bytes byts = slang->sl_fbyts; idxs = slang->sl_fidxs; if (mode == FIND_PREFIX) { // Skip over the prefix. wlen = mip->mi_prefixlen; flen -= mip->mi_prefixlen; } else if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). wlen = mip->mi_compoff; flen -= mip->mi_compoff; } } if (byts == NULL) return; // array is empty idx_T arridx = 0; int endlen[MAXWLEN]; // length at possible word endings idx_T endidx[MAXWLEN]; // possible word endings int endidxcnt = 0; int len; int c; // Repeat advancing in the tree until: // - there is a byte that doesn't match, // - we reach the end of the tree, // - or we reach the end of the line. for (;; ) { if (flen <= 0 && *mip->mi_fend != NUL) flen = fold_more(mip); len = byts[arridx++]; // If the first possible byte is a zero the word could end here. // Remember this index, we first check for the longest word. if (byts[arridx] == 0) { if (endidxcnt == MAXWLEN) { // Must be a corrupted spell file. EMSG(_(e_format)); return; } endlen[endidxcnt] = wlen; endidx[endidxcnt++] = arridx++; --len; // Skip over the zeros, there can be several flag/region // combinations. while (len > 0 && byts[arridx] == 0) { ++arridx; --len; } if (len == 0) break; // no children, word must end here } // Stop looking at end of the line. if (ptr[wlen] == NUL) break; // Perform a binary search in the list of accepted bytes. c = ptr[wlen]; if (c == TAB) // is handled like c = ' '; idx_T lo = arridx; idx_T hi = arridx + len - 1; while (lo < hi) { idx_T m = (lo + hi) / 2; if (byts[m] > c) hi = m - 1; else if (byts[m] < c) lo = m + 1; else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) break; // Continue at the child (if there is one). arridx = idxs[lo]; ++wlen; --flen; // One space in the good word may stand for several spaces in the // checked word. if (c == ' ') { for (;; ) { if (flen <= 0 && *mip->mi_fend != NUL) flen = fold_more(mip); if (ptr[wlen] != ' ' && ptr[wlen] != TAB) break; ++wlen; --flen; } } } char_u *p; bool word_ends; // Verify that one of the possible endings is valid. Try the longest // first. while (endidxcnt > 0) { --endidxcnt; arridx = endidx[endidxcnt]; wlen = endlen[endidxcnt]; if ((*mb_head_off)(ptr, ptr + wlen) > 0) continue; // not at first byte of character if (spell_iswordp(ptr + wlen, mip->mi_win)) { if (slang->sl_compprog == NULL && !slang->sl_nobreak) continue; // next char is a word character word_ends = false; } else word_ends = true; // The prefix flag is before compound flags. Once a valid prefix flag // has been found we try compound flags. bool prefix_found = false; if (mode != FIND_KEEPWORD && has_mbyte) { // Compute byte length in original word, length may change // when folding case. This can be slow, take a shortcut when the // case-folded word is equal to the keep-case word. p = mip->mi_word; if (STRNCMP(ptr, p, wlen) != 0) { for (char_u *s = ptr; s < ptr + wlen; mb_ptr_adv(s)) mb_ptr_adv(p); wlen = (int)(p - mip->mi_word); } } // Check flags and region. For FIND_PREFIX check the condition and // prefix ID. // Repeat this if there are more flags/region alternatives until there // is a match. for (len = byts[arridx - 1]; len > 0 && byts[arridx] == 0; --len, ++arridx) { uint32_t flags = idxs[arridx]; // For the fold-case tree check that the case of the checked word // matches with what the word in the tree requires. // For keep-case tree the case is always right. For prefixes we // don't bother to check. if (mode == FIND_FOLDWORD) { if (mip->mi_cend != mip->mi_word + wlen) { // mi_capflags was set for a different word length, need // to do it again. mip->mi_cend = mip->mi_word + wlen; mip->mi_capflags = captype(mip->mi_word, mip->mi_cend); } if (mip->mi_capflags == WF_KEEPCAP || !spell_valid_case(mip->mi_capflags, flags)) continue; } // When mode is FIND_PREFIX the word must support the prefix: // check the prefix ID and the condition. Do that for the list at // mip->mi_prefarridx that find_prefix() filled. else if (mode == FIND_PREFIX && !prefix_found) { c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx, flags, mip->mi_word + mip->mi_cprefixlen, slang, false); if (c == 0) continue; // Use the WF_RARE flag for a rare prefix. if (c & WF_RAREPFX) flags |= WF_RARE; prefix_found = true; } if (slang->sl_nobreak) { if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND) && (flags & WF_BANNED) == 0) { // NOBREAK: found a valid following word. That's all we // need to know, so return. mip->mi_result = SP_OK; break; } } else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND || !word_ends)) { // If there is no compound flag or the word is shorter than // COMPOUNDMIN reject it quickly. // Makes you wonder why someone puts a compound flag on a word // that's too short... Myspell compatibility requires this // anyway. if (((unsigned)flags >> 24) == 0 || wlen - mip->mi_compoff < slang->sl_compminlen) continue; // For multi-byte chars check character length against // COMPOUNDMIN. if (has_mbyte && slang->sl_compminlen > 0 && mb_charlen_len(mip->mi_word + mip->mi_compoff, wlen - mip->mi_compoff) < slang->sl_compminlen) continue; // Limit the number of compound words to COMPOUNDWORDMAX if no // maximum for syllables is specified. if (!word_ends && mip->mi_complen + mip->mi_compextra + 2 > slang->sl_compmax && slang->sl_compsylmax == MAXWLEN) continue; // Don't allow compounding on a side where an affix was added, // unless COMPOUNDPERMITFLAG was used. if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF)) continue; if (!word_ends && (flags & WF_NOCOMPAFT)) continue; // Quickly check if compounding is possible with this flag. if (!byte_in_str(mip->mi_complen == 0 ? slang->sl_compstartflags : slang->sl_compallflags, ((unsigned)flags >> 24))) continue; // If there is a match with a CHECKCOMPOUNDPATTERN rule // discard the compound word. if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat)) continue; if (mode == FIND_COMPOUND) { int capflags; // Need to check the caps type of the appended compound // word. if (has_mbyte && STRNCMP(ptr, mip->mi_word, mip->mi_compoff) != 0) { // case folding may have changed the length p = mip->mi_word; for (char_u *s = ptr; s < ptr + mip->mi_compoff; mb_ptr_adv(s)) mb_ptr_adv(p); } else p = mip->mi_word + mip->mi_compoff; capflags = captype(p, mip->mi_word + wlen); if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP && (flags & WF_FIXCAP) != 0)) continue; if (capflags != WF_ALLCAP) { // When the character before the word is a word // character we do not accept a Onecap word. We do // accept a no-caps word, even when the dictionary // word specifies ONECAP. mb_ptr_back(mip->mi_word, p); if (spell_iswordp_nmw(p, mip->mi_win) ? capflags == WF_ONECAP : (flags & WF_ONECAP) != 0 && capflags != WF_ONECAP) continue; } } // If the word ends the sequence of compound flags of the // words must match with one of the COMPOUNDRULE items and // the number of syllables must not be too large. mip->mi_compflags[mip->mi_complen] = ((unsigned)flags >> 24); mip->mi_compflags[mip->mi_complen + 1] = NUL; if (word_ends) { char_u fword[MAXWLEN]; if (slang->sl_compsylmax < MAXWLEN) { // "fword" is only needed for checking syllables. if (ptr == mip->mi_word) (void)spell_casefold(ptr, wlen, fword, MAXWLEN); else STRLCPY(fword, ptr, endlen[endidxcnt] + 1); } if (!can_compound(slang, fword, mip->mi_compflags)) continue; } else if (slang->sl_comprules != NULL && !match_compoundrule(slang, mip->mi_compflags)) // The compound flags collected so far do not match any // COMPOUNDRULE, discard the compounded word. continue; } // Check NEEDCOMPOUND: can't use word without compounding. else if (flags & WF_NEEDCOMP) continue; int nobreak_result = SP_OK; if (!word_ends) { int save_result = mip->mi_result; char_u *save_end = mip->mi_end; langp_T *save_lp = mip->mi_lp; // Check that a valid word follows. If there is one and we // are compounding, it will set "mi_result", thus we are // always finished here. For NOBREAK we only check that a // valid word follows. // Recursive! if (slang->sl_nobreak) mip->mi_result = SP_BAD; // Find following word in case-folded tree. mip->mi_compoff = endlen[endidxcnt]; if (has_mbyte && mode == FIND_KEEPWORD) { // Compute byte length in case-folded word from "wlen": // byte length in keep-case word. Length may change when // folding case. This can be slow, take a shortcut when // the case-folded word is equal to the keep-case word. p = mip->mi_fword; if (STRNCMP(ptr, p, wlen) != 0) { for (char_u *s = ptr; s < ptr + wlen; mb_ptr_adv(s)) mb_ptr_adv(p); mip->mi_compoff = (int)(p - mip->mi_fword); } } #if 0 c = mip->mi_compoff; #endif ++mip->mi_complen; if (flags & WF_COMPROOT) ++mip->mi_compextra; // For NOBREAK we need to try all NOBREAK languages, at least // to find the ".add" file(s). for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; ++lpi) { if (slang->sl_nobreak) { mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi); if (mip->mi_lp->lp_slang->sl_fidxs == NULL || !mip->mi_lp->lp_slang->sl_nobreak) continue; } find_word(mip, FIND_COMPOUND); // When NOBREAK any word that matches is OK. Otherwise we // need to find the longest match, thus try with keep-case // and prefix too. if (!slang->sl_nobreak || mip->mi_result == SP_BAD) { // Find following word in keep-case tree. mip->mi_compoff = wlen; find_word(mip, FIND_KEEPCOMPOUND); #if 0 // Disabled, a prefix must not appear halfway through a compound // word, unless the COMPOUNDPERMITFLAG is used, in which case it // can't be a postponed prefix. if (!slang->sl_nobreak || mip->mi_result == SP_BAD) { // Check for following word with prefix. mip->mi_compoff = c; find_prefix(mip, FIND_COMPOUND); } #endif } if (!slang->sl_nobreak) break; } --mip->mi_complen; if (flags & WF_COMPROOT) --mip->mi_compextra; mip->mi_lp = save_lp; if (slang->sl_nobreak) { nobreak_result = mip->mi_result; mip->mi_result = save_result; mip->mi_end = save_end; } else { if (mip->mi_result == SP_OK) break; continue; } } int res = SP_BAD; if (flags & WF_BANNED) res = SP_BANNED; else if (flags & WF_REGION) { // Check region. if ((mip->mi_lp->lp_region & (flags >> 16)) != 0) res = SP_OK; else res = SP_LOCAL; } else if (flags & WF_RARE) res = SP_RARE; else res = SP_OK; // Always use the longest match and the best result. For NOBREAK // we separately keep the longest match without a following good // word as a fall-back. if (nobreak_result == SP_BAD) { if (mip->mi_result2 > res) { mip->mi_result2 = res; mip->mi_end2 = mip->mi_word + wlen; } else if (mip->mi_result2 == res && mip->mi_end2 < mip->mi_word + wlen) mip->mi_end2 = mip->mi_word + wlen; } else if (mip->mi_result > res) { mip->mi_result = res; mip->mi_end = mip->mi_word + wlen; } else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen) mip->mi_end = mip->mi_word + wlen; if (mip->mi_result == SP_OK) break; } if (mip->mi_result == SP_OK) break; } } // Returns true if there is a match between the word ptr[wlen] and // CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another // word. // A match means that the first part of CHECKCOMPOUNDPATTERN matches at the // end of ptr[wlen] and the second part matches after it. static bool match_checkcompoundpattern ( char_u *ptr, int wlen, garray_T *gap // &sl_comppat ) { char_u *p; int len; for (int i = 0; i + 1 < gap->ga_len; i += 2) { p = ((char_u **)gap->ga_data)[i + 1]; if (STRNCMP(ptr + wlen, p, STRLEN(p)) == 0) { // Second part matches at start of following compound word, now // check if first part matches at end of previous word. p = ((char_u **)gap->ga_data)[i]; len = (int)STRLEN(p); if (len <= wlen && STRNCMP(ptr + wlen - len, p, len) == 0) return true; } } return false; } // Returns true if "flags" is a valid sequence of compound flags and "word" // does not have too many syllables. static bool can_compound(slang_T *slang, char_u *word, char_u *flags) { char_u uflags[MAXWLEN * 2]; int i; char_u *p; if (slang->sl_compprog == NULL) return false; if (enc_utf8) { // Need to convert the single byte flags to utf8 characters. p = uflags; for (i = 0; flags[i] != NUL; ++i) p += mb_char2bytes(flags[i], p); *p = NUL; p = uflags; } else p = flags; if (!vim_regexec_prog(&slang->sl_compprog, false, p, 0)) return false; // Count the number of syllables. This may be slow, do it last. If there // are too many syllables AND the number of compound words is above // COMPOUNDWORDMAX then compounding is not allowed. if (slang->sl_compsylmax < MAXWLEN && count_syllables(slang, word) > slang->sl_compsylmax) return (int)STRLEN(flags) < slang->sl_compmax; return true; } // Returns true when the sequence of flags in "compflags" plus "flag" can // possibly form a valid compounded word. This also checks the COMPOUNDRULE // lines if they don't contain wildcards. static bool can_be_compound(trystate_T *sp, slang_T *slang, char_u *compflags, int flag) { // If the flag doesn't appear in sl_compstartflags or sl_compallflags // then it can't possibly compound. if (!byte_in_str(sp->ts_complen == sp->ts_compsplit ? slang->sl_compstartflags : slang->sl_compallflags, flag)) return false; // If there are no wildcards, we can check if the flags collected so far // possibly can form a match with COMPOUNDRULE patterns. This only // makes sense when we have two or more words. if (slang->sl_comprules != NULL && sp->ts_complen > sp->ts_compsplit) { compflags[sp->ts_complen] = flag; compflags[sp->ts_complen + 1] = NUL; bool v = match_compoundrule(slang, compflags + sp->ts_compsplit); compflags[sp->ts_complen] = NUL; return v; } return true; } // Returns true if the compound flags in compflags[] match the start of any // compound rule. This is used to stop trying a compound if the flags // collected so far can't possibly match any compound rule. // Caller must check that slang->sl_comprules is not NULL. static bool match_compoundrule(slang_T *slang, char_u *compflags) { char_u *p; int i; int c; // loop over all the COMPOUNDRULE entries for (p = slang->sl_comprules; *p != NUL; ++p) { // loop over the flags in the compound word we have made, match // them against the current rule entry for (i = 0;; ++i) { c = compflags[i]; if (c == NUL) // found a rule that matches for the flags we have so far return true; if (*p == '/' || *p == NUL) break; // end of rule, it's too short if (*p == '[') { bool match = false; // compare against all the flags in [] ++p; while (*p != ']' && *p != NUL) if (*p++ == c) match = true; if (!match) break; // none matches } else if (*p != c) break; // flag of word doesn't match flag in pattern ++p; } // Skip to the next "/", where the next pattern starts. p = vim_strchr(p, '/'); if (p == NULL) break; } // Checked all the rules and none of them match the flags, so there // can't possibly be a compound starting with these flags. return false; } // Return non-zero if the prefix indicated by "arridx" matches with the prefix // ID in "flags" for the word "word". // The WF_RAREPFX flag is included in the return value for a rare prefix. static int valid_word_prefix ( int totprefcnt, // nr of prefix IDs int arridx, // idx in sl_pidxs[] int flags, char_u *word, slang_T *slang, bool cond_req // only use prefixes with a condition ) { int prefcnt; int pidx; int prefid; prefid = (unsigned)flags >> 24; for (prefcnt = totprefcnt - 1; prefcnt >= 0; --prefcnt) { pidx = slang->sl_pidxs[arridx + prefcnt]; // Check the prefix ID. if (prefid != (pidx & 0xff)) continue; // Check if the prefix doesn't combine and the word already has a // suffix. if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC)) continue; // Check the condition, if there is one. The condition index is // stored in the two bytes above the prefix ID byte. regprog_T **rp = &slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff]; if (*rp != NULL) { if (!vim_regexec_prog(rp, false, word, 0)) { continue; } } else if (cond_req) continue; // It's a match! Return the WF_ flags. return pidx; } return 0; } // Check if the word at "mip->mi_word" has a matching prefix. // If it does, then check the following word. // // If "mode" is "FIND_COMPOUND" then do the same after another word, find a // prefix in a compound word. // // For a match mip->mi_result is updated. static void find_prefix(matchinf_T *mip, int mode) { idx_T arridx = 0; int len; int wlen = 0; int flen; int c; char_u *ptr; idx_T lo, hi, m; slang_T *slang = mip->mi_lp->lp_slang; char_u *byts; idx_T *idxs; byts = slang->sl_pbyts; if (byts == NULL) return; // array is empty // We use the case-folded word here, since prefixes are always // case-folded. ptr = mip->mi_fword; flen = mip->mi_fwordlen; // available case-folded bytes if (mode == FIND_COMPOUND) { // Skip over the previously found word(s). ptr += mip->mi_compoff; flen -= mip->mi_compoff; } idxs = slang->sl_pidxs; // Repeat advancing in the tree until: // - there is a byte that doesn't match, // - we reach the end of the tree, // - or we reach the end of the line. for (;; ) { if (flen == 0 && *mip->mi_fend != NUL) flen = fold_more(mip); len = byts[arridx++]; // If the first possible byte is a zero the prefix could end here. // Check if the following word matches and supports the prefix. if (byts[arridx] == 0) { // There can be several prefixes with different conditions. We // try them all, since we don't know which one will give the // longest match. The word is the same each time, pass the list // of possible prefixes to find_word(). mip->mi_prefarridx = arridx; mip->mi_prefcnt = len; while (len > 0 && byts[arridx] == 0) { ++arridx; --len; } mip->mi_prefcnt -= len; // Find the word that comes after the prefix. mip->mi_prefixlen = wlen; if (mode == FIND_COMPOUND) // Skip over the previously found word(s). mip->mi_prefixlen += mip->mi_compoff; if (has_mbyte) { // Case-folded length may differ from original length. mip->mi_cprefixlen = nofold_len(mip->mi_fword, mip->mi_prefixlen, mip->mi_word); } else mip->mi_cprefixlen = mip->mi_prefixlen; find_word(mip, FIND_PREFIX); if (len == 0) break; // no children, word must end here } // Stop looking at end of the line. if (ptr[wlen] == NUL) break; // Perform a binary search in the list of accepted bytes. c = ptr[wlen]; lo = arridx; hi = arridx + len - 1; while (lo < hi) { m = (lo + hi) / 2; if (byts[m] > c) hi = m - 1; else if (byts[m] < c) lo = m + 1; else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) break; // Continue at the child (if there is one). arridx = idxs[lo]; ++wlen; --flen; } } // Need to fold at least one more character. Do until next non-word character // for efficiency. Include the non-word character too. // Return the length of the folded chars in bytes. static int fold_more(matchinf_T *mip) { int flen; char_u *p; p = mip->mi_fend; do { mb_ptr_adv(mip->mi_fend); } while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win)); // Include the non-word character so that we can check for the word end. if (*mip->mi_fend != NUL) mb_ptr_adv(mip->mi_fend); (void)spell_casefold(p, (int)(mip->mi_fend - p), mip->mi_fword + mip->mi_fwordlen, MAXWLEN - mip->mi_fwordlen); flen = (int)STRLEN(mip->mi_fword + mip->mi_fwordlen); mip->mi_fwordlen += flen; return flen; } /// Checks case flags for a word. Returns true, if the word has the requested /// case. /// /// @param wordflags Flags for the checked word. /// @param treeflags Flags for the word in the spell tree. static bool spell_valid_case(int wordflags, int treeflags) { return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0) || ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0 && ((treeflags & WF_ONECAP) == 0 || (wordflags & WF_ONECAP) != 0)); } // Returns true if spell checking is not enabled. static bool no_spell_checking(win_T *wp) { if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL || GA_EMPTY(&wp->w_s->b_langp)) { EMSG(_("E756: Spell checking is not enabled")); return true; } return false; } // Moves to the next spell error. // "curline" is false for "[s", "]s", "[S" and "]S". // "curline" is true to find word under/after cursor in the same line. // For Insert mode completion "dir" is BACKWARD and "curline" is true: move // to after badly spelled word before the cursor. // Return 0 if not found, length of the badly spelled word otherwise. size_t spell_move_to ( win_T *wp, int dir, // FORWARD or BACKWARD bool allwords, // true for "[s"/"]s", false for "[S"/"]S" bool curline, hlf_T *attrp // return: attributes of bad word or NULL // (only when "dir" is FORWARD) ) { linenr_T lnum; pos_T found_pos; size_t found_len = 0; char_u *line; char_u *p; char_u *endp; hlf_T attr = HLF_COUNT; size_t len; int has_syntax = syntax_present(wp); int col; bool can_spell; char_u *buf = NULL; size_t buflen = 0; int skip = 0; int capcol = -1; bool found_one = false; bool wrapped = false; if (no_spell_checking(wp)) return 0; // Start looking for bad word at the start of the line, because we can't // start halfway through a word, we don't know where it starts or ends. // // When searching backwards, we continue in the line to find the last // bad word (in the cursor line: before the cursor). // // We concatenate the start of the next line, so that wrapped words work // (e.g. "etcetera"). Doesn't work when searching backwards // though... lnum = wp->w_cursor.lnum; clearpos(&found_pos); while (!got_int) { line = ml_get_buf(wp->w_buffer, lnum, FALSE); len = STRLEN(line); if (buflen < len + MAXWLEN + 2) { xfree(buf); buflen = len + MAXWLEN + 2; buf = xmalloc(buflen); } assert(buf && buflen >= len + MAXWLEN + 2); // In first line check first word for Capital. if (lnum == 1) capcol = 0; // For checking first word with a capital skip white space. if (capcol == 0) capcol = (int)(skipwhite(line) - line); else if (curline && wp == curwin) { // For spellbadword(): check if first word needs a capital. col = (int)(skipwhite(line) - line); if (check_need_cap(lnum, col)) capcol = col; // Need to get the line again, may have looked at the previous // one. line = ml_get_buf(wp->w_buffer, lnum, FALSE); } // Copy the line into "buf" and append the start of the next line if // possible. STRCPY(buf, line); if (lnum < wp->w_buffer->b_ml.ml_line_count) spell_cat_line(buf + STRLEN(buf), ml_get_buf(wp->w_buffer, lnum + 1, FALSE), MAXWLEN); p = buf + skip; endp = buf + len; while (p < endp) { // When searching backward don't search after the cursor. Unless // we wrapped around the end of the buffer. if (dir == BACKWARD && lnum == wp->w_cursor.lnum && !wrapped && (colnr_T)(p - buf) >= wp->w_cursor.col) break; // start of word attr = HLF_COUNT; len = spell_check(wp, p, &attr, &capcol, false); if (attr != HLF_COUNT) { // We found a bad word. Check the attribute. if (allwords || attr == HLF_SPB) { // When searching forward only accept a bad word after // the cursor. if (dir == BACKWARD || lnum != wp->w_cursor.lnum || (lnum == wp->w_cursor.lnum && (wrapped || ((colnr_T)(curline ? p - buf + (ptrdiff_t)len : p - buf) > wp->w_cursor.col)))) { if (has_syntax) { col = (int)(p - buf); (void)syn_get_id(wp, lnum, (colnr_T)col, FALSE, &can_spell, FALSE); if (!can_spell) attr = HLF_COUNT; } else can_spell = true; if (can_spell) { found_one = true; found_pos.lnum = lnum; found_pos.col = (int)(p - buf); found_pos.coladd = 0; if (dir == FORWARD) { // No need to search further. wp->w_cursor = found_pos; xfree(buf); if (attrp != NULL) *attrp = attr; return len; } else if (curline) { // Insert mode completion: put cursor after // the bad word. assert(len <= INT_MAX); found_pos.col += (int)len; } found_len = len; } } else found_one = true; } } // advance to character after the word p += len; assert(len <= INT_MAX); capcol -= (int)len; } if (dir == BACKWARD && found_pos.lnum != 0) { // Use the last match in the line (before the cursor). wp->w_cursor = found_pos; xfree(buf); return found_len; } if (curline) break; // only check cursor line // Advance to next line. if (dir == BACKWARD) { // If we are back at the starting line and searched it again there // is no match, give up. if (lnum == wp->w_cursor.lnum && wrapped) break; if (lnum > 1) --lnum; else if (!p_ws) break; // at first line and 'nowrapscan' else { // Wrap around to the end of the buffer. May search the // starting line again and accept the last match. lnum = wp->w_buffer->b_ml.ml_line_count; wrapped = true; if (!shortmess(SHM_SEARCH)) give_warning((char_u *)_(top_bot_msg), true); } capcol = -1; } else { if (lnum < wp->w_buffer->b_ml.ml_line_count) ++lnum; else if (!p_ws) break; // at first line and 'nowrapscan' else { // Wrap around to the start of the buffer. May search the // starting line again and accept the first match. lnum = 1; wrapped = true; if (!shortmess(SHM_SEARCH)) give_warning((char_u *)_(bot_top_msg), true); } // If we are back at the starting line and there is no match then // give up. if (lnum == wp->w_cursor.lnum && (!found_one || wrapped)) break; // Skip the characters at the start of the next line that were // included in a match crossing line boundaries. if (attr == HLF_COUNT) skip = (int)(p - endp); else skip = 0; // Capcol skips over the inserted space. --capcol; // But after empty line check first word in next line if (*skipwhite(line) == NUL) capcol = 0; } line_breakcheck(); } xfree(buf); return 0; } // For spell checking: concatenate the start of the following line "line" into // "buf", blanking-out special characters. Copy less then "maxlen" bytes. // Keep the blanks at the start of the next line, this is used in win_line() // to skip those bytes if the word was OK. void spell_cat_line(char_u *buf, char_u *line, int maxlen) { char_u *p; int n; p = skipwhite(line); while (vim_strchr((char_u *)"*#/\"\t", *p) != NULL) p = skipwhite(p + 1); if (*p != NUL) { // Only worth concatenating if there is something else than spaces to // concatenate. n = (int)(p - line) + 1; if (n < maxlen - 1) { memset(buf, ' ', n); STRLCPY(buf + n, p, maxlen - n); } } } // Load word list(s) for "lang" from Vim spell file(s). // "lang" must be the language without the region: e.g., "en". static void spell_load_lang(char_u *lang) { char_u fname_enc[85]; int r; spelload_T sl; int round; // Copy the language name to pass it to spell_load_cb() as a cookie. // It's truncated when an error is detected. STRCPY(sl.sl_lang, lang); sl.sl_slang = NULL; sl.sl_nobreak = false; // We may retry when no spell file is found for the language, an // autocommand may load it then. for (round = 1; round <= 2; ++round) { // Find the first spell file for "lang" in 'runtimepath' and load it. vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5, "spell/%s.%s.spl", lang, spell_enc()); r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl); if (r == FAIL && *sl.sl_lang != NUL) { // Try loading the ASCII version. vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5, "spell/%s.ascii.spl", lang); r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl); if (r == FAIL && *sl.sl_lang != NUL && round == 1 && apply_autocmds(EVENT_SPELLFILEMISSING, lang, curbuf->b_fname, FALSE, curbuf)) continue; break; } break; } if (r == FAIL) { if (starting) { // Prompt the user at VimEnter if spell files are missing. #3027 // Plugins aren't loaded yet, so spellfile.vim cannot handle this case. char autocmd_buf[128] = { 0 }; snprintf(autocmd_buf, sizeof(autocmd_buf), "autocmd VimEnter * call spellfile#LoadFile('%s')|set spell", lang); do_cmdline_cmd(autocmd_buf); } else { smsg( _("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""), lang, spell_enc(), lang); } } else if (sl.sl_slang != NULL) { // At least one file was loaded, now load ALL the additions. STRCPY(fname_enc + STRLEN(fname_enc) - 3, "add.spl"); do_in_runtimepath(fname_enc, DIP_ALL, spell_load_cb, &sl); } } // Return the encoding used for spell checking: Use 'encoding', except that we // use "latin1" for "latin9". And limit to 60 characters (just in case). static char_u *spell_enc(void) { if (STRLEN(p_enc) < 60 && STRCMP(p_enc, "iso-8859-15") != 0) return p_enc; return (char_u *)"latin1"; } // Get the name of the .spl file for the internal wordlist into // "fname[MAXPATHL]". static void int_wordlist_spl(char_u *fname) { vim_snprintf((char *)fname, MAXPATHL, SPL_FNAME_TMPL, int_wordlist, spell_enc()); } // Allocate a new slang_T for language "lang". "lang" can be NULL. // Caller must fill "sl_next". static slang_T *slang_alloc(char_u *lang) { slang_T *lp = xcalloc(1, sizeof(slang_T)); if (lang != NULL) lp->sl_name = vim_strsave(lang); ga_init(&lp->sl_rep, sizeof(fromto_T), 10); ga_init(&lp->sl_repsal, sizeof(fromto_T), 10); lp->sl_compmax = MAXWLEN; lp->sl_compsylmax = MAXWLEN; hash_init(&lp->sl_wordcount); return lp; } // Free the contents of an slang_T and the structure itself. static void slang_free(slang_T *lp) { xfree(lp->sl_name); xfree(lp->sl_fname); slang_clear(lp); xfree(lp); } /// Frees a salitem_T static void free_salitem(salitem_T *smp) { xfree(smp->sm_lead); // Don't free sm_oneof and sm_rules, they point into sm_lead. xfree(smp->sm_to); xfree(smp->sm_lead_w); xfree(smp->sm_oneof_w); xfree(smp->sm_to_w); } /// Frees a fromto_T static void free_fromto(fromto_T *ftp) { xfree(ftp->ft_from); xfree(ftp->ft_to); } // Clear an slang_T so that the file can be reloaded. static void slang_clear(slang_T *lp) { garray_T *gap; xfree(lp->sl_fbyts); lp->sl_fbyts = NULL; xfree(lp->sl_kbyts); lp->sl_kbyts = NULL; xfree(lp->sl_pbyts); lp->sl_pbyts = NULL; xfree(lp->sl_fidxs); lp->sl_fidxs = NULL; xfree(lp->sl_kidxs); lp->sl_kidxs = NULL; xfree(lp->sl_pidxs); lp->sl_pidxs = NULL; GA_DEEP_CLEAR(&lp->sl_rep, fromto_T, free_fromto); GA_DEEP_CLEAR(&lp->sl_repsal, fromto_T, free_fromto); gap = &lp->sl_sal; if (lp->sl_sofo) { // "ga_len" is set to 1 without adding an item for latin1 GA_DEEP_CLEAR_PTR(gap); } else { // SAL items: free salitem_T items GA_DEEP_CLEAR(gap, salitem_T, free_salitem); } for (int i = 0; i < lp->sl_prefixcnt; ++i) { vim_regfree(lp->sl_prefprog[i]); } lp->sl_prefixcnt = 0; xfree(lp->sl_prefprog); lp->sl_prefprog = NULL; xfree(lp->sl_info); lp->sl_info = NULL; xfree(lp->sl_midword); lp->sl_midword = NULL; vim_regfree(lp->sl_compprog); xfree(lp->sl_comprules); xfree(lp->sl_compstartflags); xfree(lp->sl_compallflags); lp->sl_compprog = NULL; lp->sl_comprules = NULL; lp->sl_compstartflags = NULL; lp->sl_compallflags = NULL; xfree(lp->sl_syllable); lp->sl_syllable = NULL; ga_clear(&lp->sl_syl_items); ga_clear_strings(&lp->sl_comppat); hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF); hash_init(&lp->sl_wordcount); hash_clear_all(&lp->sl_map_hash, 0); // Clear info from .sug file. slang_clear_sug(lp); lp->sl_compmax = MAXWLEN; lp->sl_compminlen = 0; lp->sl_compsylmax = MAXWLEN; lp->sl_regions[0] = NUL; } // Clear the info from the .sug file in "lp". static void slang_clear_sug(slang_T *lp) { xfree(lp->sl_sbyts); lp->sl_sbyts = NULL; xfree(lp->sl_sidxs); lp->sl_sidxs = NULL; close_spellbuf(lp->sl_sugbuf); lp->sl_sugbuf = NULL; lp->sl_sugloaded = false; lp->sl_sugtime = 0; } // Load one spell file and store the info into a slang_T. // Invoked through do_in_runtimepath(). static void spell_load_cb(char_u *fname, void *cookie) { spelload_T *slp = (spelload_T *)cookie; slang_T *slang; slang = spell_load_file(fname, slp->sl_lang, NULL, false); if (slang != NULL) { // When a previously loaded file has NOBREAK also use it for the // ".add" files. if (slp->sl_nobreak && slang->sl_add) slang->sl_nobreak = true; else if (slang->sl_nobreak) slp->sl_nobreak = true; slp->sl_slang = slang; } } // Load one spell file and store the info into a slang_T. // // This is invoked in three ways: // - From spell_load_cb() to load a spell file for the first time. "lang" is // the language name, "old_lp" is NULL. Will allocate an slang_T. // - To reload a spell file that was changed. "lang" is NULL and "old_lp" // points to the existing slang_T. // - Just after writing a .spl file; it's read back to produce the .sug file. // "old_lp" is NULL and "lang" is NULL. Will allocate an slang_T. // // Returns the slang_T the spell file was loaded into. NULL for error. static slang_T * spell_load_file ( char_u *fname, char_u *lang, slang_T *old_lp, bool silent // no error if file doesn't exist ) { FILE *fd; char_u buf[VIMSPELLMAGICL]; char_u *p; int i; int n; int len; char_u *save_sourcing_name = sourcing_name; linenr_T save_sourcing_lnum = sourcing_lnum; slang_T *lp = NULL; int c = 0; int res; fd = mch_fopen((char *)fname, "r"); if (fd == NULL) { if (!silent) EMSG2(_(e_notopen), fname); else if (p_verbose > 2) { verbose_enter(); smsg((char *)e_notopen, fname); verbose_leave(); } goto endFAIL; } if (p_verbose > 2) { verbose_enter(); smsg(_("Reading spell file \"%s\""), fname); verbose_leave(); } if (old_lp == NULL) { lp = slang_alloc(lang); // Remember the file name, used to reload the file when it's updated. lp->sl_fname = vim_strsave(fname); // Check for .add.spl. lp->sl_add = strstr((char *)path_tail(fname), SPL_FNAME_ADD) != NULL; } else lp = old_lp; // Set sourcing_name, so that error messages mention the file name. sourcing_name = fname; sourcing_lnum = 0; //
: for (i = 0; i < VIMSPELLMAGICL; ++i) buf[i] = getc(fd); // if (STRNCMP(buf, VIMSPELLMAGIC, VIMSPELLMAGICL) != 0) { EMSG(_("E757: This does not look like a spell file")); goto endFAIL; } c = getc(fd); // if (c < VIMSPELLVERSION) { EMSG(_("E771: Old spell file, needs to be updated")); goto endFAIL; } else if (c > VIMSPELLVERSION) { EMSG(_("E772: Spell file is for newer version of Vim")); goto endFAIL; } // :
... //
: (section contents) for (;; ) { n = getc(fd); // or if (n == SN_END) break; c = getc(fd); // len = get4c(fd); // if (len < 0) goto truncerr; res = 0; switch (n) { case SN_INFO: lp->sl_info = READ_STRING(fd, len); // if (lp->sl_info == NULL) goto endFAIL; break; case SN_REGION: res = read_region_section(fd, lp, len); break; case SN_CHARFLAGS: res = read_charflags_section(fd); break; case SN_MIDWORD: lp->sl_midword = READ_STRING(fd, len); // if (lp->sl_midword == NULL) goto endFAIL; break; case SN_PREFCOND: res = read_prefcond_section(fd, lp); break; case SN_REP: res = read_rep_section(fd, &lp->sl_rep, lp->sl_rep_first); break; case SN_REPSAL: res = read_rep_section(fd, &lp->sl_repsal, lp->sl_repsal_first); break; case SN_SAL: res = read_sal_section(fd, lp); break; case SN_SOFO: res = read_sofo_section(fd, lp); break; case SN_MAP: p = READ_STRING(fd, len); // if (p == NULL) goto endFAIL; set_map_str(lp, p); xfree(p); break; case SN_WORDS: res = read_words_section(fd, lp, len); break; case SN_SUGFILE: lp->sl_sugtime = get8ctime(fd); // break; case SN_NOSPLITSUGS: lp->sl_nosplitsugs = true; break; case SN_NOCOMPOUNDSUGS: lp->sl_nocompoundsugs = true; break; case SN_COMPOUND: res = read_compound(fd, lp, len); break; case SN_NOBREAK: lp->sl_nobreak = true; break; case SN_SYLLABLE: lp->sl_syllable = READ_STRING(fd, len); // if (lp->sl_syllable == NULL) goto endFAIL; if (init_syl_tab(lp) == FAIL) goto endFAIL; break; default: // Unsupported section. When it's required give an error // message. When it's not required skip the contents. if (c & SNF_REQUIRED) { EMSG(_("E770: Unsupported section in spell file")); goto endFAIL; } while (--len >= 0) if (getc(fd) < 0) goto truncerr; break; } someerror: if (res == SP_FORMERROR) { EMSG(_(e_format)); goto endFAIL; } if (res == SP_TRUNCERROR) { truncerr: EMSG(_(e_spell_trunc)); goto endFAIL; } if (res == SP_OTHERERROR) goto endFAIL; } // res = spell_read_tree(fd, &lp->sl_fbyts, &lp->sl_fidxs, false, 0); if (res != 0) goto someerror; // res = spell_read_tree(fd, &lp->sl_kbyts, &lp->sl_kidxs, false, 0); if (res != 0) goto someerror; // res = spell_read_tree(fd, &lp->sl_pbyts, &lp->sl_pidxs, true, lp->sl_prefixcnt); if (res != 0) goto someerror; // For a new file link it in the list of spell files. if (old_lp == NULL && lang != NULL) { lp->sl_next = first_lang; first_lang = lp; } goto endOK; endFAIL: if (lang != NULL) // truncating the name signals the error to spell_load_lang() *lang = NUL; if (lp != NULL && old_lp == NULL) slang_free(lp); lp = NULL; endOK: if (fd != NULL) fclose(fd); sourcing_name = save_sourcing_name; sourcing_lnum = save_sourcing_lnum; return lp; } // Read a length field from "fd" in "cnt_bytes" bytes. // Allocate memory, read the string into it and add a NUL at the end. // Returns NULL when the count is zero. // Sets "*cntp" to SP_*ERROR when there is an error, length of the result // otherwise. static char_u *read_cnt_string(FILE *fd, int cnt_bytes, int *cntp) { int cnt = 0; int i; char_u *str; // read the length bytes, MSB first for (i = 0; i < cnt_bytes; ++i) cnt = (cnt << 8) + getc(fd); if (cnt < 0) { *cntp = SP_TRUNCERROR; return NULL; } *cntp = cnt; if (cnt == 0) return NULL; // nothing to read, return NULL str = READ_STRING(fd, cnt); if (str == NULL) *cntp = SP_OTHERERROR; return str; } // Read SN_REGION: ... // Return SP_*ERROR flags. static int read_region_section(FILE *fd, slang_T *lp, int len) { int i; if (len > 16) return SP_FORMERROR; for (i = 0; i < len; ++i) lp->sl_regions[i] = getc(fd); // lp->sl_regions[len] = NUL; return 0; } // Read SN_CHARFLAGS section: // // Return SP_*ERROR flags. static int read_charflags_section(FILE *fd) { char_u *flags; char_u *fol; int flagslen, follen; // flags = read_cnt_string(fd, 1, &flagslen); if (flagslen < 0) return flagslen; // fol = read_cnt_string(fd, 2, &follen); if (follen < 0) { xfree(flags); return follen; } // Set the word-char flags and fill SPELL_ISUPPER() table. if (flags != NULL && fol != NULL) set_spell_charflags(flags, flagslen, fol); xfree(flags); xfree(fol); // When is zero then must also be zero. if ((flags == NULL) != (fol == NULL)) return SP_FORMERROR; return 0; } // Read SN_PREFCOND section. // Return SP_*ERROR flags. static int read_prefcond_section(FILE *fd, slang_T *lp) { int cnt; int i; int n; char_u *p; char_u buf[MAXWLEN + 1]; // ... cnt = get2c(fd); // if (cnt <= 0) return SP_FORMERROR; lp->sl_prefprog = xcalloc(cnt, sizeof(regprog_T *)); lp->sl_prefixcnt = cnt; for (i = 0; i < cnt; ++i) { // : n = getc(fd); // if (n < 0 || n >= MAXWLEN) return SP_FORMERROR; // When is zero we have an empty condition. Otherwise // compile the regexp program used to check for the condition. if (n > 0) { buf[0] = '^'; // always match at one position only p = buf + 1; while (n-- > 0) *p++ = getc(fd); // *p = NUL; lp->sl_prefprog[i] = vim_regcomp(buf, RE_MAGIC + RE_STRING); } } return 0; } // Read REP or REPSAL items section from "fd": ... // Return SP_*ERROR flags. static int read_rep_section(FILE *fd, garray_T *gap, int16_t *first) { int cnt; fromto_T *ftp; cnt = get2c(fd); // if (cnt < 0) return SP_TRUNCERROR; ga_grow(gap, cnt); // : for (; gap->ga_len < cnt; ++gap->ga_len) { int c; ftp = &((fromto_T *)gap->ga_data)[gap->ga_len]; ftp->ft_from = read_cnt_string(fd, 1, &c); if (c < 0) return c; if (c == 0) return SP_FORMERROR; ftp->ft_to = read_cnt_string(fd, 1, &c); if (c <= 0) { xfree(ftp->ft_from); if (c < 0) return c; return SP_FORMERROR; } } // Fill the first-index table. for (int i = 0; i < 256; ++i) { first[i] = -1; } for (int i = 0; i < gap->ga_len; ++i) { ftp = &((fromto_T *)gap->ga_data)[i]; if (first[*ftp->ft_from] == -1) first[*ftp->ft_from] = i; } return 0; } // Read SN_SAL section: ... // Return SP_*ERROR flags. static int read_sal_section(FILE *fd, slang_T *slang) { int i; int cnt; garray_T *gap; salitem_T *smp; int ccnt; char_u *p; int c = NUL; slang->sl_sofo = false; i = getc(fd); // if (i & SAL_F0LLOWUP) slang->sl_followup = true; if (i & SAL_COLLAPSE) slang->sl_collapse = true; if (i & SAL_REM_ACCENTS) slang->sl_rem_accents = true; cnt = get2c(fd); // if (cnt < 0) return SP_TRUNCERROR; gap = &slang->sl_sal; ga_init(gap, sizeof(salitem_T), 10); ga_grow(gap, cnt + 1); // : for (; gap->ga_len < cnt; ++gap->ga_len) { smp = &((salitem_T *)gap->ga_data)[gap->ga_len]; ccnt = getc(fd); // if (ccnt < 0) return SP_TRUNCERROR; p = xmalloc(ccnt + 2); smp->sm_lead = p; // Read up to the first special char into sm_lead. for (i = 0; i < ccnt; ++i) { c = getc(fd); // if (vim_strchr((char_u *)"0123456789(-<^$", c) != NULL) break; *p++ = c; } smp->sm_leadlen = (int)(p - smp->sm_lead); *p++ = NUL; // Put (abc) chars in sm_oneof, if any. if (c == '(') { smp->sm_oneof = p; for (++i; i < ccnt; ++i) { c = getc(fd); // if (c == ')') break; *p++ = c; } *p++ = NUL; if (++i < ccnt) c = getc(fd); } else smp->sm_oneof = NULL; // Any following chars go in sm_rules. smp->sm_rules = p; if (i < ccnt) // store the char we got while checking for end of sm_lead *p++ = c; for (++i; i < ccnt; ++i) *p++ = getc(fd); // *p++ = NUL; // smp->sm_to = read_cnt_string(fd, 1, &ccnt); if (ccnt < 0) { xfree(smp->sm_lead); return ccnt; } if (has_mbyte) { // convert the multi-byte strings to wide char strings smp->sm_lead_w = mb_str2wide(smp->sm_lead); smp->sm_leadlen = mb_charlen(smp->sm_lead); if (smp->sm_oneof == NULL) smp->sm_oneof_w = NULL; else smp->sm_oneof_w = mb_str2wide(smp->sm_oneof); if (smp->sm_to == NULL) smp->sm_to_w = NULL; else smp->sm_to_w = mb_str2wide(smp->sm_to); } } if (!GA_EMPTY(gap)) { // Add one extra entry to mark the end with an empty sm_lead. Avoids // that we need to check the index every time. smp = &((salitem_T *)gap->ga_data)[gap->ga_len]; p = xmalloc(1); p[0] = NUL; smp->sm_lead = p; smp->sm_leadlen = 0; smp->sm_oneof = NULL; smp->sm_rules = p; smp->sm_to = NULL; if (has_mbyte) { smp->sm_lead_w = mb_str2wide(smp->sm_lead); smp->sm_leadlen = 0; smp->sm_oneof_w = NULL; smp->sm_to_w = NULL; } ++gap->ga_len; } // Fill the first-index table. set_sal_first(slang); return 0; } // Read SN_WORDS: ... // Return SP_*ERROR flags. static int read_words_section(FILE *fd, slang_T *lp, int len) { int done = 0; int i; int c; char_u word[MAXWLEN]; while (done < len) { // Read one word at a time. for (i = 0;; ++i) { c = getc(fd); if (c == EOF) return SP_TRUNCERROR; word[i] = c; if (word[i] == NUL) break; if (i == MAXWLEN - 1) return SP_FORMERROR; } // Init the count to 10. count_common_word(lp, word, -1, 10); done += i + 1; } return 0; } // Add a word to the hashtable of common words. // If it's already there then the counter is increased. static void count_common_word ( slang_T *lp, char_u *word, int len, // word length, -1 for upto NUL int count // 1 to count once, 10 to init ) { hash_T hash; hashitem_T *hi; wordcount_T *wc; char_u buf[MAXWLEN]; char_u *p; if (len == -1) p = word; else { STRLCPY(buf, word, len + 1); p = buf; } hash = hash_hash(p); hi = hash_lookup(&lp->sl_wordcount, p, hash); if (HASHITEM_EMPTY(hi)) { wc = xmalloc(sizeof(wordcount_T) + STRLEN(p)); STRCPY(wc->wc_word, p); wc->wc_count = count; hash_add_item(&lp->sl_wordcount, hi, wc->wc_word, hash); } else { wc = HI2WC(hi); if ((wc->wc_count += count) < (unsigned)count) // check for overflow wc->wc_count = MAXWORDCOUNT; } } // Adjust the score of common words. static int score_wordcount_adj ( slang_T *slang, int score, char_u *word, bool split // word was split, less bonus ) { hashitem_T *hi; wordcount_T *wc; int bonus; int newscore; hi = hash_find(&slang->sl_wordcount, word); if (!HASHITEM_EMPTY(hi)) { wc = HI2WC(hi); if (wc->wc_count < SCORE_THRES2) bonus = SCORE_COMMON1; else if (wc->wc_count < SCORE_THRES3) bonus = SCORE_COMMON2; else bonus = SCORE_COMMON3; if (split) newscore = score - bonus / 2; else newscore = score - bonus; if (newscore < 0) return 0; return newscore; } return score; } // SN_SOFO: // Return SP_*ERROR flags. static int read_sofo_section(FILE *fd, slang_T *slang) { int cnt; char_u *from, *to; int res; slang->sl_sofo = true; // from = read_cnt_string(fd, 2, &cnt); if (cnt < 0) return cnt; // to = read_cnt_string(fd, 2, &cnt); if (cnt < 0) { xfree(from); return cnt; } // Store the info in slang->sl_sal and/or slang->sl_sal_first. if (from != NULL && to != NULL) res = set_sofo(slang, from, to); else if (from != NULL || to != NULL) res = SP_FORMERROR; // only one of two strings is an error else res = 0; xfree(from); xfree(to); return res; } // Read the compound section from the .spl file: // // Returns SP_*ERROR flags. static int read_compound(FILE *fd, slang_T *slang, int len) { int todo = len; int c; int atstart; char_u *pat; char_u *pp; char_u *cp; char_u *ap; char_u *crp; int cnt; garray_T *gap; if (todo < 2) return SP_FORMERROR; // need at least two bytes --todo; c = getc(fd); // if (c < 2) c = MAXWLEN; slang->sl_compmax = c; --todo; c = getc(fd); // if (c < 1) c = 0; slang->sl_compminlen = c; --todo; c = getc(fd); // if (c < 1) c = MAXWLEN; slang->sl_compsylmax = c; c = getc(fd); // if (c != 0) ungetc(c, fd); // be backwards compatible with Vim 7.0b else { --todo; c = getc(fd); // only use the lower byte for now --todo; slang->sl_compoptions = c; gap = &slang->sl_comppat; c = get2c(fd); // todo -= 2; ga_init(gap, sizeof(char_u *), c); ga_grow(gap, c); while (--c >= 0) { ((char_u **)(gap->ga_data))[gap->ga_len++] = read_cnt_string(fd, 1, &cnt); // if (cnt < 0) return cnt; todo -= cnt + 1; } } if (todo < 0) return SP_FORMERROR; // Turn the COMPOUNDRULE items into a regexp pattern: // "a[bc]/a*b+" -> "^\(a[bc]\|a*b\+\)$". // Inserting backslashes may double the length, "^\(\)$" is 7 bytes. // Conversion to utf-8 may double the size. c = todo * 2 + 7; if (enc_utf8) c += todo * 2; pat = xmalloc(c); // We also need a list of all flags that can appear at the start and one // for all flags. cp = xmalloc(todo + 1); slang->sl_compstartflags = cp; *cp = NUL; ap = xmalloc(todo + 1); slang->sl_compallflags = ap; *ap = NUL; // And a list of all patterns in their original form, for checking whether // compounding may work in match_compoundrule(). This is freed when we // encounter a wildcard, the check doesn't work then. crp = xmalloc(todo + 1); slang->sl_comprules = crp; pp = pat; *pp++ = '^'; *pp++ = '\\'; *pp++ = '('; atstart = 1; while (todo-- > 0) { c = getc(fd); // if (c == EOF) { xfree(pat); return SP_TRUNCERROR; } // Add all flags to "sl_compallflags". if (vim_strchr((char_u *)"?*+[]/", c) == NULL && !byte_in_str(slang->sl_compallflags, c)) { *ap++ = c; *ap = NUL; } if (atstart != 0) { // At start of item: copy flags to "sl_compstartflags". For a // [abc] item set "atstart" to 2 and copy up to the ']'. if (c == '[') atstart = 2; else if (c == ']') atstart = 0; else { if (!byte_in_str(slang->sl_compstartflags, c)) { *cp++ = c; *cp = NUL; } if (atstart == 1) atstart = 0; } } // Copy flag to "sl_comprules", unless we run into a wildcard. if (crp != NULL) { if (c == '?' || c == '+' || c == '*') { xfree(slang->sl_comprules); slang->sl_comprules = NULL; crp = NULL; } else *crp++ = c; } if (c == '/') { // slash separates two items *pp++ = '\\'; *pp++ = '|'; atstart = 1; } else { // normal char, "[abc]" and '*' are copied as-is if (c == '?' || c == '+' || c == '~') *pp++ = '\\'; // "a?" becomes "a\?", "a+" becomes "a\+" if (enc_utf8) pp += mb_char2bytes(c, pp); else *pp++ = c; } } *pp++ = '\\'; *pp++ = ')'; *pp++ = '$'; *pp = NUL; if (crp != NULL) *crp = NUL; slang->sl_compprog = vim_regcomp(pat, RE_MAGIC + RE_STRING + RE_STRICT); xfree(pat); if (slang->sl_compprog == NULL) return SP_FORMERROR; return 0; } // Returns true if byte "n" appears in "str". // Like strchr() but independent of locale. static bool byte_in_str(char_u *str, int n) { char_u *p; for (p = str; *p != NUL; ++p) if (*p == n) return true; return false; } // Truncate "slang->sl_syllable" at the first slash and put the following items // in "slang->sl_syl_items". static int init_syl_tab(slang_T *slang) { char_u *p; char_u *s; int l; ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4); p = vim_strchr(slang->sl_syllable, '/'); while (p != NULL) { *p++ = NUL; if (*p == NUL) // trailing slash break; s = p; p = vim_strchr(p, '/'); if (p == NULL) l = (int)STRLEN(s); else l = (int)(p - s); if (l >= SY_MAXLEN) return SP_FORMERROR; syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items); STRLCPY(syl->sy_chars, s, l + 1); syl->sy_len = l; } return OK; } // Count the number of syllables in "word". // When "word" contains spaces the syllables after the last space are counted. // Returns zero if syllables are not defines. static int count_syllables(slang_T *slang, char_u *word) { int cnt = 0; bool skip = false; char_u *p; int len; syl_item_T *syl; int c; if (slang->sl_syllable == NULL) return 0; for (p = word; *p != NUL; p += len) { // When running into a space reset counter. if (*p == ' ') { len = 1; cnt = 0; continue; } // Find longest match of syllable items. len = 0; for (int i = 0; i < slang->sl_syl_items.ga_len; ++i) { syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i; if (syl->sy_len > len && STRNCMP(p, syl->sy_chars, syl->sy_len) == 0) len = syl->sy_len; } if (len != 0) { // found a match, count syllable ++cnt; skip = false; } else { // No recognized syllable item, at least a syllable char then? c = mb_ptr2char(p); len = (*mb_ptr2len)(p); if (vim_strchr(slang->sl_syllable, c) == NULL) skip = false; // No, search for next syllable else if (!skip) { ++cnt; // Yes, count it skip = true; // don't count following syllable chars } } } return cnt; } // Set the SOFOFROM and SOFOTO items in language "lp". // Returns SP_*ERROR flags when there is something wrong. static int set_sofo(slang_T *lp, char_u *from, char_u *to) { int i; garray_T *gap; char_u *s; char_u *p; int c; int *inp; if (has_mbyte) { // Use "sl_sal" as an array with 256 pointers to a list of wide // characters. The index is the low byte of the character. // The list contains from-to pairs with a terminating NUL. // sl_sal_first[] is used for latin1 "from" characters. gap = &lp->sl_sal; ga_init(gap, sizeof(int *), 1); ga_grow(gap, 256); memset(gap->ga_data, 0, sizeof(int *) * 256); gap->ga_len = 256; // First count the number of items for each list. Temporarily use // sl_sal_first[] for this. for (p = from, s = to; *p != NUL && *s != NUL; ) { c = mb_cptr2char_adv(&p); mb_cptr_adv(s); if (c >= 256) ++lp->sl_sal_first[c & 0xff]; } if (*p != NUL || *s != NUL) // lengths differ return SP_FORMERROR; // Allocate the lists. for (i = 0; i < 256; ++i) if (lp->sl_sal_first[i] > 0) { p = xmalloc(sizeof(int) * (lp->sl_sal_first[i] * 2 + 1)); ((int **)gap->ga_data)[i] = (int *)p; *(int *)p = 0; } // Put the characters up to 255 in sl_sal_first[] the rest in a sl_sal // list. memset(lp->sl_sal_first, 0, sizeof(salfirst_T) * 256); for (p = from, s = to; *p != NUL && *s != NUL; ) { c = mb_cptr2char_adv(&p); i = mb_cptr2char_adv(&s); if (c >= 256) { // Append the from-to chars at the end of the list with // the low byte. inp = ((int **)gap->ga_data)[c & 0xff]; while (*inp != 0) ++inp; *inp++ = c; // from char *inp++ = i; // to char *inp++ = NUL; // NUL at the end } else // mapping byte to char is done in sl_sal_first[] lp->sl_sal_first[c] = i; } } else { // mapping bytes to bytes is done in sl_sal_first[] if (STRLEN(from) != STRLEN(to)) return SP_FORMERROR; for (i = 0; to[i] != NUL; ++i) lp->sl_sal_first[from[i]] = to[i]; lp->sl_sal.ga_len = 1; // indicates we have soundfolding } return 0; } // Fill the first-index table for "lp". static void set_sal_first(slang_T *lp) { salfirst_T *sfirst; salitem_T *smp; int c; garray_T *gap = &lp->sl_sal; sfirst = lp->sl_sal_first; for (int i = 0; i < 256; ++i) { sfirst[i] = -1; } smp = (salitem_T *)gap->ga_data; for (int i = 0; i < gap->ga_len; ++i) { if (has_mbyte) // Use the lowest byte of the first character. For latin1 it's // the character, for other encodings it should differ for most // characters. c = *smp[i].sm_lead_w & 0xff; else c = *smp[i].sm_lead; if (sfirst[c] == -1) { sfirst[c] = i; if (has_mbyte) { int n; // Make sure all entries with this byte are following each // other. Move the ones that are in the wrong position. Do // keep the same ordering! while (i + 1 < gap->ga_len && (*smp[i + 1].sm_lead_w & 0xff) == c) // Skip over entry with same index byte. ++i; for (n = 1; i + n < gap->ga_len; ++n) if ((*smp[i + n].sm_lead_w & 0xff) == c) { salitem_T tsal; // Move entry with same index byte after the entries // we already found. ++i; --n; tsal = smp[i + n]; memmove(smp + i + 1, smp + i, sizeof(salitem_T) * n); smp[i] = tsal; } } } } } // Turn a multi-byte string into a wide character string. // Return it in allocated memory. static int *mb_str2wide(char_u *s) { int i = 0; int *res = xmalloc((mb_charlen(s) + 1) * sizeof(int)); for (char_u *p = s; *p != NUL; ) res[i++] = mb_ptr2char_adv(&p); res[i] = NUL; return res; } // Reads a tree from the .spl or .sug file. // Allocates the memory and stores pointers in "bytsp" and "idxsp". // This is skipped when the tree has zero length. // Returns zero when OK, SP_ value for an error. static int spell_read_tree ( FILE *fd, char_u **bytsp, idx_T **idxsp, bool prefixtree, // true for the prefix tree int prefixcnt // when "prefixtree" is true: prefix count ) { int idx; char_u *bp; idx_T *ip; // The tree size was computed when writing the file, so that we can // allocate it as one long block. int len = get4c(fd); if (len < 0) return SP_TRUNCERROR; if (len > 0) { // Allocate the byte array. bp = xmalloc(len); *bytsp = bp; // Allocate the index array. ip = xcalloc(len, sizeof(*ip)); *idxsp = ip; // Recursively read the tree and store it in the array. idx = read_tree_node(fd, bp, ip, len, 0, prefixtree, prefixcnt); if (idx < 0) return idx; } return 0; } // Read one row of siblings from the spell file and store it in the byte array // "byts" and index array "idxs". Recursively read the children. // // NOTE: The code here must match put_node()! // // Returns the index (>= 0) following the siblings. // Returns SP_TRUNCERROR if the file is shorter than expected. // Returns SP_FORMERROR if there is a format error. static idx_T read_tree_node ( FILE *fd, char_u *byts, idx_T *idxs, int maxidx, // size of arrays idx_T startidx, // current index in "byts" and "idxs" bool prefixtree, // true for reading PREFIXTREE int maxprefcondnr // maximum for ) { int len; int i; int n; idx_T idx = startidx; int c; int c2; #define SHARED_MASK 0x8000000 len = getc(fd); // if (len <= 0) return SP_TRUNCERROR; if (startidx + len >= maxidx) return SP_FORMERROR; byts[idx++] = len; // Read the byte values, flag/region bytes and shared indexes. for (i = 1; i <= len; ++i) { c = getc(fd); // if (c < 0) return SP_TRUNCERROR; if (c <= BY_SPECIAL) { if (c == BY_NOFLAGS && !prefixtree) { // No flags, all regions. idxs[idx] = 0; c = 0; } else if (c != BY_INDEX) { if (prefixtree) { // Read the optional pflags byte, the prefix ID and the // condition nr. In idxs[] store the prefix ID in the low // byte, the condition index shifted up 8 bits, the flags // shifted up 24 bits. if (c == BY_FLAGS) c = getc(fd) << 24; // else c = 0; c |= getc(fd); // n = get2c(fd); // if (n >= maxprefcondnr) return SP_FORMERROR; c |= (n << 8); } else { // c must be BY_FLAGS or BY_FLAGS2 // Read flags and optional region and prefix ID. In // idxs[] the flags go in the low two bytes, region above // that and prefix ID above the region. c2 = c; c = getc(fd); // if (c2 == BY_FLAGS2) c = (getc(fd) << 8) + c; // if (c & WF_REGION) c = (getc(fd) << 16) + c; // if (c & WF_AFX) c = (getc(fd) << 24) + c; // } idxs[idx] = c; c = 0; } else { // c == BY_INDEX // n = get3c(fd); if (n < 0 || n >= maxidx) return SP_FORMERROR; idxs[idx] = n + SHARED_MASK; c = getc(fd); // } } byts[idx++] = c; } // Recursively read the children for non-shared siblings. // Skip the end-of-word ones (zero byte value) and the shared ones (and // remove SHARED_MASK) for (i = 1; i <= len; ++i) if (byts[startidx + i] != 0) { if (idxs[startidx + i] & SHARED_MASK) idxs[startidx + i] &= ~SHARED_MASK; else { idxs[startidx + i] = idx; idx = read_tree_node(fd, byts, idxs, maxidx, idx, prefixtree, maxprefcondnr); if (idx < 0) break; } } return idx; } // Parse 'spelllang' and set w_s->b_langp accordingly. // Returns NULL if it's OK, an error message otherwise. char_u *did_set_spelllang(win_T *wp) { garray_T ga; char_u *splp; char_u *region; char_u region_cp[3]; bool filename; int region_mask; slang_T *slang; int c; char_u lang[MAXWLEN + 1]; char_u spf_name[MAXPATHL]; int len; char_u *p; int round; char_u *spf; char_u *use_region = NULL; bool dont_use_region = false; bool nobreak = false; langp_T *lp, *lp2; static bool recursive = false; char_u *ret_msg = NULL; char_u *spl_copy; // We don't want to do this recursively. May happen when a language is // not available and the SpellFileMissing autocommand opens a new buffer // in which 'spell' is set. if (recursive) return NULL; recursive = true; ga_init(&ga, sizeof(langp_T), 2); clear_midword(wp); // Make a copy of 'spelllang', the SpellFileMissing autocommands may change // it under our fingers. spl_copy = vim_strsave(wp->w_s->b_p_spl); wp->w_s->b_cjk = 0; // Loop over comma separated language names. for (splp = spl_copy; *splp != NUL; ) { // Get one language name. copy_option_part(&splp, lang, MAXWLEN, ","); region = NULL; len = (int)STRLEN(lang); if (STRCMP(lang, "cjk") == 0) { wp->w_s->b_cjk = 1; continue; } // If the name ends in ".spl" use it as the name of the spell file. // If there is a region name let "region" point to it and remove it // from the name. if (len > 4 && fnamecmp(lang + len - 4, ".spl") == 0) { filename = true; // Locate a region and remove it from the file name. p = vim_strchr(path_tail(lang), '_'); if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2]) && !ASCII_ISALPHA(p[3])) { STRLCPY(region_cp, p + 1, 3); memmove(p, p + 3, len - (p - lang) - 2); region = region_cp; } else dont_use_region = true; // Check if we loaded this language before. for (slang = first_lang; slang != NULL; slang = slang->sl_next) if (path_full_compare(lang, slang->sl_fname, FALSE) == kEqualFiles) break; } else { filename = false; if (len > 3 && lang[len - 3] == '_') { region = lang + len - 2; lang[len - 3] = NUL; } else dont_use_region = true; // Check if we loaded this language before. for (slang = first_lang; slang != NULL; slang = slang->sl_next) if (STRICMP(lang, slang->sl_name) == 0) break; } if (region != NULL) { // If the region differs from what was used before then don't // use it for 'spellfile'. if (use_region != NULL && STRCMP(region, use_region) != 0) dont_use_region = true; use_region = region; } // If not found try loading the language now. if (slang == NULL) { if (filename) (void)spell_load_file(lang, lang, NULL, false); else { spell_load_lang(lang); // SpellFileMissing autocommands may do anything, including // destroying the buffer we are using... if (!buf_valid(wp->w_buffer)) { ret_msg = (char_u *)"E797: SpellFileMissing autocommand deleted buffer"; goto theend; } } } // Loop over the languages, there can be several files for "lang". for (slang = first_lang; slang != NULL; slang = slang->sl_next) if (filename ? path_full_compare(lang, slang->sl_fname, FALSE) == kEqualFiles : STRICMP(lang, slang->sl_name) == 0) { region_mask = REGION_ALL; if (!filename && region != NULL) { // find region in sl_regions c = find_region(slang->sl_regions, region); if (c == REGION_ALL) { if (slang->sl_add) { if (*slang->sl_regions != NUL) // This addition file is for other regions. region_mask = 0; } else // This is probably an error. Give a warning and // accept the words anyway. smsg(_("Warning: region %s not supported"), region); } else region_mask = 1 << c; } if (region_mask != 0) { langp_T *p = GA_APPEND_VIA_PTR(langp_T, &ga); p->lp_slang = slang; p->lp_region = region_mask; use_midword(slang, wp); if (slang->sl_nobreak) nobreak = true; } } } // round 0: load int_wordlist, if possible. // round 1: load first name in 'spellfile'. // round 2: load second name in 'spellfile. // etc. spf = curwin->w_s->b_p_spf; for (round = 0; round == 0 || *spf != NUL; ++round) { if (round == 0) { // Internal wordlist, if there is one. if (int_wordlist == NULL) continue; int_wordlist_spl(spf_name); } else { // One entry in 'spellfile'. copy_option_part(&spf, spf_name, MAXPATHL - 5, ","); STRCAT(spf_name, ".spl"); // If it was already found above then skip it. for (c = 0; c < ga.ga_len; ++c) { p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname; if (p != NULL && path_full_compare(spf_name, p, FALSE) == kEqualFiles) break; } if (c < ga.ga_len) continue; } // Check if it was loaded already. for (slang = first_lang; slang != NULL; slang = slang->sl_next) if (path_full_compare(spf_name, slang->sl_fname, FALSE) == kEqualFiles) break; if (slang == NULL) { // Not loaded, try loading it now. The language name includes the // region name, the region is ignored otherwise. for int_wordlist // use an arbitrary name. if (round == 0) STRCPY(lang, "internal wordlist"); else { STRLCPY(lang, path_tail(spf_name), MAXWLEN + 1); p = vim_strchr(lang, '.'); if (p != NULL) *p = NUL; // truncate at ".encoding.add" } slang = spell_load_file(spf_name, lang, NULL, true); // If one of the languages has NOBREAK we assume the addition // files also have this. if (slang != NULL && nobreak) slang->sl_nobreak = true; } if (slang != NULL) { region_mask = REGION_ALL; if (use_region != NULL && !dont_use_region) { // find region in sl_regions c = find_region(slang->sl_regions, use_region); if (c != REGION_ALL) region_mask = 1 << c; else if (*slang->sl_regions != NUL) // This spell file is for other regions. region_mask = 0; } if (region_mask != 0) { langp_T *p = GA_APPEND_VIA_PTR(langp_T, &ga); p->lp_slang = slang; p->lp_sallang = NULL; p->lp_replang = NULL; p->lp_region = region_mask; use_midword(slang, wp); } } } // Everything is fine, store the new b_langp value. ga_clear(&wp->w_s->b_langp); wp->w_s->b_langp = ga; // For each language figure out what language to use for sound folding and // REP items. If the language doesn't support it itself use another one // with the same name. E.g. for "en-math" use "en". for (int i = 0; i < ga.ga_len; ++i) { lp = LANGP_ENTRY(ga, i); // sound folding if (!GA_EMPTY(&lp->lp_slang->sl_sal)) // language does sound folding itself lp->lp_sallang = lp->lp_slang; else // find first similar language that does sound folding for (int j = 0; j < ga.ga_len; ++j) { lp2 = LANGP_ENTRY(ga, j); if (!GA_EMPTY(&lp2->lp_slang->sl_sal) && STRNCMP(lp->lp_slang->sl_name, lp2->lp_slang->sl_name, 2) == 0) { lp->lp_sallang = lp2->lp_slang; break; } } // REP items if (!GA_EMPTY(&lp->lp_slang->sl_rep)) // language has REP items itself lp->lp_replang = lp->lp_slang; else // find first similar language that has REP items for (int j = 0; j < ga.ga_len; ++j) { lp2 = LANGP_ENTRY(ga, j); if (!GA_EMPTY(&lp2->lp_slang->sl_rep) && STRNCMP(lp->lp_slang->sl_name, lp2->lp_slang->sl_name, 2) == 0) { lp->lp_replang = lp2->lp_slang; break; } } } theend: xfree(spl_copy); recursive = false; redraw_win_later(wp, NOT_VALID); return ret_msg; } // Clear the midword characters for buffer "buf". static void clear_midword(win_T *wp) { memset(wp->w_s->b_spell_ismw, 0, 256); xfree(wp->w_s->b_spell_ismw_mb); wp->w_s->b_spell_ismw_mb = NULL; } // Use the "sl_midword" field of language "lp" for buffer "buf". // They add up to any currently used midword characters. static void use_midword(slang_T *lp, win_T *wp) { char_u *p; if (lp->sl_midword == NULL) // there aren't any return; for (p = lp->sl_midword; *p != NUL; ) if (has_mbyte) { int c, l, n; char_u *bp; c = mb_ptr2char(p); l = (*mb_ptr2len)(p); if (c < 256 && l <= 2) wp->w_s->b_spell_ismw[c] = true; else if (wp->w_s->b_spell_ismw_mb == NULL) // First multi-byte char in "b_spell_ismw_mb". wp->w_s->b_spell_ismw_mb = vim_strnsave(p, l); else { // Append multi-byte chars to "b_spell_ismw_mb". n = (int)STRLEN(wp->w_s->b_spell_ismw_mb); bp = vim_strnsave(wp->w_s->b_spell_ismw_mb, n + l); xfree(wp->w_s->b_spell_ismw_mb); wp->w_s->b_spell_ismw_mb = bp; STRLCPY(bp + n, p, l + 1); } p += l; } else wp->w_s->b_spell_ismw[*p++] = true; } // Find the region "region[2]" in "rp" (points to "sl_regions"). // Each region is simply stored as the two characters of it's name. // Returns the index if found (first is 0), REGION_ALL if not found. static int find_region(char_u *rp, char_u *region) { int i; for (i = 0;; i += 2) { if (rp[i] == NUL) return REGION_ALL; if (rp[i] == region[0] && rp[i + 1] == region[1]) break; } return i / 2; } // Return case type of word: // w word 0 // Word WF_ONECAP // W WORD WF_ALLCAP // WoRd wOrd WF_KEEPCAP static int captype ( char_u *word, char_u *end // When NULL use up to NUL byte. ) { char_u *p; int c; int firstcap; bool allcap; bool past_second = false; // past second word char // find first letter for (p = word; !spell_iswordp_nmw(p, curwin); mb_ptr_adv(p)) if (end == NULL ? *p == NUL : p >= end) return 0; // only non-word characters, illegal word if (has_mbyte) c = mb_ptr2char_adv(&p); else c = *p++; firstcap = allcap = SPELL_ISUPPER(c); // Need to check all letters to find a word with mixed upper/lower. // But a word with an upper char only at start is a ONECAP. for (; end == NULL ? *p != NUL : p < end; mb_ptr_adv(p)) if (spell_iswordp_nmw(p, curwin)) { c = PTR2CHAR(p); if (!SPELL_ISUPPER(c)) { // UUl -> KEEPCAP if (past_second && allcap) return WF_KEEPCAP; allcap = false; } else if (!allcap) // UlU -> KEEPCAP return WF_KEEPCAP; past_second = true; } if (allcap) return WF_ALLCAP; if (firstcap) return WF_ONECAP; return 0; } // Like captype() but for a KEEPCAP word add ONECAP if the word starts with a // capital. So that make_case_word() can turn WOrd into Word. // Add ALLCAP for "WOrD". static int badword_captype(char_u *word, char_u *end) { int flags = captype(word, end); int c; int l, u; bool first; char_u *p; if (flags & WF_KEEPCAP) { // Count the number of UPPER and lower case letters. l = u = 0; first = false; for (p = word; p < end; mb_ptr_adv(p)) { c = PTR2CHAR(p); if (SPELL_ISUPPER(c)) { ++u; if (p == word) first = true; } else ++l; } // If there are more UPPER than lower case letters suggest an // ALLCAP word. Otherwise, if the first letter is UPPER then // suggest ONECAP. Exception: "ALl" most likely should be "All", // require three upper case letters. if (u > l && u > 2) flags |= WF_ALLCAP; else if (first) flags |= WF_ONECAP; if (u >= 2 && l >= 2) // maCARONI maCAroni flags |= WF_MIXCAP; } return flags; } // Delete the internal wordlist and its .spl file. void spell_delete_wordlist(void) { char_u fname[MAXPATHL] = {0}; if (int_wordlist != NULL) { os_remove((char *)int_wordlist); int_wordlist_spl(fname); os_remove((char *)fname); xfree(int_wordlist); int_wordlist = NULL; } } // Free all languages. void spell_free_all(void) { slang_T *slang; // Go through all buffers and handle 'spelllang'. FOR_ALL_BUFFERS(buf) { ga_clear(&buf->b_s.b_langp); } while (first_lang != NULL) { slang = first_lang; first_lang = slang->sl_next; slang_free(slang); } spell_delete_wordlist(); xfree(repl_to); repl_to = NULL; xfree(repl_from); repl_from = NULL; } // Clear all spelling tables and reload them. // Used after 'encoding' is set and when ":mkspell" was used. void spell_reload(void) { // Initialize the table for spell_iswordp(). init_spell_chartab(); // Unload all allocated memory. spell_free_all(); // Go through all buffers and handle 'spelllang'. FOR_ALL_WINDOWS_IN_TAB(wp, curtab) { // Only load the wordlists when 'spelllang' is set and there is a // window for this buffer in which 'spell' is set. if (*wp->w_s->b_p_spl != NUL) { if (wp->w_p_spell) { (void)did_set_spelllang(wp); break; } } } } // Reload the spell file "fname" if it's loaded. static void spell_reload_one ( char_u *fname, bool added_word // invoked through "zg" ) { slang_T *slang; bool didit = false; for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare(fname, slang->sl_fname, FALSE) == kEqualFiles) { slang_clear(slang); if (spell_load_file(fname, NULL, slang, false) == NULL) // reloading failed, clear the language slang_clear(slang); redraw_all_later(SOME_VALID); didit = true; } } // When "zg" was used and the file wasn't loaded yet, should redo // 'spelllang' to load it now. if (added_word && !didit) did_set_spelllang(curwin); } // Functions for ":mkspell". // In the postponed prefixes tree wn_flags is used to store the WFP_ flags, // but it must be negative to indicate the prefix tree to tree_add_word(). // Use a negative number with the lower 8 bits zero. #define PFX_FLAGS -256 // flags for "condit" argument of store_aff_word() #define CONDIT_COMB 1 // affix must combine #define CONDIT_CFIX 2 // affix must have CIRCUMFIX flag #define CONDIT_SUF 4 // add a suffix for matching flags #define CONDIT_AFF 8 // word already has an affix // Tunable parameters for when the tree is compressed. See 'mkspellmem'. static long compress_start = 30000; // memory / SBLOCKSIZE static long compress_inc = 100; // memory / SBLOCKSIZE static long compress_added = 500000; // word count #ifdef SPELL_PRINTTREE // For debugging the tree code: print the current tree in a (more or less) // readable format, so that we can see what happens when adding a word and/or // compressing the tree. // Based on code from Olaf Seibert. #define PRINTLINESIZE 1000 #define PRINTWIDTH 6 #define PRINTSOME(l, depth, fmt, a1, a2) vim_snprintf(l + depth * PRINTWIDTH, \ PRINTLINESIZE - PRINTWIDTH * depth, fmt, a1, a2) static char line1[PRINTLINESIZE]; static char line2[PRINTLINESIZE]; static char line3[PRINTLINESIZE]; static void spell_clear_flags(wordnode_T *node) { wordnode_T *np; for (np = node; np != NULL; np = np->wn_sibling) { np->wn_u1.index = FALSE; spell_clear_flags(np->wn_child); } } static void spell_print_node(wordnode_T *node, int depth) { if (node->wn_u1.index) { // Done this node before, print the reference. PRINTSOME(line1, depth, "(%d)", node->wn_nr, 0); PRINTSOME(line2, depth, " ", 0, 0); PRINTSOME(line3, depth, " ", 0, 0); msg((char_u *)line1); msg((char_u *)line2); msg((char_u *)line3); } else { node->wn_u1.index = TRUE; if (node->wn_byte != NUL) { if (node->wn_child != NULL) PRINTSOME(line1, depth, " %c -> ", node->wn_byte, 0); else // Cannot happen? PRINTSOME(line1, depth, " %c ???", node->wn_byte, 0); } else PRINTSOME(line1, depth, " $ ", 0, 0); PRINTSOME(line2, depth, "%d/%d ", node->wn_nr, node->wn_refs); if (node->wn_sibling != NULL) PRINTSOME(line3, depth, " | ", 0, 0); else PRINTSOME(line3, depth, " ", 0, 0); if (node->wn_byte == NUL) { msg((char_u *)line1); msg((char_u *)line2); msg((char_u *)line3); } // do the children if (node->wn_byte != NUL && node->wn_child != NULL) spell_print_node(node->wn_child, depth + 1); // do the siblings if (node->wn_sibling != NULL) { // get rid of all parent details except | STRCPY(line1, line3); STRCPY(line2, line3); spell_print_node(node->wn_sibling, depth); } } } static void spell_print_tree(wordnode_T *root) { if (root != NULL) { // Clear the "wn_u1.index" fields, used to remember what has been // done. spell_clear_flags(root); // Recursively print the tree. spell_print_node(root, 0); } } #endif // SPELL_PRINTTREE // Reads the affix file "fname". // Returns an afffile_T, NULL for complete failure. static afffile_T *spell_read_aff(spellinfo_T *spin, char_u *fname) { FILE *fd; afffile_T *aff; char_u rline[MAXLINELEN]; char_u *line; char_u *pc = NULL; #define MAXITEMCNT 30 char_u *(items[MAXITEMCNT]); int itemcnt; char_u *p; int lnum = 0; affheader_T *cur_aff = NULL; bool did_postpone_prefix = false; int aff_todo = 0; hashtab_T *tp; char_u *low = NULL; char_u *fol = NULL; char_u *upp = NULL; int do_rep; int do_repsal; int do_sal; int do_mapline; bool found_map = false; hashitem_T *hi; int l; int compminlen = 0; // COMPOUNDMIN value int compsylmax = 0; // COMPOUNDSYLMAX value int compoptions = 0; // COMP_ flags int compmax = 0; // COMPOUNDWORDMAX value char_u *compflags = NULL; // COMPOUNDFLAG and COMPOUNDRULE // concatenated char_u *midword = NULL; // MIDWORD value char_u *syllable = NULL; // SYLLABLE value char_u *sofofrom = NULL; // SOFOFROM value char_u *sofoto = NULL; // SOFOTO value // Open the file. fd = mch_fopen((char *)fname, "r"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return NULL; } vim_snprintf((char *)IObuff, IOSIZE, _("Reading affix file %s ..."), fname); spell_message(spin, IObuff); // Only do REP lines when not done in another .aff file already. do_rep = GA_EMPTY(&spin->si_rep); // Only do REPSAL lines when not done in another .aff file already. do_repsal = GA_EMPTY(&spin->si_repsal); // Only do SAL lines when not done in another .aff file already. do_sal = GA_EMPTY(&spin->si_sal); // Only do MAP lines when not done in another .aff file already. do_mapline = GA_EMPTY(&spin->si_map); // Allocate and init the afffile_T structure. aff = (afffile_T *)getroom(spin, sizeof(afffile_T), true); if (aff == NULL) { fclose(fd); return NULL; } hash_init(&aff->af_pref); hash_init(&aff->af_suff); hash_init(&aff->af_comp); // Read all the lines in the file one by one. while (!vim_fgets(rline, MAXLINELEN, fd) && !got_int) { line_breakcheck(); ++lnum; // Skip comment lines. if (*rline == '#') continue; // Convert from "SET" to 'encoding' when needed. xfree(pc); if (spin->si_conv.vc_type != CONV_NONE) { pc = string_convert(&spin->si_conv, rline, NULL); if (pc == NULL) { smsg(_("Conversion failure for word in %s line %d: %s"), fname, lnum, rline); continue; } line = pc; } else { pc = NULL; line = rline; } // Split the line up in white separated items. Put a NUL after each // item. itemcnt = 0; for (p = line;; ) { while (*p != NUL && *p <= ' ') // skip white space and CR/NL ++p; if (*p == NUL) break; if (itemcnt == MAXITEMCNT) // too many items break; items[itemcnt++] = p; // A few items have arbitrary text argument, don't split them. if (itemcnt == 2 && spell_info_item(items[0])) while (*p >= ' ' || *p == TAB) // skip until CR/NL ++p; else while (*p > ' ') // skip until white space or CR/NL ++p; if (*p == NUL) break; *p++ = NUL; } // Handle non-empty lines. if (itemcnt > 0) { if (is_aff_rule(items, itemcnt, "SET", 2) && aff->af_enc == NULL) { // Setup for conversion from "ENC" to 'encoding'. aff->af_enc = enc_canonize(items[1]); if (!spin->si_ascii && convert_setup(&spin->si_conv, aff->af_enc, p_enc) == FAIL) smsg(_("Conversion in %s not supported: from %s to %s"), fname, aff->af_enc, p_enc); spin->si_conv.vc_fail = true; } else if (is_aff_rule(items, itemcnt, "FLAG", 2) && aff->af_flagtype == AFT_CHAR) { if (STRCMP(items[1], "long") == 0) aff->af_flagtype = AFT_LONG; else if (STRCMP(items[1], "num") == 0) aff->af_flagtype = AFT_NUM; else if (STRCMP(items[1], "caplong") == 0) aff->af_flagtype = AFT_CAPLONG; else smsg(_("Invalid value for FLAG in %s line %d: %s"), fname, lnum, items[1]); if (aff->af_rare != 0 || aff->af_keepcase != 0 || aff->af_bad != 0 || aff->af_needaffix != 0 || aff->af_circumfix != 0 || aff->af_needcomp != 0 || aff->af_comproot != 0 || aff->af_nosuggest != 0 || compflags != NULL || aff->af_suff.ht_used > 0 || aff->af_pref.ht_used > 0) smsg(_("FLAG after using flags in %s line %d: %s"), fname, lnum, items[1]); } else if (spell_info_item(items[0]) && itemcnt > 1) { p = (char_u *)getroom(spin, (spin->si_info == NULL ? 0 : STRLEN(spin->si_info)) + STRLEN(items[0]) + STRLEN(items[1]) + 3, false); if (p != NULL) { if (spin->si_info != NULL) { STRCPY(p, spin->si_info); STRCAT(p, "\n"); } STRCAT(p, items[0]); STRCAT(p, " "); STRCAT(p, items[1]); spin->si_info = p; } } else if (is_aff_rule(items, itemcnt, "MIDWORD", 2) && midword == NULL) { midword = getroom_save(spin, items[1]); } else if (is_aff_rule(items, itemcnt, "TRY", 2)) { // ignored, we look in the tree for what chars may appear } // TODO: remove "RAR" later else if ((is_aff_rule(items, itemcnt, "RAR", 2) || is_aff_rule(items, itemcnt, "RARE", 2)) && aff->af_rare == 0) { aff->af_rare = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } // TODO: remove "KEP" later else if ((is_aff_rule(items, itemcnt, "KEP", 2) || is_aff_rule(items, itemcnt, "KEEPCASE", 2)) && aff->af_keepcase == 0) { aff->af_keepcase = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if ((is_aff_rule(items, itemcnt, "BAD", 2) || is_aff_rule(items, itemcnt, "FORBIDDENWORD", 2)) && aff->af_bad == 0) { aff->af_bad = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "NEEDAFFIX", 2) && aff->af_needaffix == 0) { aff->af_needaffix = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "CIRCUMFIX", 2) && aff->af_circumfix == 0) { aff->af_circumfix = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "NOSUGGEST", 2) && aff->af_nosuggest == 0) { aff->af_nosuggest = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if ((is_aff_rule(items, itemcnt, "NEEDCOMPOUND", 2) || is_aff_rule(items, itemcnt, "ONLYINCOMPOUND", 2)) && aff->af_needcomp == 0) { aff->af_needcomp = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "COMPOUNDROOT", 2) && aff->af_comproot == 0) { aff->af_comproot = affitem2flag(aff->af_flagtype, items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "COMPOUNDFORBIDFLAG", 2) && aff->af_compforbid == 0) { aff->af_compforbid = affitem2flag(aff->af_flagtype, items[1], fname, lnum); if (aff->af_pref.ht_used > 0) smsg(_("Defining COMPOUNDFORBIDFLAG after PFX item may give wrong results in %s line %d"), fname, lnum); } else if (is_aff_rule(items, itemcnt, "COMPOUNDPERMITFLAG", 2) && aff->af_comppermit == 0) { aff->af_comppermit = affitem2flag(aff->af_flagtype, items[1], fname, lnum); if (aff->af_pref.ht_used > 0) smsg(_("Defining COMPOUNDPERMITFLAG after PFX item may give wrong results in %s line %d"), fname, lnum); } else if (is_aff_rule(items, itemcnt, "COMPOUNDFLAG", 2) && compflags == NULL) { // Turn flag "c" into COMPOUNDRULE compatible string "c+", // "Na" into "Na+", "1234" into "1234+". p = getroom(spin, STRLEN(items[1]) + 2, false); STRCPY(p, items[1]); STRCAT(p, "+"); compflags = p; } else if (is_aff_rule(items, itemcnt, "COMPOUNDRULES", 2)) { // We don't use the count, but do check that it's a number and // not COMPOUNDRULE mistyped. if (atoi((char *)items[1]) == 0) smsg(_("Wrong COMPOUNDRULES value in %s line %d: %s"), fname, lnum, items[1]); } else if (is_aff_rule(items, itemcnt, "COMPOUNDRULE", 2)) { // Don't use the first rule if it is a number. if (compflags != NULL || *skipdigits(items[1]) != NUL) { // Concatenate this string to previously defined ones, // using a slash to separate them. l = (int)STRLEN(items[1]) + 1; if (compflags != NULL) l += (int)STRLEN(compflags) + 1; p = getroom(spin, l, false); if (compflags != NULL) { STRCPY(p, compflags); STRCAT(p, "/"); } STRCAT(p, items[1]); compflags = p; } } else if (is_aff_rule(items, itemcnt, "COMPOUNDWORDMAX", 2) && compmax == 0) { compmax = atoi((char *)items[1]); if (compmax == 0) smsg(_("Wrong COMPOUNDWORDMAX value in %s line %d: %s"), fname, lnum, items[1]); } else if (is_aff_rule(items, itemcnt, "COMPOUNDMIN", 2) && compminlen == 0) { compminlen = atoi((char *)items[1]); if (compminlen == 0) smsg(_("Wrong COMPOUNDMIN value in %s line %d: %s"), fname, lnum, items[1]); } else if (is_aff_rule(items, itemcnt, "COMPOUNDSYLMAX", 2) && compsylmax == 0) { compsylmax = atoi((char *)items[1]); if (compsylmax == 0) smsg(_("Wrong COMPOUNDSYLMAX value in %s line %d: %s"), fname, lnum, items[1]); } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDDUP", 1)) { compoptions |= COMP_CHECKDUP; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDREP", 1)) { compoptions |= COMP_CHECKREP; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDCASE", 1)) { compoptions |= COMP_CHECKCASE; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDTRIPLE", 1)) { compoptions |= COMP_CHECKTRIPLE; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 2)) { if (atoi((char *)items[1]) == 0) smsg(_("Wrong CHECKCOMPOUNDPATTERN value in %s line %d: %s"), fname, lnum, items[1]); } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 3)) { garray_T *gap = &spin->si_comppat; int i; // Only add the couple if it isn't already there. for (i = 0; i < gap->ga_len - 1; i += 2) if (STRCMP(((char_u **)(gap->ga_data))[i], items[1]) == 0 && STRCMP(((char_u **)(gap->ga_data))[i + 1], items[2]) == 0) break; if (i >= gap->ga_len) { ga_grow(gap, 2); ((char_u **)(gap->ga_data))[gap->ga_len++] = getroom_save(spin, items[1]); ((char_u **)(gap->ga_data))[gap->ga_len++] = getroom_save(spin, items[2]); } } else if (is_aff_rule(items, itemcnt, "SYLLABLE", 2) && syllable == NULL) { syllable = getroom_save(spin, items[1]); } else if (is_aff_rule(items, itemcnt, "NOBREAK", 1)) { spin->si_nobreak = true; } else if (is_aff_rule(items, itemcnt, "NOSPLITSUGS", 1)) { spin->si_nosplitsugs = true; } else if (is_aff_rule(items, itemcnt, "NOCOMPOUNDSUGS", 1)) { spin->si_nocompoundsugs = true; } else if (is_aff_rule(items, itemcnt, "NOSUGFILE", 1)) { spin->si_nosugfile = true; } else if (is_aff_rule(items, itemcnt, "PFXPOSTPONE", 1)) { aff->af_pfxpostpone = true; } else if (is_aff_rule(items, itemcnt, "IGNOREEXTRA", 1)) { aff->af_ignoreextra = true; } else if ((STRCMP(items[0], "PFX") == 0 || STRCMP(items[0], "SFX") == 0) && aff_todo == 0 && itemcnt >= 4) { int lasti = 4; char_u key[AH_KEY_LEN]; if (*items[0] == 'P') tp = &aff->af_pref; else tp = &aff->af_suff; // Myspell allows the same affix name to be used multiple // times. The affix files that do this have an undocumented // "S" flag on all but the last block, thus we check for that // and store it in ah_follows. STRLCPY(key, items[1], AH_KEY_LEN); hi = hash_find(tp, key); if (!HASHITEM_EMPTY(hi)) { cur_aff = HI2AH(hi); if (cur_aff->ah_combine != (*items[2] == 'Y')) smsg(_("Different combining flag in continued affix block in %s line %d: %s"), fname, lnum, items[1]); if (!cur_aff->ah_follows) smsg(_("Duplicate affix in %s line %d: %s"), fname, lnum, items[1]); } else { // New affix letter. cur_aff = (affheader_T *)getroom(spin, sizeof(affheader_T), true); if (cur_aff == NULL) break; cur_aff->ah_flag = affitem2flag(aff->af_flagtype, items[1], fname, lnum); if (cur_aff->ah_flag == 0 || STRLEN(items[1]) >= AH_KEY_LEN) break; if (cur_aff->ah_flag == aff->af_bad || cur_aff->ah_flag == aff->af_rare || cur_aff->ah_flag == aff->af_keepcase || cur_aff->ah_flag == aff->af_needaffix || cur_aff->ah_flag == aff->af_circumfix || cur_aff->ah_flag == aff->af_nosuggest || cur_aff->ah_flag == aff->af_needcomp || cur_aff->ah_flag == aff->af_comproot) smsg(_("Affix also used for " "BAD/RARE/KEEPCASE/NEEDAFFIX/NEEDCOMPOUND/NOSUGGEST" "in %s line %d: %s"), fname, lnum, items[1]); STRCPY(cur_aff->ah_key, items[1]); hash_add(tp, cur_aff->ah_key); cur_aff->ah_combine = (*items[2] == 'Y'); } // Check for the "S" flag, which apparently means that another // block with the same affix name is following. if (itemcnt > lasti && STRCMP(items[lasti], "S") == 0) { ++lasti; cur_aff->ah_follows = true; } else cur_aff->ah_follows = false; // Myspell allows extra text after the item, but that might // mean mistakes go unnoticed. Require a comment-starter, // unless IGNOREEXTRA is used. Hunspell uses a "-" item. if (itemcnt > lasti && !aff->af_ignoreextra && *items[lasti] != '#') smsg(_(e_afftrailing), fname, lnum, items[lasti]); if (STRCMP(items[2], "Y") != 0 && STRCMP(items[2], "N") != 0) smsg(_("Expected Y or N in %s line %d: %s"), fname, lnum, items[2]); if (*items[0] == 'P' && aff->af_pfxpostpone) { if (cur_aff->ah_newID == 0) { // Use a new number in the .spl file later, to be able // to handle multiple .aff files. check_renumber(spin); cur_aff->ah_newID = ++spin->si_newprefID; // We only really use ah_newID if the prefix is // postponed. We know that only after handling all // the items. did_postpone_prefix = false; } else // Did use the ID in a previous block. did_postpone_prefix = true; } aff_todo = atoi((char *)items[3]); } else if ((STRCMP(items[0], "PFX") == 0 || STRCMP(items[0], "SFX") == 0) && aff_todo > 0 && STRCMP(cur_aff->ah_key, items[1]) == 0 && itemcnt >= 5) { affentry_T *aff_entry; bool upper = false; int lasti = 5; // Myspell allows extra text after the item, but that might // mean mistakes go unnoticed. Require a comment-starter. // Hunspell uses a "-" item. if (itemcnt > lasti && *items[lasti] != '#' && (STRCMP(items[lasti], "-") != 0 || itemcnt != lasti + 1)) smsg(_(e_afftrailing), fname, lnum, items[lasti]); // New item for an affix letter. --aff_todo; aff_entry = (affentry_T *)getroom(spin, sizeof(affentry_T), true); if (aff_entry == NULL) break; if (STRCMP(items[2], "0") != 0) aff_entry->ae_chop = getroom_save(spin, items[2]); if (STRCMP(items[3], "0") != 0) { aff_entry->ae_add = getroom_save(spin, items[3]); // Recognize flags on the affix: abcd/XYZ aff_entry->ae_flags = vim_strchr(aff_entry->ae_add, '/'); if (aff_entry->ae_flags != NULL) { *aff_entry->ae_flags++ = NUL; aff_process_flags(aff, aff_entry); } } // Don't use an affix entry with non-ASCII characters when // "spin->si_ascii" is true. if (!spin->si_ascii || !(has_non_ascii(aff_entry->ae_chop) || has_non_ascii(aff_entry->ae_add))) { aff_entry->ae_next = cur_aff->ah_first; cur_aff->ah_first = aff_entry; if (STRCMP(items[4], ".") != 0) { char_u buf[MAXLINELEN]; aff_entry->ae_cond = getroom_save(spin, items[4]); if (*items[0] == 'P') sprintf((char *)buf, "^%s", items[4]); else sprintf((char *)buf, "%s$", items[4]); aff_entry->ae_prog = vim_regcomp(buf, RE_MAGIC + RE_STRING + RE_STRICT); if (aff_entry->ae_prog == NULL) smsg(_("Broken condition in %s line %d: %s"), fname, lnum, items[4]); } // For postponed prefixes we need an entry in si_prefcond // for the condition. Use an existing one if possible. // Can't be done for an affix with flags, ignoring // COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG. if (*items[0] == 'P' && aff->af_pfxpostpone && aff_entry->ae_flags == NULL) { // When the chop string is one lower-case letter and // the add string ends in the upper-case letter we set // the "upper" flag, clear "ae_chop" and remove the // letters from "ae_add". The condition must either // be empty or start with the same letter. if (aff_entry->ae_chop != NULL && aff_entry->ae_add != NULL && aff_entry->ae_chop[(*mb_ptr2len)( aff_entry->ae_chop)] == NUL ) { int c, c_up; c = PTR2CHAR(aff_entry->ae_chop); c_up = SPELL_TOUPPER(c); if (c_up != c && (aff_entry->ae_cond == NULL || PTR2CHAR(aff_entry->ae_cond) == c)) { p = aff_entry->ae_add + STRLEN(aff_entry->ae_add); mb_ptr_back(aff_entry->ae_add, p); if (PTR2CHAR(p) == c_up) { upper = true; aff_entry->ae_chop = NULL; *p = NUL; // The condition is matched with the // actual word, thus must check for the // upper-case letter. if (aff_entry->ae_cond != NULL) { char_u buf[MAXLINELEN]; if (has_mbyte) { onecap_copy(items[4], buf, true); aff_entry->ae_cond = getroom_save( spin, buf); } else *aff_entry->ae_cond = c_up; if (aff_entry->ae_cond != NULL) { sprintf((char *)buf, "^%s", aff_entry->ae_cond); vim_regfree(aff_entry->ae_prog); aff_entry->ae_prog = vim_regcomp( buf, RE_MAGIC + RE_STRING); } } } } } if (aff_entry->ae_chop == NULL && aff_entry->ae_flags == NULL) { int idx; char_u **pp; int n; // Find a previously used condition. for (idx = spin->si_prefcond.ga_len - 1; idx >= 0; --idx) { p = ((char_u **)spin->si_prefcond.ga_data)[idx]; if (str_equal(p, aff_entry->ae_cond)) break; } if (idx < 0) { // Not found, add a new condition. idx = spin->si_prefcond.ga_len; pp = GA_APPEND_VIA_PTR(char_u *, &spin->si_prefcond); *pp = (aff_entry->ae_cond == NULL) ? NULL : getroom_save(spin, aff_entry->ae_cond); } // Add the prefix to the prefix tree. if (aff_entry->ae_add == NULL) p = (char_u *)""; else p = aff_entry->ae_add; // PFX_FLAGS is a negative number, so that // tree_add_word() knows this is the prefix tree. n = PFX_FLAGS; if (!cur_aff->ah_combine) n |= WFP_NC; if (upper) n |= WFP_UP; if (aff_entry->ae_comppermit) n |= WFP_COMPPERMIT; if (aff_entry->ae_compforbid) n |= WFP_COMPFORBID; tree_add_word(spin, p, spin->si_prefroot, n, idx, cur_aff->ah_newID); did_postpone_prefix = true; } // Didn't actually use ah_newID, backup si_newprefID. if (aff_todo == 0 && !did_postpone_prefix) { --spin->si_newprefID; cur_aff->ah_newID = 0; } } } } else if (is_aff_rule(items, itemcnt, "FOL", 2) && fol == NULL) { fol = vim_strsave(items[1]); } else if (is_aff_rule(items, itemcnt, "LOW", 2) && low == NULL) { low = vim_strsave(items[1]); } else if (is_aff_rule(items, itemcnt, "UPP", 2) && upp == NULL) { upp = vim_strsave(items[1]); } else if (is_aff_rule(items, itemcnt, "REP", 2) || is_aff_rule(items, itemcnt, "REPSAL", 2)) { /* Ignore REP/REPSAL count */; if (!isdigit(*items[1])) smsg(_("Expected REP(SAL) count in %s line %d"), fname, lnum); } else if ((STRCMP(items[0], "REP") == 0 || STRCMP(items[0], "REPSAL") == 0) && itemcnt >= 3) { // REP/REPSAL item // Myspell ignores extra arguments, we require it starts with // # to detect mistakes. if (itemcnt > 3 && items[3][0] != '#') smsg(_(e_afftrailing), fname, lnum, items[3]); if (items[0][3] == 'S' ? do_repsal : do_rep) { // Replace underscore with space (can't include a space // directly). for (p = items[1]; *p != NUL; mb_ptr_adv(p)) if (*p == '_') *p = ' '; for (p = items[2]; *p != NUL; mb_ptr_adv(p)) if (*p == '_') *p = ' '; add_fromto(spin, items[0][3] == 'S' ? &spin->si_repsal : &spin->si_rep, items[1], items[2]); } } else if (is_aff_rule(items, itemcnt, "MAP", 2)) { // MAP item or count if (!found_map) { // First line contains the count. found_map = true; if (!isdigit(*items[1])) smsg(_("Expected MAP count in %s line %d"), fname, lnum); } else if (do_mapline) { int c; // Check that every character appears only once. for (p = items[1]; *p != NUL; ) { c = mb_ptr2char_adv(&p); if ((!GA_EMPTY(&spin->si_map) && vim_strchr(spin->si_map.ga_data, c) != NULL) || vim_strchr(p, c) != NULL) smsg(_("Duplicate character in MAP in %s line %d"), fname, lnum); } // We simply concatenate all the MAP strings, separated by // slashes. ga_concat(&spin->si_map, items[1]); ga_append(&spin->si_map, '/'); } } // Accept "SAL from to" and "SAL from to #comment". else if (is_aff_rule(items, itemcnt, "SAL", 3)) { if (do_sal) { // SAL item (sounds-a-like) // Either one of the known keys or a from-to pair. if (STRCMP(items[1], "followup") == 0) spin->si_followup = sal_to_bool(items[2]); else if (STRCMP(items[1], "collapse_result") == 0) spin->si_collapse = sal_to_bool(items[2]); else if (STRCMP(items[1], "remove_accents") == 0) spin->si_rem_accents = sal_to_bool(items[2]); else // when "to" is "_" it means empty add_fromto(spin, &spin->si_sal, items[1], STRCMP(items[2], "_") == 0 ? (char_u *)"" : items[2]); } } else if (is_aff_rule(items, itemcnt, "SOFOFROM", 2) && sofofrom == NULL) { sofofrom = getroom_save(spin, items[1]); } else if (is_aff_rule(items, itemcnt, "SOFOTO", 2) && sofoto == NULL) { sofoto = getroom_save(spin, items[1]); } else if (STRCMP(items[0], "COMMON") == 0) { int i; for (i = 1; i < itemcnt; ++i) { if (HASHITEM_EMPTY(hash_find(&spin->si_commonwords, items[i]))) { p = vim_strsave(items[i]); hash_add(&spin->si_commonwords, p); } } } else smsg(_("Unrecognized or duplicate item in %s line %d: %s"), fname, lnum, items[0]); } } if (fol != NULL || low != NULL || upp != NULL) { if (spin->si_clear_chartab) { // Clear the char type tables, don't want to use any of the // currently used spell properties. init_spell_chartab(); spin->si_clear_chartab = false; } // Don't write a word table for an ASCII file, so that we don't check // for conflicts with a word table that matches 'encoding'. // Don't write one for utf-8 either, we use utf_*() and // mb_get_class(), the list of chars in the file will be incomplete. if (!spin->si_ascii && !enc_utf8 ) { if (fol == NULL || low == NULL || upp == NULL) smsg(_("Missing FOL/LOW/UPP line in %s"), fname); else (void)set_spell_chartab(fol, low, upp); } xfree(fol); xfree(low); xfree(upp); } // Use compound specifications of the .aff file for the spell info. if (compmax != 0) { aff_check_number(spin->si_compmax, compmax, "COMPOUNDWORDMAX"); spin->si_compmax = compmax; } if (compminlen != 0) { aff_check_number(spin->si_compminlen, compminlen, "COMPOUNDMIN"); spin->si_compminlen = compminlen; } if (compsylmax != 0) { if (syllable == NULL) smsg(_("COMPOUNDSYLMAX used without SYLLABLE")); aff_check_number(spin->si_compsylmax, compsylmax, "COMPOUNDSYLMAX"); spin->si_compsylmax = compsylmax; } if (compoptions != 0) { aff_check_number(spin->si_compoptions, compoptions, "COMPOUND options"); spin->si_compoptions |= compoptions; } if (compflags != NULL) process_compflags(spin, aff, compflags); // Check that we didn't use too many renumbered flags. if (spin->si_newcompID < spin->si_newprefID) { if (spin->si_newcompID == 127 || spin->si_newcompID == 255) MSG(_("Too many postponed prefixes")); else if (spin->si_newprefID == 0 || spin->si_newprefID == 127) MSG(_("Too many compound flags")); else MSG(_("Too many postponed prefixes and/or compound flags")); } if (syllable != NULL) { aff_check_string(spin->si_syllable, syllable, "SYLLABLE"); spin->si_syllable = syllable; } if (sofofrom != NULL || sofoto != NULL) { if (sofofrom == NULL || sofoto == NULL) smsg(_("Missing SOFO%s line in %s"), sofofrom == NULL ? "FROM" : "TO", fname); else if (!GA_EMPTY(&spin->si_sal)) smsg(_("Both SAL and SOFO lines in %s"), fname); else { aff_check_string(spin->si_sofofr, sofofrom, "SOFOFROM"); aff_check_string(spin->si_sofoto, sofoto, "SOFOTO"); spin->si_sofofr = sofofrom; spin->si_sofoto = sofoto; } } if (midword != NULL) { aff_check_string(spin->si_midword, midword, "MIDWORD"); spin->si_midword = midword; } xfree(pc); fclose(fd); return aff; } // Returns true when items[0] equals "rulename", there are "mincount" items or // a comment is following after item "mincount". static bool is_aff_rule(char_u **items, int itemcnt, char *rulename, int mincount) { return STRCMP(items[0], rulename) == 0 && (itemcnt == mincount || (itemcnt > mincount && items[mincount][0] == '#')); } // For affix "entry" move COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG from // ae_flags to ae_comppermit and ae_compforbid. static void aff_process_flags(afffile_T *affile, affentry_T *entry) { char_u *p; char_u *prevp; unsigned flag; if (entry->ae_flags != NULL && (affile->af_compforbid != 0 || affile->af_comppermit != 0)) { for (p = entry->ae_flags; *p != NUL; ) { prevp = p; flag = get_affitem(affile->af_flagtype, &p); if (flag == affile->af_comppermit || flag == affile->af_compforbid) { STRMOVE(prevp, p); p = prevp; if (flag == affile->af_comppermit) entry->ae_comppermit = true; else entry->ae_compforbid = true; } if (affile->af_flagtype == AFT_NUM && *p == ',') ++p; } if (*entry->ae_flags == NUL) entry->ae_flags = NULL; // nothing left } } // Returns true if "s" is the name of an info item in the affix file. static bool spell_info_item(char_u *s) { return STRCMP(s, "NAME") == 0 || STRCMP(s, "HOME") == 0 || STRCMP(s, "VERSION") == 0 || STRCMP(s, "AUTHOR") == 0 || STRCMP(s, "EMAIL") == 0 || STRCMP(s, "COPYRIGHT") == 0; } // Turn an affix flag name into a number, according to the FLAG type. // returns zero for failure. static unsigned affitem2flag(int flagtype, char_u *item, char_u *fname, int lnum) { unsigned res; char_u *p = item; res = get_affitem(flagtype, &p); if (res == 0) { if (flagtype == AFT_NUM) smsg(_("Flag is not a number in %s line %d: %s"), fname, lnum, item); else smsg(_("Illegal flag in %s line %d: %s"), fname, lnum, item); } if (*p != NUL) { smsg(_(e_affname), fname, lnum, item); return 0; } return res; } // Get one affix name from "*pp" and advance the pointer. // Returns zero for an error, still advances the pointer then. static unsigned get_affitem(int flagtype, char_u **pp) { int res; if (flagtype == AFT_NUM) { if (!ascii_isdigit(**pp)) { ++*pp; // always advance, avoid getting stuck return 0; } res = getdigits_int(pp); } else { res = mb_ptr2char_adv(pp); if (flagtype == AFT_LONG || (flagtype == AFT_CAPLONG && res >= 'A' && res <= 'Z')) { if (**pp == NUL) return 0; res = mb_ptr2char_adv(pp) + (res << 16); } } return res; } // Process the "compflags" string used in an affix file and append it to // spin->si_compflags. // The processing involves changing the affix names to ID numbers, so that // they fit in one byte. static void process_compflags(spellinfo_T *spin, afffile_T *aff, char_u *compflags) { char_u *p; char_u *prevp; unsigned flag; compitem_T *ci; int id; int len; char_u *tp; char_u key[AH_KEY_LEN]; hashitem_T *hi; // Make room for the old and the new compflags, concatenated with a / in // between. Processing it makes it shorter, but we don't know by how // much, thus allocate the maximum. len = (int)STRLEN(compflags) + 1; if (spin->si_compflags != NULL) len += (int)STRLEN(spin->si_compflags) + 1; p = getroom(spin, len, false); if (spin->si_compflags != NULL) { STRCPY(p, spin->si_compflags); STRCAT(p, "/"); } spin->si_compflags = p; tp = p + STRLEN(p); for (p = compflags; *p != NUL; ) { if (vim_strchr((char_u *)"/?*+[]", *p) != NULL) // Copy non-flag characters directly. *tp++ = *p++; else { // First get the flag number, also checks validity. prevp = p; flag = get_affitem(aff->af_flagtype, &p); if (flag != 0) { // Find the flag in the hashtable. If it was used before, use // the existing ID. Otherwise add a new entry. STRLCPY(key, prevp, p - prevp + 1); hi = hash_find(&aff->af_comp, key); if (!HASHITEM_EMPTY(hi)) id = HI2CI(hi)->ci_newID; else { ci = (compitem_T *)getroom(spin, sizeof(compitem_T), true); if (ci == NULL) break; STRCPY(ci->ci_key, key); ci->ci_flag = flag; // Avoid using a flag ID that has a special meaning in a // regexp (also inside []). do { check_renumber(spin); id = spin->si_newcompID--; } while (vim_strchr((char_u *)"/?*+[]\\-^", id) != NULL); ci->ci_newID = id; hash_add(&aff->af_comp, ci->ci_key); } *tp++ = id; } if (aff->af_flagtype == AFT_NUM && *p == ',') ++p; } } *tp = NUL; } // Check that the new IDs for postponed affixes and compounding don't overrun // each other. We have almost 255 available, but start at 0-127 to avoid // using two bytes for utf-8. When the 0-127 range is used up go to 128-255. // When that is used up an error message is given. static void check_renumber(spellinfo_T *spin) { if (spin->si_newprefID == spin->si_newcompID && spin->si_newcompID < 128) { spin->si_newprefID = 127; spin->si_newcompID = 255; } } // Returns true if flag "flag" appears in affix list "afflist". static bool flag_in_afflist(int flagtype, char_u *afflist, unsigned flag) { char_u *p; unsigned n; switch (flagtype) { case AFT_CHAR: return vim_strchr(afflist, flag) != NULL; case AFT_CAPLONG: case AFT_LONG: for (p = afflist; *p != NUL; ) { n = mb_ptr2char_adv(&p); if ((flagtype == AFT_LONG || (n >= 'A' && n <= 'Z')) && *p != NUL) n = mb_ptr2char_adv(&p) + (n << 16); if (n == flag) return true; } break; case AFT_NUM: for (p = afflist; *p != NUL; ) { int digits = getdigits_int(&p); assert(digits >= 0); n = (unsigned int)digits; if (n == flag) return true; if (*p != NUL) // skip over comma ++p; } break; } return false; } // Give a warning when "spinval" and "affval" numbers are set and not the same. static void aff_check_number(int spinval, int affval, char *name) { if (spinval != 0 && spinval != affval) smsg(_("%s value differs from what is used in another .aff file"), name); } // Give a warning when "spinval" and "affval" strings are set and not the same. static void aff_check_string(char_u *spinval, char_u *affval, char *name) { if (spinval != NULL && STRCMP(spinval, affval) != 0) smsg(_("%s value differs from what is used in another .aff file"), name); } // Returns true if strings "s1" and "s2" are equal. Also consider both being // NULL as equal. static bool str_equal(char_u *s1, char_u *s2) { if (s1 == NULL || s2 == NULL) return s1 == s2; return STRCMP(s1, s2) == 0; } // Add a from-to item to "gap". Used for REP and SAL items. // They are stored case-folded. static void add_fromto(spellinfo_T *spin, garray_T *gap, char_u *from, char_u *to) { char_u word[MAXWLEN]; fromto_T *ftp = GA_APPEND_VIA_PTR(fromto_T, gap); (void)spell_casefold(from, (int)STRLEN(from), word, MAXWLEN); ftp->ft_from = getroom_save(spin, word); (void)spell_casefold(to, (int)STRLEN(to), word, MAXWLEN); ftp->ft_to = getroom_save(spin, word); } // Converts a boolean argument in a SAL line to true or false; static bool sal_to_bool(char_u *s) { return STRCMP(s, "1") == 0 || STRCMP(s, "true") == 0; } // Free the structure filled by spell_read_aff(). static void spell_free_aff(afffile_T *aff) { hashtab_T *ht; hashitem_T *hi; int todo; affheader_T *ah; affentry_T *ae; xfree(aff->af_enc); // All this trouble to free the "ae_prog" items... for (ht = &aff->af_pref;; ht = &aff->af_suff) { todo = (int)ht->ht_used; for (hi = ht->ht_array; todo > 0; ++hi) { if (!HASHITEM_EMPTY(hi)) { --todo; ah = HI2AH(hi); for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) vim_regfree(ae->ae_prog); } } if (ht == &aff->af_suff) break; } hash_clear(&aff->af_pref); hash_clear(&aff->af_suff); hash_clear(&aff->af_comp); } // Read dictionary file "fname". // Returns OK or FAIL; static int spell_read_dic(spellinfo_T *spin, char_u *fname, afffile_T *affile) { hashtab_T ht; char_u line[MAXLINELEN]; char_u *p; char_u *afflist; char_u store_afflist[MAXWLEN]; int pfxlen; bool need_affix; char_u *dw; char_u *pc; char_u *w; int l; hash_T hash; hashitem_T *hi; FILE *fd; int lnum = 1; int non_ascii = 0; int retval = OK; char_u message[MAXLINELEN + MAXWLEN]; int flags; int duplicate = 0; // Open the file. fd = mch_fopen((char *)fname, "r"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return FAIL; } // The hashtable is only used to detect duplicated words. hash_init(&ht); vim_snprintf((char *)IObuff, IOSIZE, _("Reading dictionary file %s ..."), fname); spell_message(spin, IObuff); // start with a message for the first line spin->si_msg_count = 999999; // Read and ignore the first line: word count. (void)vim_fgets(line, MAXLINELEN, fd); if (!ascii_isdigit(*skipwhite(line))) EMSG2(_("E760: No word count in %s"), fname); // Read all the lines in the file one by one. // The words are converted to 'encoding' here, before being added to // the hashtable. while (!vim_fgets(line, MAXLINELEN, fd) && !got_int) { line_breakcheck(); ++lnum; if (line[0] == '#' || line[0] == '/') continue; // comment line // Remove CR, LF and white space from the end. White space halfway through // the word is kept to allow multi-word terms like "et al.". l = (int)STRLEN(line); while (l > 0 && line[l - 1] <= ' ') --l; if (l == 0) continue; // empty line line[l] = NUL; // Convert from "SET" to 'encoding' when needed. if (spin->si_conv.vc_type != CONV_NONE) { pc = string_convert(&spin->si_conv, line, NULL); if (pc == NULL) { smsg(_("Conversion failure for word in %s line %d: %s"), fname, lnum, line); continue; } w = pc; } else { pc = NULL; w = line; } // Truncate the word at the "/", set "afflist" to what follows. // Replace "\/" by "/" and "\\" by "\". afflist = NULL; for (p = w; *p != NUL; mb_ptr_adv(p)) { if (*p == '\\' && (p[1] == '\\' || p[1] == '/')) STRMOVE(p, p + 1); else if (*p == '/') { *p = NUL; afflist = p + 1; break; } } // Skip non-ASCII words when "spin->si_ascii" is true. if (spin->si_ascii && has_non_ascii(w)) { ++non_ascii; xfree(pc); continue; } // This takes time, print a message every 10000 words. if (spin->si_verbose && spin->si_msg_count > 10000) { spin->si_msg_count = 0; vim_snprintf((char *)message, sizeof(message), _("line %6d, word %6d - %s"), lnum, spin->si_foldwcount + spin->si_keepwcount, w); msg_start(); msg_puts_long_attr(message, 0); msg_clr_eos(); msg_didout = FALSE; msg_col = 0; ui_flush(); } // Store the word in the hashtable to be able to find duplicates. dw = getroom_save(spin, w); if (dw == NULL) { retval = FAIL; xfree(pc); break; } hash = hash_hash(dw); hi = hash_lookup(&ht, dw, hash); if (!HASHITEM_EMPTY(hi)) { if (p_verbose > 0) smsg(_("Duplicate word in %s line %d: %s"), fname, lnum, dw); else if (duplicate == 0) smsg(_("First duplicate word in %s line %d: %s"), fname, lnum, dw); ++duplicate; } else hash_add_item(&ht, hi, dw, hash); flags = 0; store_afflist[0] = NUL; pfxlen = 0; need_affix = false; if (afflist != NULL) { // Extract flags from the affix list. flags |= get_affix_flags(affile, afflist); if (affile->af_needaffix != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_needaffix)) need_affix = true; if (affile->af_pfxpostpone) // Need to store the list of prefix IDs with the word. pfxlen = get_pfxlist(affile, afflist, store_afflist); if (spin->si_compflags != NULL) // Need to store the list of compound flags with the word. // Concatenate them to the list of prefix IDs. get_compflags(affile, afflist, store_afflist + pfxlen); } // Add the word to the word tree(s). if (store_word(spin, dw, flags, spin->si_region, store_afflist, need_affix) == FAIL) retval = FAIL; if (afflist != NULL) { // Find all matching suffixes and add the resulting words. // Additionally do matching prefixes that combine. if (store_aff_word(spin, dw, afflist, affile, &affile->af_suff, &affile->af_pref, CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL) retval = FAIL; // Find all matching prefixes and add the resulting words. if (store_aff_word(spin, dw, afflist, affile, &affile->af_pref, NULL, CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL) retval = FAIL; } xfree(pc); } if (duplicate > 0) smsg(_("%d duplicate word(s) in %s"), duplicate, fname); if (spin->si_ascii && non_ascii > 0) smsg(_("Ignored %d word(s) with non-ASCII characters in %s"), non_ascii, fname); hash_clear(&ht); fclose(fd); return retval; } // Check for affix flags in "afflist" that are turned into word flags. // Return WF_ flags. static int get_affix_flags(afffile_T *affile, char_u *afflist) { int flags = 0; if (affile->af_keepcase != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_keepcase)) flags |= WF_KEEPCAP | WF_FIXCAP; if (affile->af_rare != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_rare)) flags |= WF_RARE; if (affile->af_bad != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_bad)) flags |= WF_BANNED; if (affile->af_needcomp != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_needcomp)) flags |= WF_NEEDCOMP; if (affile->af_comproot != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_comproot)) flags |= WF_COMPROOT; if (affile->af_nosuggest != 0 && flag_in_afflist( affile->af_flagtype, afflist, affile->af_nosuggest)) flags |= WF_NOSUGGEST; return flags; } // Get the list of prefix IDs from the affix list "afflist". // Used for PFXPOSTPONE. // Put the resulting flags in "store_afflist[MAXWLEN]" with a terminating NUL // and return the number of affixes. static int get_pfxlist(afffile_T *affile, char_u *afflist, char_u *store_afflist) { char_u *p; char_u *prevp; int cnt = 0; int id; char_u key[AH_KEY_LEN]; hashitem_T *hi; for (p = afflist; *p != NUL; ) { prevp = p; if (get_affitem(affile->af_flagtype, &p) != 0) { // A flag is a postponed prefix flag if it appears in "af_pref" // and it's ID is not zero. STRLCPY(key, prevp, p - prevp + 1); hi = hash_find(&affile->af_pref, key); if (!HASHITEM_EMPTY(hi)) { id = HI2AH(hi)->ah_newID; if (id != 0) store_afflist[cnt++] = id; } } if (affile->af_flagtype == AFT_NUM && *p == ',') ++p; } store_afflist[cnt] = NUL; return cnt; } // Get the list of compound IDs from the affix list "afflist" that are used // for compound words. // Puts the flags in "store_afflist[]". static void get_compflags(afffile_T *affile, char_u *afflist, char_u *store_afflist) { char_u *p; char_u *prevp; int cnt = 0; char_u key[AH_KEY_LEN]; hashitem_T *hi; for (p = afflist; *p != NUL; ) { prevp = p; if (get_affitem(affile->af_flagtype, &p) != 0) { // A flag is a compound flag if it appears in "af_comp". STRLCPY(key, prevp, p - prevp + 1); hi = hash_find(&affile->af_comp, key); if (!HASHITEM_EMPTY(hi)) store_afflist[cnt++] = HI2CI(hi)->ci_newID; } if (affile->af_flagtype == AFT_NUM && *p == ',') ++p; } store_afflist[cnt] = NUL; } // Apply affixes to a word and store the resulting words. // "ht" is the hashtable with affentry_T that need to be applied, either // prefixes or suffixes. // "xht", when not NULL, is the prefix hashtable, to be used additionally on // the resulting words for combining affixes. // // Returns FAIL when out of memory. static int store_aff_word ( spellinfo_T *spin, // spell info char_u *word, // basic word start char_u *afflist, // list of names of supported affixes afffile_T *affile, hashtab_T *ht, hashtab_T *xht, int condit, // CONDIT_SUF et al. int flags, // flags for the word char_u *pfxlist, // list of prefix IDs int pfxlen // nr of flags in "pfxlist" for prefixes, rest // is compound flags ) { int todo; hashitem_T *hi; affheader_T *ah; affentry_T *ae; char_u newword[MAXWLEN]; int retval = OK; int i, j; char_u *p; int use_flags; char_u *use_pfxlist; int use_pfxlen; bool need_affix; char_u store_afflist[MAXWLEN]; char_u pfx_pfxlist[MAXWLEN]; size_t wordlen = STRLEN(word); int use_condit; todo = (int)ht->ht_used; for (hi = ht->ht_array; todo > 0 && retval == OK; ++hi) { if (!HASHITEM_EMPTY(hi)) { --todo; ah = HI2AH(hi); // Check that the affix combines, if required, and that the word // supports this affix. if (((condit & CONDIT_COMB) == 0 || ah->ah_combine) && flag_in_afflist(affile->af_flagtype, afflist, ah->ah_flag)) { // Loop over all affix entries with this name. for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) { // Check the condition. It's not logical to match case // here, but it is required for compatibility with // Myspell. // Another requirement from Myspell is that the chop // string is shorter than the word itself. // For prefixes, when "PFXPOSTPONE" was used, only do // prefixes with a chop string and/or flags. // When a previously added affix had CIRCUMFIX this one // must have it too, if it had not then this one must not // have one either. if ((xht != NULL || !affile->af_pfxpostpone || ae->ae_chop != NULL || ae->ae_flags != NULL) && (ae->ae_chop == NULL || STRLEN(ae->ae_chop) < wordlen) && (ae->ae_prog == NULL || vim_regexec_prog(&ae->ae_prog, false, word, (colnr_T)0)) && (((condit & CONDIT_CFIX) == 0) == ((condit & CONDIT_AFF) == 0 || ae->ae_flags == NULL || !flag_in_afflist(affile->af_flagtype, ae->ae_flags, affile->af_circumfix)))) { // Match. Remove the chop and add the affix. if (xht == NULL) { // prefix: chop/add at the start of the word if (ae->ae_add == NULL) *newword = NUL; else STRLCPY(newword, ae->ae_add, MAXWLEN); p = word; if (ae->ae_chop != NULL) { // Skip chop string. if (has_mbyte) { i = mb_charlen(ae->ae_chop); for (; i > 0; --i) mb_ptr_adv(p); } else p += STRLEN(ae->ae_chop); } STRCAT(newword, p); } else { // suffix: chop/add at the end of the word STRLCPY(newword, word, MAXWLEN); if (ae->ae_chop != NULL) { // Remove chop string. p = newword + STRLEN(newword); i = (int)MB_CHARLEN(ae->ae_chop); for (; i > 0; --i) mb_ptr_back(newword, p); *p = NUL; } if (ae->ae_add != NULL) STRCAT(newword, ae->ae_add); } use_flags = flags; use_pfxlist = pfxlist; use_pfxlen = pfxlen; need_affix = false; use_condit = condit | CONDIT_COMB | CONDIT_AFF; if (ae->ae_flags != NULL) { // Extract flags from the affix list. use_flags |= get_affix_flags(affile, ae->ae_flags); if (affile->af_needaffix != 0 && flag_in_afflist( affile->af_flagtype, ae->ae_flags, affile->af_needaffix)) need_affix = true; // When there is a CIRCUMFIX flag the other affix // must also have it and we don't add the word // with one affix. if (affile->af_circumfix != 0 && flag_in_afflist( affile->af_flagtype, ae->ae_flags, affile->af_circumfix)) { use_condit |= CONDIT_CFIX; if ((condit & CONDIT_CFIX) == 0) need_affix = true; } if (affile->af_pfxpostpone || spin->si_compflags != NULL) { if (affile->af_pfxpostpone) // Get prefix IDS from the affix list. use_pfxlen = get_pfxlist(affile, ae->ae_flags, store_afflist); else use_pfxlen = 0; use_pfxlist = store_afflist; // Combine the prefix IDs. Avoid adding the // same ID twice. for (i = 0; i < pfxlen; ++i) { for (j = 0; j < use_pfxlen; ++j) if (pfxlist[i] == use_pfxlist[j]) break; if (j == use_pfxlen) use_pfxlist[use_pfxlen++] = pfxlist[i]; } if (spin->si_compflags != NULL) // Get compound IDS from the affix list. get_compflags(affile, ae->ae_flags, use_pfxlist + use_pfxlen); else use_pfxlist[use_pfxlen] = NUL; // Combine the list of compound flags. // Concatenate them to the prefix IDs list. // Avoid adding the same ID twice. for (i = pfxlen; pfxlist[i] != NUL; ++i) { for (j = use_pfxlen; use_pfxlist[j] != NUL; ++j) if (pfxlist[i] == use_pfxlist[j]) break; if (use_pfxlist[j] == NUL) { use_pfxlist[j++] = pfxlist[i]; use_pfxlist[j] = NUL; } } } } // Obey a "COMPOUNDFORBIDFLAG" of the affix: don't // use the compound flags. if (use_pfxlist != NULL && ae->ae_compforbid) { STRLCPY(pfx_pfxlist, use_pfxlist, use_pfxlen + 1); use_pfxlist = pfx_pfxlist; } // When there are postponed prefixes... if (spin->si_prefroot != NULL && spin->si_prefroot->wn_sibling != NULL) { // ... add a flag to indicate an affix was used. use_flags |= WF_HAS_AFF; // ... don't use a prefix list if combining // affixes is not allowed. But do use the // compound flags after them. if (!ah->ah_combine && use_pfxlist != NULL) use_pfxlist += use_pfxlen; } // When compounding is supported and there is no // "COMPOUNDPERMITFLAG" then forbid compounding on the // side where the affix is applied. if (spin->si_compflags != NULL && !ae->ae_comppermit) { if (xht != NULL) use_flags |= WF_NOCOMPAFT; else use_flags |= WF_NOCOMPBEF; } // Store the modified word. if (store_word(spin, newword, use_flags, spin->si_region, use_pfxlist, need_affix) == FAIL) retval = FAIL; // When added a prefix or a first suffix and the affix // has flags may add a(nother) suffix. RECURSIVE! if ((condit & CONDIT_SUF) && ae->ae_flags != NULL) if (store_aff_word(spin, newword, ae->ae_flags, affile, &affile->af_suff, xht, use_condit & (xht == NULL ? ~0 : ~CONDIT_SUF), use_flags, use_pfxlist, pfxlen) == FAIL) retval = FAIL; // When added a suffix and combining is allowed also // try adding a prefix additionally. Both for the // word flags and for the affix flags. RECURSIVE! if (xht != NULL && ah->ah_combine) { if (store_aff_word(spin, newword, afflist, affile, xht, NULL, use_condit, use_flags, use_pfxlist, pfxlen) == FAIL || (ae->ae_flags != NULL && store_aff_word(spin, newword, ae->ae_flags, affile, xht, NULL, use_condit, use_flags, use_pfxlist, pfxlen) == FAIL)) retval = FAIL; } } } } } } return retval; } // Read a file with a list of words. static int spell_read_wordfile(spellinfo_T *spin, char_u *fname) { FILE *fd; long lnum = 0; char_u rline[MAXLINELEN]; char_u *line; char_u *pc = NULL; char_u *p; int l; int retval = OK; bool did_word = false; int non_ascii = 0; int flags; int regionmask; // Open the file. fd = mch_fopen((char *)fname, "r"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return FAIL; } vim_snprintf((char *)IObuff, IOSIZE, _("Reading word file %s ..."), fname); spell_message(spin, IObuff); // Read all the lines in the file one by one. while (!vim_fgets(rline, MAXLINELEN, fd) && !got_int) { line_breakcheck(); ++lnum; // Skip comment lines. if (*rline == '#') continue; // Remove CR, LF and white space from the end. l = (int)STRLEN(rline); while (l > 0 && rline[l - 1] <= ' ') --l; if (l == 0) continue; // empty or blank line rline[l] = NUL; // Convert from "/encoding={encoding}" to 'encoding' when needed. xfree(pc); if (spin->si_conv.vc_type != CONV_NONE) { pc = string_convert(&spin->si_conv, rline, NULL); if (pc == NULL) { smsg(_("Conversion failure for word in %s line %d: %s"), fname, lnum, rline); continue; } line = pc; } else { pc = NULL; line = rline; } if (*line == '/') { ++line; if (STRNCMP(line, "encoding=", 9) == 0) { if (spin->si_conv.vc_type != CONV_NONE) smsg(_("Duplicate /encoding= line ignored in %s line %d: %s"), fname, lnum, line - 1); else if (did_word) smsg(_("/encoding= line after word ignored in %s line %d: %s"), fname, lnum, line - 1); else { char_u *enc; // Setup for conversion to 'encoding'. line += 9; enc = enc_canonize(line); if (!spin->si_ascii && convert_setup(&spin->si_conv, enc, p_enc) == FAIL) smsg(_("Conversion in %s not supported: from %s to %s"), fname, line, p_enc); xfree(enc); spin->si_conv.vc_fail = true; } continue; } if (STRNCMP(line, "regions=", 8) == 0) { if (spin->si_region_count > 1) smsg(_("Duplicate /regions= line ignored in %s line %d: %s"), fname, lnum, line); else { line += 8; if (STRLEN(line) > 16) smsg(_("Too many regions in %s line %d: %s"), fname, lnum, line); else { spin->si_region_count = (int)STRLEN(line) / 2; STRCPY(spin->si_region_name, line); // Adjust the mask for a word valid in all regions. spin->si_region = (1 << spin->si_region_count) - 1; } } continue; } smsg(_("/ line ignored in %s line %d: %s"), fname, lnum, line - 1); continue; } flags = 0; regionmask = spin->si_region; // Check for flags and region after a slash. p = vim_strchr(line, '/'); if (p != NULL) { *p++ = NUL; while (*p != NUL) { if (*p == '=') // keep-case word flags |= WF_KEEPCAP | WF_FIXCAP; else if (*p == '!') // Bad, bad, wicked word. flags |= WF_BANNED; else if (*p == '?') // Rare word. flags |= WF_RARE; else if (ascii_isdigit(*p)) { // region number(s) if ((flags & WF_REGION) == 0) // first one regionmask = 0; flags |= WF_REGION; l = *p - '0'; if (l > spin->si_region_count) { smsg(_("Invalid region nr in %s line %d: %s"), fname, lnum, p); break; } regionmask |= 1 << (l - 1); } else { smsg(_("Unrecognized flags in %s line %d: %s"), fname, lnum, p); break; } ++p; } } // Skip non-ASCII words when "spin->si_ascii" is true. if (spin->si_ascii && has_non_ascii(line)) { ++non_ascii; continue; } // Normal word: store it. if (store_word(spin, line, flags, regionmask, NULL, false) == FAIL) { retval = FAIL; break; } did_word = true; } xfree(pc); fclose(fd); if (spin->si_ascii && non_ascii > 0) { vim_snprintf((char *)IObuff, IOSIZE, _("Ignored %d words with non-ASCII characters"), non_ascii); spell_message(spin, IObuff); } return retval; } /// Get part of an sblock_T, "len" bytes long. /// This avoids calling free() for every little struct we use (and keeping /// track of them). /// The memory is cleared to all zeros. /// /// @param len Length needed (<= SBLOCKSIZE). /// @param align Align for pointer. /// @return Pointer into block data. static void *getroom(spellinfo_T *spin, size_t len, bool align) FUNC_ATTR_NONNULL_RET { char_u *p; sblock_T *bl = spin->si_blocks; assert(len <= SBLOCKSIZE); if (align && bl != NULL) // Round size up for alignment. On some systems structures need to be // aligned to the size of a pointer (e.g., SPARC). bl->sb_used = (bl->sb_used + sizeof(char *) - 1) & ~(sizeof(char *) - 1); if (bl == NULL || bl->sb_used + len > SBLOCKSIZE) { // Allocate a block of memory. It is not freed until much later. bl = xcalloc(1, (sizeof(sblock_T) + SBLOCKSIZE)); bl->sb_next = spin->si_blocks; spin->si_blocks = bl; bl->sb_used = 0; ++spin->si_blocks_cnt; } p = bl->sb_data + bl->sb_used; bl->sb_used += (int)len; return p; } // Make a copy of a string into memory allocated with getroom(). // Returns NULL when out of memory. static char_u *getroom_save(spellinfo_T *spin, char_u *s) { char_u *sc; sc = (char_u *)getroom(spin, STRLEN(s) + 1, false); if (sc != NULL) STRCPY(sc, s); return sc; } // Free the list of allocated sblock_T. static void free_blocks(sblock_T *bl) { sblock_T *next; while (bl != NULL) { next = bl->sb_next; xfree(bl); bl = next; } } // Allocate the root of a word tree. // Returns NULL when out of memory. static wordnode_T *wordtree_alloc(spellinfo_T *spin) { return (wordnode_T *)getroom(spin, sizeof(wordnode_T), true); } // Store a word in the tree(s). // Always store it in the case-folded tree. For a keep-case word this is // useful when the word can also be used with all caps (no WF_FIXCAP flag) and // used to find suggestions. // For a keep-case word also store it in the keep-case tree. // When "pfxlist" is not NULL store the word for each postponed prefix ID and // compound flag. static int store_word ( spellinfo_T *spin, char_u *word, int flags, // extra flags, WF_BANNED int region, // supported region(s) char_u *pfxlist, // list of prefix IDs or NULL bool need_affix // only store word with affix ID ) { int len = (int)STRLEN(word); int ct = captype(word, word + len); char_u foldword[MAXWLEN]; int res = OK; char_u *p; (void)spell_casefold(word, len, foldword, MAXWLEN); for (p = pfxlist; res == OK; ++p) { if (!need_affix || (p != NULL && *p != NUL)) res = tree_add_word(spin, foldword, spin->si_foldroot, ct | flags, region, p == NULL ? 0 : *p); if (p == NULL || *p == NUL) break; } ++spin->si_foldwcount; if (res == OK && (ct == WF_KEEPCAP || (flags & WF_KEEPCAP))) { for (p = pfxlist; res == OK; ++p) { if (!need_affix || (p != NULL && *p != NUL)) res = tree_add_word(spin, word, spin->si_keeproot, flags, region, p == NULL ? 0 : *p); if (p == NULL || *p == NUL) break; } ++spin->si_keepwcount; } return res; } // Add word "word" to a word tree at "root". // When "flags" < 0 we are adding to the prefix tree where "flags" is used for // "rare" and "region" is the condition nr. // Returns FAIL when out of memory. static int tree_add_word(spellinfo_T *spin, char_u *word, wordnode_T *root, int flags, int region, int affixID) { wordnode_T *node = root; wordnode_T *np; wordnode_T *copyp, **copyprev; wordnode_T **prev = NULL; int i; // Add each byte of the word to the tree, including the NUL at the end. for (i = 0;; ++i) { // When there is more than one reference to this node we need to make // a copy, so that we can modify it. Copy the whole list of siblings // (we don't optimize for a partly shared list of siblings). if (node != NULL && node->wn_refs > 1) { --node->wn_refs; copyprev = prev; for (copyp = node; copyp != NULL; copyp = copyp->wn_sibling) { // Allocate a new node and copy the info. np = get_wordnode(spin); if (np == NULL) return FAIL; np->wn_child = copyp->wn_child; if (np->wn_child != NULL) ++np->wn_child->wn_refs; // child gets extra ref np->wn_byte = copyp->wn_byte; if (np->wn_byte == NUL) { np->wn_flags = copyp->wn_flags; np->wn_region = copyp->wn_region; np->wn_affixID = copyp->wn_affixID; } // Link the new node in the list, there will be one ref. np->wn_refs = 1; if (copyprev != NULL) *copyprev = np; copyprev = &np->wn_sibling; // Let "node" point to the head of the copied list. if (copyp == node) node = np; } } // Look for the sibling that has the same character. They are sorted // on byte value, thus stop searching when a sibling is found with a // higher byte value. For zero bytes (end of word) the sorting is // done on flags and then on affixID. while (node != NULL && (node->wn_byte < word[i] || (node->wn_byte == NUL && (flags < 0 ? node->wn_affixID < (unsigned)affixID : (node->wn_flags < (unsigned)(flags & WN_MASK) || (node->wn_flags == (flags & WN_MASK) && (spin->si_sugtree ? (node->wn_region & 0xffff) < region : node->wn_affixID < (unsigned)affixID))))))) { prev = &node->wn_sibling; node = *prev; } if (node == NULL || node->wn_byte != word[i] || (word[i] == NUL && (flags < 0 || spin->si_sugtree || node->wn_flags != (flags & WN_MASK) || node->wn_affixID != affixID))) { // Allocate a new node. np = get_wordnode(spin); if (np == NULL) return FAIL; np->wn_byte = word[i]; // If "node" is NULL this is a new child or the end of the sibling // list: ref count is one. Otherwise use ref count of sibling and // make ref count of sibling one (matters when inserting in front // of the list of siblings). if (node == NULL) np->wn_refs = 1; else { np->wn_refs = node->wn_refs; node->wn_refs = 1; } if (prev != NULL) *prev = np; np->wn_sibling = node; node = np; } if (word[i] == NUL) { node->wn_flags = flags; node->wn_region |= region; node->wn_affixID = affixID; break; } prev = &node->wn_child; node = *prev; } #ifdef SPELL_PRINTTREE smsg((char_u *)"Added \"%s\"", word); spell_print_tree(root->wn_sibling); #endif // count nr of words added since last message ++spin->si_msg_count; if (spin->si_compress_cnt > 1) { if (--spin->si_compress_cnt == 1) // Did enough words to lower the block count limit. spin->si_blocks_cnt += compress_inc; } // When we have allocated lots of memory we need to compress the word tree // to free up some room. But compression is slow, and we might actually // need that room, thus only compress in the following situations: // 1. When not compressed before (si_compress_cnt == 0): when using // "compress_start" blocks. // 2. When compressed before and used "compress_inc" blocks before // adding "compress_added" words (si_compress_cnt > 1). // 3. When compressed before, added "compress_added" words // (si_compress_cnt == 1) and the number of free nodes drops below the // maximum word length. #ifndef SPELL_COMPRESS_ALLWAYS if (spin->si_compress_cnt == 1 // NOLINT(readability/braces) ? spin->si_free_count < MAXWLEN : spin->si_blocks_cnt >= compress_start) #endif { // Decrement the block counter. The effect is that we compress again // when the freed up room has been used and another "compress_inc" // blocks have been allocated. Unless "compress_added" words have // been added, then the limit is put back again. spin->si_blocks_cnt -= compress_inc; spin->si_compress_cnt = compress_added; if (spin->si_verbose) { msg_start(); msg_puts((char_u *)_(msg_compressing)); msg_clr_eos(); msg_didout = FALSE; msg_col = 0; ui_flush(); } // Compress both trees. Either they both have many nodes, which makes // compression useful, or one of them is small, which means // compression goes fast. But when filling the soundfold word tree // there is no keep-case tree. wordtree_compress(spin, spin->si_foldroot); if (affixID >= 0) wordtree_compress(spin, spin->si_keeproot); } return OK; } // Check the 'mkspellmem' option. Return FAIL if it's wrong. // Sets "sps_flags". int spell_check_msm(void) { char_u *p = p_msm; long start = 0; long incr = 0; long added = 0; if (!ascii_isdigit(*p)) return FAIL; // block count = (value * 1024) / SBLOCKSIZE (but avoid overflow) start = (getdigits_long(&p) * 10) / (SBLOCKSIZE / 102); if (*p != ',') return FAIL; ++p; if (!ascii_isdigit(*p)) return FAIL; incr = (getdigits_long(&p) * 102) / (SBLOCKSIZE / 10); if (*p != ',') return FAIL; ++p; if (!ascii_isdigit(*p)) return FAIL; added = getdigits_long(&p) * 1024; if (*p != NUL) return FAIL; if (start == 0 || incr == 0 || added == 0 || incr > start) return FAIL; compress_start = start; compress_inc = incr; compress_added = added; return OK; } // Get a wordnode_T, either from the list of previously freed nodes or // allocate a new one. // Returns NULL when out of memory. static wordnode_T *get_wordnode(spellinfo_T *spin) { wordnode_T *n; if (spin->si_first_free == NULL) n = (wordnode_T *)getroom(spin, sizeof(wordnode_T), true); else { n = spin->si_first_free; spin->si_first_free = n->wn_child; memset(n, 0, sizeof(wordnode_T)); --spin->si_free_count; } #ifdef SPELL_PRINTTREE if (n != NULL) n->wn_nr = ++spin->si_wordnode_nr; #endif return n; } // Decrement the reference count on a node (which is the head of a list of // siblings). If the reference count becomes zero free the node and its // siblings. // Returns the number of nodes actually freed. static int deref_wordnode(spellinfo_T *spin, wordnode_T *node) { wordnode_T *np; int cnt = 0; if (--node->wn_refs == 0) { for (np = node; np != NULL; np = np->wn_sibling) { if (np->wn_child != NULL) cnt += deref_wordnode(spin, np->wn_child); free_wordnode(spin, np); ++cnt; } ++cnt; // length field } return cnt; } // Free a wordnode_T for re-use later. // Only the "wn_child" field becomes invalid. static void free_wordnode(spellinfo_T *spin, wordnode_T *n) { n->wn_child = spin->si_first_free; spin->si_first_free = n; ++spin->si_free_count; } // Compress a tree: find tails that are identical and can be shared. static void wordtree_compress(spellinfo_T *spin, wordnode_T *root) { hashtab_T ht; int n; int tot = 0; int perc; // Skip the root itself, it's not actually used. The first sibling is the // start of the tree. if (root->wn_sibling != NULL) { hash_init(&ht); n = node_compress(spin, root->wn_sibling, &ht, &tot); #ifndef SPELL_PRINTTREE if (spin->si_verbose || p_verbose > 2) #endif { if (tot > 1000000) perc = (tot - n) / (tot / 100); else if (tot == 0) perc = 0; else perc = (tot - n) * 100 / tot; vim_snprintf((char *)IObuff, IOSIZE, _("Compressed %d of %d nodes; %d (%d%%) remaining"), n, tot, tot - n, perc); spell_message(spin, IObuff); } #ifdef SPELL_PRINTTREE spell_print_tree(root->wn_sibling); #endif hash_clear(&ht); } } // Compress a node, its siblings and its children, depth first. // Returns the number of compressed nodes. static int node_compress ( spellinfo_T *spin, wordnode_T *node, hashtab_T *ht, int *tot // total count of nodes before compressing, // incremented while going through the tree ) { wordnode_T *np; wordnode_T *tp; wordnode_T *child; hash_T hash; hashitem_T *hi; int len = 0; unsigned nr, n; int compressed = 0; // Go through the list of siblings. Compress each child and then try // finding an identical child to replace it. // Note that with "child" we mean not just the node that is pointed to, // but the whole list of siblings of which the child node is the first. for (np = node; np != NULL && !got_int; np = np->wn_sibling) { ++len; if ((child = np->wn_child) != NULL) { // Compress the child first. This fills hashkey. compressed += node_compress(spin, child, ht, tot); // Try to find an identical child. hash = hash_hash(child->wn_u1.hashkey); hi = hash_lookup(ht, child->wn_u1.hashkey, hash); if (!HASHITEM_EMPTY(hi)) { // There are children we encountered before with a hash value // identical to the current child. Now check if there is one // that is really identical. for (tp = HI2WN(hi); tp != NULL; tp = tp->wn_u2.next) if (node_equal(child, tp)) { // Found one! Now use that child in place of the // current one. This means the current child and all // its siblings is unlinked from the tree. ++tp->wn_refs; compressed += deref_wordnode(spin, child); np->wn_child = tp; break; } if (tp == NULL) { // No other child with this hash value equals the child of // the node, add it to the linked list after the first // item. tp = HI2WN(hi); child->wn_u2.next = tp->wn_u2.next; tp->wn_u2.next = child; } } else // No other child has this hash value, add it to the // hashtable. hash_add_item(ht, hi, child->wn_u1.hashkey, hash); } } *tot += len + 1; // add one for the node that stores the length // Make a hash key for the node and its siblings, so that we can quickly // find a lookalike node. This must be done after compressing the sibling // list, otherwise the hash key would become invalid by the compression. node->wn_u1.hashkey[0] = len; nr = 0; for (np = node; np != NULL; np = np->wn_sibling) { if (np->wn_byte == NUL) // end node: use wn_flags, wn_region and wn_affixID n = np->wn_flags + (np->wn_region << 8) + (np->wn_affixID << 16); else // byte node: use the byte value and the child pointer n = (unsigned)(np->wn_byte + ((uintptr_t)np->wn_child << 8)); nr = nr * 101 + n; } // Avoid NUL bytes, it terminates the hash key. n = nr & 0xff; node->wn_u1.hashkey[1] = n == 0 ? 1 : n; n = (nr >> 8) & 0xff; node->wn_u1.hashkey[2] = n == 0 ? 1 : n; n = (nr >> 16) & 0xff; node->wn_u1.hashkey[3] = n == 0 ? 1 : n; n = (nr >> 24) & 0xff; node->wn_u1.hashkey[4] = n == 0 ? 1 : n; node->wn_u1.hashkey[5] = NUL; // Check for CTRL-C pressed now and then. fast_breakcheck(); return compressed; } // Returns true when two nodes have identical siblings and children. static bool node_equal(wordnode_T *n1, wordnode_T *n2) { wordnode_T *p1; wordnode_T *p2; for (p1 = n1, p2 = n2; p1 != NULL && p2 != NULL; p1 = p1->wn_sibling, p2 = p2->wn_sibling) if (p1->wn_byte != p2->wn_byte || (p1->wn_byte == NUL ? (p1->wn_flags != p2->wn_flags || p1->wn_region != p2->wn_region || p1->wn_affixID != p2->wn_affixID) : (p1->wn_child != p2->wn_child))) break; return p1 == NULL && p2 == NULL; } // Function given to qsort() to sort the REP items on "from" string. static int rep_compare(const void *s1, const void *s2) { fromto_T *p1 = (fromto_T *)s1; fromto_T *p2 = (fromto_T *)s2; return STRCMP(p1->ft_from, p2->ft_from); } // Write the Vim .spl file "fname". // Return OK/FAIL. static int write_vim_spell(spellinfo_T *spin, char_u *fname) { int retval = OK; int regionmask; FILE *fd = mch_fopen((char *)fname, "w"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return FAIL; } //
: // size_t fwv = fwrite(VIMSPELLMAGIC, VIMSPELLMAGICL, 1, fd); if (fwv != (size_t)1) // Catch first write error, don't try writing more. goto theend; putc(VIMSPELLVERSION, fd); // // :
... // SN_INFO: if (spin->si_info != NULL) { putc(SN_INFO, fd); // putc(0, fd); // size_t i = STRLEN(spin->si_info); put_bytes(fd, i, 4); // fwv &= fwrite(spin->si_info, i, 1, fd); // } // SN_REGION: ... // Write the region names only if there is more than one. if (spin->si_region_count > 1) { putc(SN_REGION, fd); // putc(SNF_REQUIRED, fd); // size_t l = (size_t)spin->si_region_count * 2; put_bytes(fd, l, 4); // fwv &= fwrite(spin->si_region_name, l, 1, fd); // ... regionmask = (1 << spin->si_region_count) - 1; } else regionmask = 0; // SN_CHARFLAGS: // // The table with character flags and the table for case folding. // This makes sure the same characters are recognized as word characters // when generating an when using a spell file. // Skip this for ASCII, the table may conflict with the one used for // 'encoding'. // Also skip this for an .add.spl file, the main spell file must contain // the table (avoids that it conflicts). File is shorter too. if (!spin->si_ascii && !spin->si_add) { char_u folchars[128 * 8]; int flags; putc(SN_CHARFLAGS, fd); // putc(SNF_REQUIRED, fd); // // Form the string first, we need to know its length. size_t l = 0; for (size_t i = 128; i < 256; ++i) { if (has_mbyte) l += (size_t)mb_char2bytes(spelltab.st_fold[i], folchars + l); else folchars[l++] = spelltab.st_fold[i]; } put_bytes(fd, 1 + 128 + 2 + l, 4); // fputc(128, fd); // for (size_t i = 128; i < 256; ++i) { flags = 0; if (spelltab.st_isw[i]) flags |= CF_WORD; if (spelltab.st_isu[i]) flags |= CF_UPPER; fputc(flags, fd); // } put_bytes(fd, l, 2); // fwv &= fwrite(folchars, l, 1, fd); // } // SN_MIDWORD: if (spin->si_midword != NULL) { putc(SN_MIDWORD, fd); // putc(SNF_REQUIRED, fd); // size_t i = STRLEN(spin->si_midword); put_bytes(fd, i, 4); // fwv &= fwrite(spin->si_midword, i, 1, fd); // } // SN_PREFCOND: ... if (!GA_EMPTY(&spin->si_prefcond)) { putc(SN_PREFCOND, fd); // putc(SNF_REQUIRED, fd); // size_t l = (size_t)write_spell_prefcond(NULL, &spin->si_prefcond); put_bytes(fd, l, 4); // write_spell_prefcond(fd, &spin->si_prefcond); } // SN_REP: ... // SN_SAL: ... // SN_REPSAL: ... // round 1: SN_REP section // round 2: SN_SAL section (unless SN_SOFO is used) // round 3: SN_REPSAL section for (unsigned int round = 1; round <= 3; ++round) { garray_T *gap; if (round == 1) gap = &spin->si_rep; else if (round == 2) { // Don't write SN_SAL when using a SN_SOFO section if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) continue; gap = &spin->si_sal; } else gap = &spin->si_repsal; // Don't write the section if there are no items. if (GA_EMPTY(gap)) continue; // Sort the REP/REPSAL items. if (round != 2) qsort(gap->ga_data, (size_t)gap->ga_len, sizeof(fromto_T), rep_compare); int i = round == 1 ? SN_REP : (round == 2 ? SN_SAL : SN_REPSAL); putc(i, fd); // // This is for making suggestions, section is not required. putc(0, fd); // // Compute the length of what follows. size_t l = 2; // count or assert(gap->ga_len >= 0); for (size_t i = 0; i < (size_t)gap->ga_len; ++i) { fromto_T *ftp = &((fromto_T *)gap->ga_data)[i]; l += 1 + STRLEN(ftp->ft_from); // count <*fromlen> and <*from> l += 1 + STRLEN(ftp->ft_to); // count <*tolen> and <*to> } if (round == 2) ++l; // count put_bytes(fd, l, 4); // if (round == 2) { int i = 0; if (spin->si_followup) i |= SAL_F0LLOWUP; if (spin->si_collapse) i |= SAL_COLLAPSE; if (spin->si_rem_accents) i |= SAL_REM_ACCENTS; putc(i, fd); // } put_bytes(fd, (uintmax_t)gap->ga_len, 2); // or for (size_t i = 0; i < (size_t)gap->ga_len; ++i) { // : // : fromto_T *ftp = &((fromto_T *)gap->ga_data)[i]; for (unsigned int rr = 1; rr <= 2; ++rr) { char_u *p = rr == 1 ? ftp->ft_from : ftp->ft_to; l = STRLEN(p); assert(l < INT_MAX); putc((int)l, fd); if (l > 0) fwv &= fwrite(p, l, 1, fd); } } } // SN_SOFO: // This is for making suggestions, section is not required. if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) { putc(SN_SOFO, fd); // putc(0, fd); // size_t l = STRLEN(spin->si_sofofr); put_bytes(fd, l + STRLEN(spin->si_sofoto) + 4, 4); // put_bytes(fd, l, 2); // fwv &= fwrite(spin->si_sofofr, l, 1, fd); // l = STRLEN(spin->si_sofoto); put_bytes(fd, l, 2); // fwv &= fwrite(spin->si_sofoto, l, 1, fd); // } // SN_WORDS: ... // This is for making suggestions, section is not required. if (spin->si_commonwords.ht_used > 0) { putc(SN_WORDS, fd); // putc(0, fd); // // round 1: count the bytes // round 2: write the bytes for (unsigned int round = 1; round <= 2; ++round) { size_t todo; size_t len = 0; hashitem_T *hi; todo = spin->si_commonwords.ht_used; for (hi = spin->si_commonwords.ht_array; todo > 0; ++hi) if (!HASHITEM_EMPTY(hi)) { size_t l = STRLEN(hi->hi_key) + 1; len += l; if (round == 2) // fwv &= fwrite(hi->hi_key, l, 1, fd); --todo; } if (round == 1) put_bytes(fd, len, 4); // } } // SN_MAP: // This is for making suggestions, section is not required. if (!GA_EMPTY(&spin->si_map)) { putc(SN_MAP, fd); // putc(0, fd); // size_t l = (size_t)spin->si_map.ga_len; put_bytes(fd, l, 4); // fwv &= fwrite(spin->si_map.ga_data, l, 1, fd); // } // SN_SUGFILE: // This is used to notify that a .sug file may be available and at the // same time allows for checking that a .sug file that is found matches // with this .spl file. That's because the word numbers must be exactly // right. if (!spin->si_nosugfile && (!GA_EMPTY(&spin->si_sal) || (spin->si_sofofr != NULL && spin->si_sofoto != NULL))) { putc(SN_SUGFILE, fd); // putc(0, fd); // put_bytes(fd, 8, 4); // // Set si_sugtime and write it to the file. spin->si_sugtime = time(NULL); put_time(fd, spin->si_sugtime); // } // SN_NOSPLITSUGS: nothing // This is used to notify that no suggestions with word splits are to be // made. if (spin->si_nosplitsugs) { putc(SN_NOSPLITSUGS, fd); // putc(0, fd); // put_bytes(fd, 0, 4); // } // SN_NOCOMPUNDSUGS: nothing // This is used to notify that no suggestions with compounds are to be // made. if (spin->si_nocompoundsugs) { putc(SN_NOCOMPOUNDSUGS, fd); // putc(0, fd); // put_bytes(fd, 0, 4); // } // SN_COMPOUND: compound info. // We don't mark it required, when not supported all compound words will // be bad words. if (spin->si_compflags != NULL) { putc(SN_COMPOUND, fd); // putc(0, fd); // size_t l = STRLEN(spin->si_compflags); assert(spin->si_comppat.ga_len >= 0); for (size_t i = 0; i < (size_t)spin->si_comppat.ga_len; ++i) { l += STRLEN(((char_u **)(spin->si_comppat.ga_data))[i]) + 1; } put_bytes(fd, l + 7, 4); // putc(spin->si_compmax, fd); // putc(spin->si_compminlen, fd); // putc(spin->si_compsylmax, fd); // putc(0, fd); // for Vim 7.0b compatibility putc(spin->si_compoptions, fd); // put_bytes(fd, (uintmax_t)spin->si_comppat.ga_len, 2); // for (size_t i = 0; i < (size_t)spin->si_comppat.ga_len; ++i) { char_u *p = ((char_u **)(spin->si_comppat.ga_data))[i]; assert(STRLEN(p) < INT_MAX); putc((int)STRLEN(p), fd); // fwv &= fwrite(p, STRLEN(p), 1, fd); // } // fwv &= fwrite(spin->si_compflags, STRLEN(spin->si_compflags), 1, fd); } // SN_NOBREAK: NOBREAK flag if (spin->si_nobreak) { putc(SN_NOBREAK, fd); // putc(0, fd); // // It's empty, the presence of the section flags the feature. put_bytes(fd, 0, 4); // } // SN_SYLLABLE: syllable info. // We don't mark it required, when not supported syllables will not be // counted. if (spin->si_syllable != NULL) { putc(SN_SYLLABLE, fd); // putc(0, fd); // size_t l = STRLEN(spin->si_syllable); put_bytes(fd, l, 4); // fwv &= fwrite(spin->si_syllable, l, 1, fd); // } // end of putc(SN_END, fd); // // spin->si_memtot = 0; for (unsigned int round = 1; round <= 3; ++round) { wordnode_T *tree; if (round == 1) tree = spin->si_foldroot->wn_sibling; else if (round == 2) tree = spin->si_keeproot->wn_sibling; else tree = spin->si_prefroot->wn_sibling; // Clear the index and wnode fields in the tree. clear_node(tree); // Count the number of nodes. Needed to be able to allocate the // memory when reading the nodes. Also fills in index for shared // nodes. size_t nodecount = (size_t)put_node(NULL, tree, 0, regionmask, round == 3); // number of nodes in 4 bytes put_bytes(fd, nodecount, 4); // assert(nodecount + nodecount * sizeof(int) < INT_MAX); spin->si_memtot += (int)(nodecount + nodecount * sizeof(int)); // Write the nodes. (void)put_node(fd, tree, 0, regionmask, round == 3); } // Write another byte to check for errors (file system full). if (putc(0, fd) == EOF) retval = FAIL; theend: if (fclose(fd) == EOF) retval = FAIL; if (fwv != (size_t)1) retval = FAIL; if (retval == FAIL) EMSG(_(e_write)); return retval; } // Clear the index and wnode fields of "node", it siblings and its // children. This is needed because they are a union with other items to save // space. static void clear_node(wordnode_T *node) { wordnode_T *np; if (node != NULL) for (np = node; np != NULL; np = np->wn_sibling) { np->wn_u1.index = 0; np->wn_u2.wnode = NULL; if (np->wn_byte != NUL) clear_node(np->wn_child); } } // Dump a word tree at node "node". // // This first writes the list of possible bytes (siblings). Then for each // byte recursively write the children. // // NOTE: The code here must match the code in read_tree_node(), since // assumptions are made about the indexes (so that we don't have to write them // in the file). // // Returns the number of nodes used. static int put_node ( FILE *fd, // NULL when only counting wordnode_T *node, int idx, int regionmask, bool prefixtree // true for PREFIXTREE ) { // If "node" is zero the tree is empty. if (node == NULL) return 0; // Store the index where this node is written. node->wn_u1.index = idx; // Count the number of siblings. int siblingcount = 0; for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) ++siblingcount; // Write the sibling count. if (fd != NULL) putc(siblingcount, fd); // // Write each sibling byte and optionally extra info. for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) { if (np->wn_byte == 0) { if (fd != NULL) { // For a NUL byte (end of word) write the flags etc. if (prefixtree) { // In PREFIXTREE write the required affixID and the // associated condition nr (stored in wn_region). The // byte value is misused to store the "rare" and "not // combining" flags if (np->wn_flags == (uint16_t)PFX_FLAGS) putc(BY_NOFLAGS, fd); // else { putc(BY_FLAGS, fd); // putc(np->wn_flags, fd); // } putc(np->wn_affixID, fd); // put_bytes(fd, (uintmax_t)np->wn_region, 2); // } else { // For word trees we write the flag/region items. int flags = np->wn_flags; if (regionmask != 0 && np->wn_region != regionmask) flags |= WF_REGION; if (np->wn_affixID != 0) flags |= WF_AFX; if (flags == 0) { // word without flags or region putc(BY_NOFLAGS, fd); // } else { if (np->wn_flags >= 0x100) { putc(BY_FLAGS2, fd); // putc(flags, fd); // putc((int)((unsigned)flags >> 8), fd); // } else { putc(BY_FLAGS, fd); // putc(flags, fd); // } if (flags & WF_REGION) putc(np->wn_region, fd); // if (flags & WF_AFX) putc(np->wn_affixID, fd); // } } } } else { if (np->wn_child->wn_u1.index != 0 && np->wn_child->wn_u2.wnode != node) { // The child is written elsewhere, write the reference. if (fd != NULL) { putc(BY_INDEX, fd); // put_bytes(fd, (uintmax_t)np->wn_child->wn_u1.index, 3); // } } else if (np->wn_child->wn_u2.wnode == NULL) // We will write the child below and give it an index. np->wn_child->wn_u2.wnode = node; if (fd != NULL) if (putc(np->wn_byte, fd) == EOF) { // or EMSG(_(e_write)); return 0; } } } // Space used in the array when reading: one for each sibling and one for // the count. int newindex = idx + siblingcount + 1; // Recursively dump the children of each sibling. for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) if (np->wn_byte != 0 && np->wn_child->wn_u2.wnode == node) newindex = put_node(fd, np->wn_child, newindex, regionmask, prefixtree); return newindex; } // ":mkspell [-ascii] outfile infile ..." // ":mkspell [-ascii] addfile" void ex_mkspell(exarg_T *eap) { int fcount; char_u **fnames; char_u *arg = eap->arg; bool ascii = false; if (STRNCMP(arg, "-ascii", 6) == 0) { ascii = true; arg = skipwhite(arg + 6); } // Expand all the remaining arguments (e.g., $VIMRUNTIME). if (get_arglist_exp(arg, &fcount, &fnames, false) == OK) { mkspell(fcount, fnames, ascii, eap->forceit, false); FreeWild(fcount, fnames); } } // Create the .sug file. // Uses the soundfold info in "spin". // Writes the file with the name "wfname", with ".spl" changed to ".sug". static void spell_make_sugfile(spellinfo_T *spin, char_u *wfname) { char_u *fname = NULL; int len; slang_T *slang; bool free_slang = false; // Read back the .spl file that was written. This fills the required // info for soundfolding. This also uses less memory than the // pointer-linked version of the trie. And it avoids having two versions // of the code for the soundfolding stuff. // It might have been done already by spell_reload_one(). for (slang = first_lang; slang != NULL; slang = slang->sl_next) if (path_full_compare(wfname, slang->sl_fname, FALSE) == kEqualFiles) break; if (slang == NULL) { spell_message(spin, (char_u *)_("Reading back spell file...")); slang = spell_load_file(wfname, NULL, NULL, false); if (slang == NULL) return; free_slang = true; } // Clear the info in "spin" that is used. spin->si_blocks = NULL; spin->si_blocks_cnt = 0; spin->si_compress_cnt = 0; // will stay at 0 all the time spin->si_free_count = 0; spin->si_first_free = NULL; spin->si_foldwcount = 0; // Go through the trie of good words, soundfold each word and add it to // the soundfold trie. spell_message(spin, (char_u *)_("Performing soundfolding...")); if (sug_filltree(spin, slang) == FAIL) goto theend; // Create the table which links each soundfold word with a list of the // good words it may come from. Creates buffer "spin->si_spellbuf". // This also removes the wordnr from the NUL byte entries to make // compression possible. if (sug_maketable(spin) == FAIL) goto theend; smsg(_("Number of words after soundfolding: %" PRId64), (int64_t)spin->si_spellbuf->b_ml.ml_line_count); // Compress the soundfold trie. spell_message(spin, (char_u *)_(msg_compressing)); wordtree_compress(spin, spin->si_foldroot); // Write the .sug file. // Make the file name by changing ".spl" to ".sug". fname = xmalloc(MAXPATHL); STRLCPY(fname, wfname, MAXPATHL); len = (int)STRLEN(fname); fname[len - 2] = 'u'; fname[len - 1] = 'g'; sug_write(spin, fname); theend: xfree(fname); if (free_slang) slang_free(slang); free_blocks(spin->si_blocks); close_spellbuf(spin->si_spellbuf); } // Build the soundfold trie for language "slang". static int sug_filltree(spellinfo_T *spin, slang_T *slang) { char_u *byts; idx_T *idxs; int depth; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u tword[MAXWLEN]; char_u tsalword[MAXWLEN]; int c; idx_T n; unsigned words_done = 0; int wordcount[MAXWLEN]; // We use si_foldroot for the soundfolded trie. spin->si_foldroot = wordtree_alloc(spin); if (spin->si_foldroot == NULL) return FAIL; // Let tree_add_word() know we're adding to the soundfolded tree spin->si_sugtree = true; // Go through the whole case-folded tree, soundfold each word and put it // in the trie. byts = slang->sl_fbyts; idxs = slang->sl_fidxs; arridx[0] = 0; curi[0] = 1; wordcount[0] = 0; depth = 0; while (depth >= 0 && !got_int) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. idxs[arridx[depth]] = wordcount[depth]; if (depth > 0) wordcount[depth - 1] += wordcount[depth]; --depth; line_breakcheck(); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // Sound-fold the word. tword[depth] = NUL; spell_soundfold(slang, tword, true, tsalword); // We use the "flags" field for the MSB of the wordnr, // "region" for the LSB of the wordnr. if (tree_add_word(spin, tsalword, spin->si_foldroot, words_done >> 16, words_done & 0xffff, 0) == FAIL) return FAIL; ++words_done; ++wordcount[depth]; // Reset the block count each time to avoid compression // kicking in. spin->si_blocks_cnt = 0; // Skip over any other NUL bytes (same word with different // flags). while (byts[n + 1] == 0) { ++n; ++curi[depth]; } } else { // Normal char, go one level deeper. tword[depth++] = c; arridx[depth] = idxs[n]; curi[depth] = 1; wordcount[depth] = 0; } } } smsg(_("Total number of words: %d"), words_done); return OK; } // Make the table that links each word in the soundfold trie to the words it // can be produced from. // This is not unlike lines in a file, thus use a memfile to be able to access // the table efficiently. // Returns FAIL when out of memory. static int sug_maketable(spellinfo_T *spin) { garray_T ga; int res = OK; // Allocate a buffer, open a memline for it and create the swap file // (uses a temp file, not a .swp file). spin->si_spellbuf = open_spellbuf(); // Use a buffer to store the line info, avoids allocating many small // pieces of memory. ga_init(&ga, 1, 100); // recursively go through the tree if (sug_filltable(spin, spin->si_foldroot->wn_sibling, 0, &ga) == -1) res = FAIL; ga_clear(&ga); return res; } // Fill the table for one node and its children. // Returns the wordnr at the start of the node. // Returns -1 when out of memory. static int sug_filltable ( spellinfo_T *spin, wordnode_T *node, int startwordnr, garray_T *gap // place to store line of numbers ) { wordnode_T *p, *np; int wordnr = startwordnr; int nr; int prev_nr; for (p = node; p != NULL; p = p->wn_sibling) { if (p->wn_byte == NUL) { gap->ga_len = 0; prev_nr = 0; for (np = p; np != NULL && np->wn_byte == NUL; np = np->wn_sibling) { ga_grow(gap, 10); nr = (np->wn_flags << 16) + (np->wn_region & 0xffff); // Compute the offset from the previous nr and store the // offset in a way that it takes a minimum number of bytes. // It's a bit like utf-8, but without the need to mark // following bytes. nr -= prev_nr; prev_nr += nr; gap->ga_len += offset2bytes(nr, (char_u *)gap->ga_data + gap->ga_len); } // add the NUL byte ((char_u *)gap->ga_data)[gap->ga_len++] = NUL; if (ml_append_buf(spin->si_spellbuf, (linenr_T)wordnr, gap->ga_data, gap->ga_len, TRUE) == FAIL) return -1; ++wordnr; // Remove extra NUL entries, we no longer need them. We don't // bother freeing the nodes, the won't be reused anyway. while (p->wn_sibling != NULL && p->wn_sibling->wn_byte == NUL) p->wn_sibling = p->wn_sibling->wn_sibling; // Clear the flags on the remaining NUL node, so that compression // works a lot better. p->wn_flags = 0; p->wn_region = 0; } else { wordnr = sug_filltable(spin, p->wn_child, wordnr, gap); if (wordnr == -1) return -1; } } return wordnr; } // Convert an offset into a minimal number of bytes. // Similar to utf_char2byters, but use 8 bits in followup bytes and avoid NUL // bytes. static int offset2bytes(int nr, char_u *buf) { int rem; int b1, b2, b3, b4; // Split the number in parts of base 255. We need to avoid NUL bytes. b1 = nr % 255 + 1; rem = nr / 255; b2 = rem % 255 + 1; rem = rem / 255; b3 = rem % 255 + 1; b4 = rem / 255 + 1; if (b4 > 1 || b3 > 0x1f) { // 4 bytes buf[0] = 0xe0 + b4; buf[1] = b3; buf[2] = b2; buf[3] = b1; return 4; } if (b3 > 1 || b2 > 0x3f ) { // 3 bytes buf[0] = 0xc0 + b3; buf[1] = b2; buf[2] = b1; return 3; } if (b2 > 1 || b1 > 0x7f ) { // 2 bytes buf[0] = 0x80 + b2; buf[1] = b1; return 2; } // 1 byte buf[0] = b1; return 1; } // Opposite of offset2bytes(). // "pp" points to the bytes and is advanced over it. // Returns the offset. static int bytes2offset(char_u **pp) { char_u *p = *pp; int nr; int c; c = *p++; if ((c & 0x80) == 0x00) { // 1 byte nr = c - 1; } else if ((c & 0xc0) == 0x80) { // 2 bytes nr = (c & 0x3f) - 1; nr = nr * 255 + (*p++ - 1); } else if ((c & 0xe0) == 0xc0) { // 3 bytes nr = (c & 0x1f) - 1; nr = nr * 255 + (*p++ - 1); nr = nr * 255 + (*p++ - 1); } else { // 4 bytes nr = (c & 0x0f) - 1; nr = nr * 255 + (*p++ - 1); nr = nr * 255 + (*p++ - 1); nr = nr * 255 + (*p++ - 1); } *pp = p; return nr; } // Write the .sug file in "fname". static void sug_write(spellinfo_T *spin, char_u *fname) { // Create the file. Note that an existing file is silently overwritten! FILE *fd = mch_fopen((char *)fname, "w"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return; } vim_snprintf((char *)IObuff, IOSIZE, _("Writing suggestion file %s ..."), fname); spell_message(spin, IObuff); // : if (fwrite(VIMSUGMAGIC, VIMSUGMAGICL, (size_t)1, fd) != 1) { // EMSG(_(e_write)); goto theend; } putc(VIMSUGVERSION, fd); // // Write si_sugtime to the file. put_time(fd, spin->si_sugtime); // // spin->si_memtot = 0; wordnode_T *tree = spin->si_foldroot->wn_sibling; // Clear the index and wnode fields in the tree. clear_node(tree); // Count the number of nodes. Needed to be able to allocate the // memory when reading the nodes. Also fills in index for shared // nodes. size_t nodecount = (size_t)put_node(NULL, tree, 0, 0, false); // number of nodes in 4 bytes put_bytes(fd, nodecount, 4); // assert(nodecount + nodecount * sizeof(int) < INT_MAX); spin->si_memtot += (int)(nodecount + nodecount * sizeof(int)); // Write the nodes. (void)put_node(fd, tree, 0, 0, false); // : ... linenr_T wcount = spin->si_spellbuf->b_ml.ml_line_count; assert(wcount >= 0); put_bytes(fd, (uintmax_t)wcount, 4); // for (linenr_T lnum = 1; lnum <= wcount; ++lnum) { // : ... NUL char_u *line = ml_get_buf(spin->si_spellbuf, lnum, FALSE); size_t len = STRLEN(line) + 1; if (fwrite(line, len, 1, fd) == 0) { EMSG(_(e_write)); goto theend; } assert((size_t)spin->si_memtot + len <= INT_MAX); spin->si_memtot += (int)len; } // Write another byte to check for errors. if (putc(0, fd) == EOF) EMSG(_(e_write)); vim_snprintf((char *)IObuff, IOSIZE, _("Estimated runtime memory use: %d bytes"), spin->si_memtot); spell_message(spin, IObuff); theend: // close the file fclose(fd); } // Open a spell buffer. This is a nameless buffer that is not in the buffer // list and only contains text lines. Can use a swapfile to reduce memory // use. // Most other fields are invalid! Esp. watch out for string options being // NULL and there is no undo info. static buf_T *open_spellbuf(void) { buf_T *buf = xcalloc(1, sizeof(buf_T)); buf->b_spell = true; buf->b_p_swf = true; // may create a swap file ml_open(buf); ml_open_file(buf); // create swap file now return buf; } // Close the buffer used for spell info. static void close_spellbuf(buf_T *buf) { if (buf != NULL) { ml_close(buf, TRUE); xfree(buf); } } // Create a Vim spell file from one or more word lists. // "fnames[0]" is the output file name. // "fnames[fcount - 1]" is the last input file name. // Exception: when "fnames[0]" ends in ".add" it's used as the input file name // and ".spl" is appended to make the output file name. static void mkspell ( int fcount, char_u **fnames, bool ascii, // -ascii argument given bool over_write, // overwrite existing output file bool added_word // invoked through "zg" ) { char_u *fname = NULL; char_u *wfname; char_u **innames; int incount; afffile_T *(afile[8]); int i; int len; bool error = false; spellinfo_T spin; memset(&spin, 0, sizeof(spin)); spin.si_verbose = !added_word; spin.si_ascii = ascii; spin.si_followup = true; spin.si_rem_accents = true; ga_init(&spin.si_rep, (int)sizeof(fromto_T), 20); ga_init(&spin.si_repsal, (int)sizeof(fromto_T), 20); ga_init(&spin.si_sal, (int)sizeof(fromto_T), 20); ga_init(&spin.si_map, (int)sizeof(char_u), 100); ga_init(&spin.si_comppat, (int)sizeof(char_u *), 20); ga_init(&spin.si_prefcond, (int)sizeof(char_u *), 50); hash_init(&spin.si_commonwords); spin.si_newcompID = 127; // start compound ID at first maximum // default: fnames[0] is output file, following are input files innames = &fnames[1]; incount = fcount - 1; wfname = xmalloc(MAXPATHL); if (fcount >= 1) { len = (int)STRLEN(fnames[0]); if (fcount == 1 && len > 4 && STRCMP(fnames[0] + len - 4, ".add") == 0) { // For ":mkspell path/en.latin1.add" output file is // "path/en.latin1.add.spl". innames = &fnames[0]; incount = 1; vim_snprintf((char *)wfname, MAXPATHL, "%s.spl", fnames[0]); } else if (fcount == 1) { // For ":mkspell path/vim" output file is "path/vim.latin1.spl". innames = &fnames[0]; incount = 1; vim_snprintf((char *)wfname, MAXPATHL, SPL_FNAME_TMPL, fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc()); } else if (len > 4 && STRCMP(fnames[0] + len - 4, ".spl") == 0) { // Name ends in ".spl", use as the file name. STRLCPY(wfname, fnames[0], MAXPATHL); } else // Name should be language, make the file name from it. vim_snprintf((char *)wfname, MAXPATHL, SPL_FNAME_TMPL, fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc()); // Check for .ascii.spl. if (strstr((char *)path_tail(wfname), SPL_FNAME_ASCII) != NULL) spin.si_ascii = true; // Check for .add.spl. if (strstr((char *)path_tail(wfname), SPL_FNAME_ADD) != NULL) spin.si_add = true; } if (incount <= 0) EMSG(_(e_invarg)); // need at least output and input names else if (vim_strchr(path_tail(wfname), '_') != NULL) EMSG(_("E751: Output file name must not have region name")); else if (incount > 8) EMSG(_("E754: Only up to 8 regions supported")); else { // Check for overwriting before doing things that may take a lot of // time. if (!over_write && os_path_exists(wfname)) { EMSG(_(e_exists)); goto theend; } if (os_isdir(wfname)) { EMSG2(_(e_isadir2), wfname); goto theend; } fname = xmalloc(MAXPATHL); // Init the aff and dic pointers. // Get the region names if there are more than 2 arguments. for (i = 0; i < incount; ++i) { afile[i] = NULL; if (incount > 1) { len = (int)STRLEN(innames[i]); if (STRLEN(path_tail(innames[i])) < 5 || innames[i][len - 3] != '_') { EMSG2(_("E755: Invalid region in %s"), innames[i]); goto theend; } spin.si_region_name[i * 2] = TOLOWER_ASC(innames[i][len - 2]); spin.si_region_name[i * 2 + 1] = TOLOWER_ASC(innames[i][len - 1]); } } spin.si_region_count = incount; spin.si_foldroot = wordtree_alloc(&spin); spin.si_keeproot = wordtree_alloc(&spin); spin.si_prefroot = wordtree_alloc(&spin); if (spin.si_foldroot == NULL || spin.si_keeproot == NULL || spin.si_prefroot == NULL) { free_blocks(spin.si_blocks); goto theend; } // When not producing a .add.spl file clear the character table when // we encounter one in the .aff file. This means we dump the current // one in the .spl file if the .aff file doesn't define one. That's // better than guessing the contents, the table will match a // previously loaded spell file. if (!spin.si_add) spin.si_clear_chartab = true; // Read all the .aff and .dic files. // Text is converted to 'encoding'. // Words are stored in the case-folded and keep-case trees. for (i = 0; i < incount && !error; ++i) { spin.si_conv.vc_type = CONV_NONE; spin.si_region = 1 << i; vim_snprintf((char *)fname, MAXPATHL, "%s.aff", innames[i]); if (os_path_exists(fname)) { // Read the .aff file. Will init "spin->si_conv" based on the // "SET" line. afile[i] = spell_read_aff(&spin, fname); if (afile[i] == NULL) error = true; else { // Read the .dic file and store the words in the trees. vim_snprintf((char *)fname, MAXPATHL, "%s.dic", innames[i]); if (spell_read_dic(&spin, fname, afile[i]) == FAIL) error = true; } } else { // No .aff file, try reading the file as a word list. Store // the words in the trees. if (spell_read_wordfile(&spin, innames[i]) == FAIL) error = true; } // Free any conversion stuff. convert_setup(&spin.si_conv, NULL, NULL); } if (spin.si_compflags != NULL && spin.si_nobreak) MSG(_("Warning: both compounding and NOBREAK specified")); if (!error && !got_int) { // Combine tails in the tree. spell_message(&spin, (char_u *)_(msg_compressing)); wordtree_compress(&spin, spin.si_foldroot); wordtree_compress(&spin, spin.si_keeproot); wordtree_compress(&spin, spin.si_prefroot); } if (!error && !got_int) { // Write the info in the spell file. vim_snprintf((char *)IObuff, IOSIZE, _("Writing spell file %s ..."), wfname); spell_message(&spin, IObuff); error = write_vim_spell(&spin, wfname) == FAIL; spell_message(&spin, (char_u *)_("Done!")); vim_snprintf((char *)IObuff, IOSIZE, _("Estimated runtime memory use: %d bytes"), spin.si_memtot); spell_message(&spin, IObuff); // If the file is loaded need to reload it. if (!error) spell_reload_one(wfname, added_word); } // Free the allocated memory. ga_clear(&spin.si_rep); ga_clear(&spin.si_repsal); ga_clear(&spin.si_sal); ga_clear(&spin.si_map); ga_clear(&spin.si_comppat); ga_clear(&spin.si_prefcond); hash_clear_all(&spin.si_commonwords, 0); // Free the .aff file structures. for (i = 0; i < incount; ++i) if (afile[i] != NULL) spell_free_aff(afile[i]); // Free all the bits and pieces at once. free_blocks(spin.si_blocks); // If there is soundfolding info and no NOSUGFILE item create the // .sug file with the soundfolded word trie. if (spin.si_sugtime != 0 && !error && !got_int) spell_make_sugfile(&spin, wfname); } theend: xfree(fname); xfree(wfname); } // Display a message for spell file processing when 'verbose' is set or using // ":mkspell". "str" can be IObuff. static void spell_message(spellinfo_T *spin, char_u *str) { if (spin->si_verbose || p_verbose > 2) { if (!spin->si_verbose) verbose_enter(); MSG(str); ui_flush(); if (!spin->si_verbose) verbose_leave(); } } // ":[count]spellgood {word}" // ":[count]spellwrong {word}" // ":[count]spellundo {word}" void ex_spell(exarg_T *eap) { spell_add_word(eap->arg, (int)STRLEN(eap->arg), eap->cmdidx == CMD_spellwrong, eap->forceit ? 0 : (int)eap->line2, eap->cmdidx == CMD_spellundo); } // Add "word[len]" to 'spellfile' as a good or bad word. void spell_add_word ( char_u *word, int len, int bad, int idx, // "zG" and "zW": zero, otherwise index in // 'spellfile' bool undo // true for "zug", "zuG", "zuw" and "zuW" ) { FILE *fd = NULL; buf_T *buf = NULL; bool new_spf = false; char_u *fname; char_u *fnamebuf = NULL; char_u line[MAXWLEN * 2]; long fpos, fpos_next = 0; int i; char_u *spf; if (idx == 0) { // use internal wordlist if (int_wordlist == NULL) { int_wordlist = vim_tempname(); if (int_wordlist == NULL) return; } fname = int_wordlist; } else { // If 'spellfile' isn't set figure out a good default value. if (*curwin->w_s->b_p_spf == NUL) { init_spellfile(); new_spf = true; } if (*curwin->w_s->b_p_spf == NUL) { EMSG2(_(e_notset), "spellfile"); return; } fnamebuf = xmalloc(MAXPATHL); for (spf = curwin->w_s->b_p_spf, i = 1; *spf != NUL; ++i) { copy_option_part(&spf, fnamebuf, MAXPATHL, ","); if (i == idx) break; if (*spf == NUL) { EMSGN(_("E765: 'spellfile' does not have %" PRId64 " entries"), idx); xfree(fnamebuf); return; } } // Check that the user isn't editing the .add file somewhere. buf = buflist_findname_exp(fnamebuf); if (buf != NULL && buf->b_ml.ml_mfp == NULL) buf = NULL; if (buf != NULL && bufIsChanged(buf)) { EMSG(_(e_bufloaded)); xfree(fnamebuf); return; } fname = fnamebuf; } if (bad || undo) { // When the word appears as good word we need to remove that one, // since its flags sort before the one with WF_BANNED. fd = mch_fopen((char *)fname, "r"); if (fd != NULL) { while (!vim_fgets(line, MAXWLEN * 2, fd)) { fpos = fpos_next; fpos_next = ftell(fd); if (STRNCMP(word, line, len) == 0 && (line[len] == '/' || line[len] < ' ')) { // Found duplicate word. Remove it by writing a '#' at // the start of the line. Mixing reading and writing // doesn't work for all systems, close the file first. fclose(fd); fd = mch_fopen((char *)fname, "r+"); if (fd == NULL) break; if (fseek(fd, fpos, SEEK_SET) == 0) { fputc('#', fd); if (undo) { home_replace(NULL, fname, NameBuff, MAXPATHL, TRUE); smsg(_("Word '%.*s' removed from %s"), len, word, NameBuff); } } fseek(fd, fpos_next, SEEK_SET); } } if (fd != NULL) fclose(fd); } } if (!undo) { fd = mch_fopen((char *)fname, "a"); if (fd == NULL && new_spf) { char_u *p; // We just initialized the 'spellfile' option and can't open the // file. We may need to create the "spell" directory first. We // already checked the runtime directory is writable in // init_spellfile(). if (!dir_of_file_exists(fname) && (p = path_tail_with_sep(fname)) != fname) { int c = *p; // The directory doesn't exist. Try creating it and opening // the file again. *p = NUL; os_mkdir((char *)fname, 0755); *p = c; fd = mch_fopen((char *)fname, "a"); } } if (fd == NULL) EMSG2(_(e_notopen), fname); else { if (bad) fprintf(fd, "%.*s/!\n", len, word); else fprintf(fd, "%.*s\n", len, word); fclose(fd); home_replace(NULL, fname, NameBuff, MAXPATHL, TRUE); smsg(_("Word '%.*s' added to %s"), len, word, NameBuff); } } if (fd != NULL) { // Update the .add.spl file. mkspell(1, &fname, false, true, true); // If the .add file is edited somewhere, reload it. if (buf != NULL) buf_reload(buf, buf->b_orig_mode); redraw_all_later(SOME_VALID); } xfree(fnamebuf); } // Initialize 'spellfile' for the current buffer. static void init_spellfile(void) { char_u *buf; int l; char_u *fname; char_u *rtp; char_u *lend; bool aspath = false; char_u *lstart = curbuf->b_s.b_p_spl; if (*curwin->w_s->b_p_spl != NUL && !GA_EMPTY(&curwin->w_s->b_langp)) { buf = xmalloc(MAXPATHL); // Find the end of the language name. Exclude the region. If there // is a path separator remember the start of the tail. for (lend = curwin->w_s->b_p_spl; *lend != NUL && vim_strchr((char_u *)",._", *lend) == NULL; ++lend) if (vim_ispathsep(*lend)) { aspath = true; lstart = lend + 1; } // Loop over all entries in 'runtimepath'. Use the first one where we // are allowed to write. rtp = p_rtp; while (*rtp != NUL) { if (aspath) // Use directory of an entry with path, e.g., for // "/dir/lg.utf-8.spl" use "/dir". STRLCPY(buf, curbuf->b_s.b_p_spl, lstart - curbuf->b_s.b_p_spl); else // Copy the path from 'runtimepath' to buf[]. copy_option_part(&rtp, buf, MAXPATHL, ","); if (os_file_is_writable((char *)buf) == 2) { // Use the first language name from 'spelllang' and the // encoding used in the first loaded .spl file. if (aspath) STRLCPY(buf, curbuf->b_s.b_p_spl, lend - curbuf->b_s.b_p_spl + 1); else { // Create the "spell" directory if it doesn't exist yet. l = (int)STRLEN(buf); vim_snprintf((char *)buf + l, MAXPATHL - l, "/spell"); if (os_file_is_writable((char *)buf) != 2) { os_mkdir((char *)buf, 0755); } l = (int)STRLEN(buf); vim_snprintf((char *)buf + l, MAXPATHL - l, "/%.*s", (int)(lend - lstart), lstart); } l = (int)STRLEN(buf); fname = LANGP_ENTRY(curwin->w_s->b_langp, 0) ->lp_slang->sl_fname; vim_snprintf((char *)buf + l, MAXPATHL - l, ".%s.add", fname != NULL && strstr((char *)path_tail(fname), ".ascii.") != NULL ? (char_u *)"ascii" : spell_enc()); set_option_value((char_u *)"spellfile", 0L, buf, OPT_LOCAL); break; } aspath = false; } xfree(buf); } } // Init the chartab used for spelling for ASCII. static void clear_spell_chartab(spelltab_T *sp) { int i; // Init everything to false. memset(sp->st_isw, false, sizeof(sp->st_isw)); memset(sp->st_isu, false, sizeof(sp->st_isu)); for (i = 0; i < 256; ++i) { sp->st_fold[i] = i; sp->st_upper[i] = i; } // We include digits. A word shouldn't start with a digit, but handling // that is done separately. for (i = '0'; i <= '9'; ++i) sp->st_isw[i] = true; for (i = 'A'; i <= 'Z'; ++i) { sp->st_isw[i] = true; sp->st_isu[i] = true; sp->st_fold[i] = i + 0x20; } for (i = 'a'; i <= 'z'; ++i) { sp->st_isw[i] = true; sp->st_upper[i] = i - 0x20; } } // Init the chartab used for spelling. Only depends on 'encoding'. // Called once while starting up and when 'encoding' changes. // The default is to use isalpha(), but the spell file should define the word // characters to make it possible that 'encoding' differs from the current // locale. For utf-8 we don't use isalpha() but our own functions. void init_spell_chartab(void) { int i; did_set_spelltab = false; clear_spell_chartab(&spelltab); if (enc_dbcs) { // DBCS: assume double-wide characters are word characters. for (i = 128; i <= 255; ++i) if (MB_BYTE2LEN(i) == 2) spelltab.st_isw[i] = true; } else if (enc_utf8) { for (i = 128; i < 256; ++i) { int f = utf_fold(i); int u = utf_toupper(i); spelltab.st_isu[i] = utf_isupper(i); spelltab.st_isw[i] = spelltab.st_isu[i] || utf_islower(i); // The folded/upper-cased value is different between latin1 and // utf8 for 0xb5, causing E763 for no good reason. Use the latin1 // value for utf-8 to avoid this. spelltab.st_fold[i] = (f < 256) ? f : i; spelltab.st_upper[i] = (u < 256) ? u : i; } } else { // Rough guess: use locale-dependent library functions. for (i = 128; i < 256; ++i) { if (vim_isupper(i)) { spelltab.st_isw[i] = true; spelltab.st_isu[i] = true; spelltab.st_fold[i] = vim_tolower(i); } else if (vim_islower(i)) { spelltab.st_isw[i] = true; spelltab.st_upper[i] = vim_toupper(i); } } } } // Set the spell character tables from strings in the affix file. static int set_spell_chartab(char_u *fol, char_u *low, char_u *upp) { // We build the new tables here first, so that we can compare with the // previous one. spelltab_T new_st; char_u *pf = fol, *pl = low, *pu = upp; int f, l, u; clear_spell_chartab(&new_st); while (*pf != NUL) { if (*pl == NUL || *pu == NUL) { EMSG(_(e_affform)); return FAIL; } f = mb_ptr2char_adv(&pf); l = mb_ptr2char_adv(&pl); u = mb_ptr2char_adv(&pu); // Every character that appears is a word character. if (f < 256) new_st.st_isw[f] = true; if (l < 256) new_st.st_isw[l] = true; if (u < 256) new_st.st_isw[u] = true; // if "LOW" and "FOL" are not the same the "LOW" char needs // case-folding if (l < 256 && l != f) { if (f >= 256) { EMSG(_(e_affrange)); return FAIL; } new_st.st_fold[l] = f; } // if "UPP" and "FOL" are not the same the "UPP" char needs // case-folding, it's upper case and the "UPP" is the upper case of // "FOL" . if (u < 256 && u != f) { if (f >= 256) { EMSG(_(e_affrange)); return FAIL; } new_st.st_fold[u] = f; new_st.st_isu[u] = true; new_st.st_upper[f] = u; } } if (*pl != NUL || *pu != NUL) { EMSG(_(e_affform)); return FAIL; } return set_spell_finish(&new_st); } // Set the spell character tables from strings in the .spl file. static void set_spell_charflags ( char_u *flags, int cnt, // length of "flags" char_u *fol ) { // We build the new tables here first, so that we can compare with the // previous one. spelltab_T new_st; int i; char_u *p = fol; int c; clear_spell_chartab(&new_st); for (i = 0; i < 128; ++i) { if (i < cnt) { new_st.st_isw[i + 128] = (flags[i] & CF_WORD) != 0; new_st.st_isu[i + 128] = (flags[i] & CF_UPPER) != 0; } if (*p != NUL) { c = mb_ptr2char_adv(&p); new_st.st_fold[i + 128] = c; if (i + 128 != c && new_st.st_isu[i + 128] && c < 256) new_st.st_upper[c] = i + 128; } } (void)set_spell_finish(&new_st); } static int set_spell_finish(spelltab_T *new_st) { int i; if (did_set_spelltab) { // check that it's the same table for (i = 0; i < 256; ++i) { if (spelltab.st_isw[i] != new_st->st_isw[i] || spelltab.st_isu[i] != new_st->st_isu[i] || spelltab.st_fold[i] != new_st->st_fold[i] || spelltab.st_upper[i] != new_st->st_upper[i]) { EMSG(_("E763: Word characters differ between spell files")); return FAIL; } } } else { // copy the new spelltab into the one being used spelltab = *new_st; did_set_spelltab = true; } return OK; } /// Returns true if "p" points to a word character. /// As a special case we see "midword" characters as word character when it is /// followed by a word character. This finds they'there but not 'they there'. /// Thus this only works properly when past the first character of the word. /// /// @param wp Buffer used. static bool spell_iswordp(char_u *p, win_T *wp) { char_u *s; int l; int c; if (has_mbyte) { l = MB_BYTE2LEN(*p); s = p; if (l == 1) { // be quick for ASCII if (wp->w_s->b_spell_ismw[*p]) s = p + 1; // skip a mid-word character } else { c = mb_ptr2char(p); if (c < 256 ? wp->w_s->b_spell_ismw[c] : (wp->w_s->b_spell_ismw_mb != NULL && vim_strchr(wp->w_s->b_spell_ismw_mb, c) != NULL)) s = p + l; } c = mb_ptr2char(s); if (c > 255) return spell_mb_isword_class(mb_get_class(s), wp); return spelltab.st_isw[c]; } return spelltab.st_isw[wp->w_s->b_spell_ismw[*p] ? p[1] : p[0]]; } // Returns true if "p" points to a word character. // Unlike spell_iswordp() this doesn't check for "midword" characters. static bool spell_iswordp_nmw(char_u *p, win_T *wp) { int c; if (has_mbyte) { c = mb_ptr2char(p); if (c > 255) return spell_mb_isword_class(mb_get_class(p), wp); return spelltab.st_isw[c]; } return spelltab.st_isw[*p]; } // Returns true if word class indicates a word character. // Only for characters above 255. // Unicode subscript and superscript are not considered word characters. // See also dbcs_class() and utf_class() in mbyte.c. static bool spell_mb_isword_class(int cl, win_T *wp) { if (wp->w_s->b_cjk) // East Asian characters are not considered word characters. return cl == 2 || cl == 0x2800; return cl >= 2 && cl != 0x2070 && cl != 0x2080; } // Returns true if "p" points to a word character. // Wide version of spell_iswordp(). static bool spell_iswordp_w(int *p, win_T *wp) { int *s; if (*p < 256 ? wp->w_s->b_spell_ismw[*p] : (wp->w_s->b_spell_ismw_mb != NULL && vim_strchr(wp->w_s->b_spell_ismw_mb, *p) != NULL)) s = p + 1; else s = p; if (*s > 255) { if (enc_utf8) return spell_mb_isword_class(utf_class(*s), wp); if (enc_dbcs) return spell_mb_isword_class( dbcs_class((unsigned)*s >> 8, *s & 0xff), wp); return false; } return spelltab.st_isw[*s]; } // Write the table with prefix conditions to the .spl file. // When "fd" is NULL only count the length of what is written. static int write_spell_prefcond(FILE *fd, garray_T *gap) { assert(gap->ga_len >= 0); if (fd != NULL) put_bytes(fd, (uintmax_t)gap->ga_len, 2); // size_t totlen = 2 + (size_t)gap->ga_len; // and bytes size_t x = 1; // collect return value of fwrite() for (int i = 0; i < gap->ga_len; ++i) { // : char_u *p = ((char_u **)gap->ga_data)[i]; if (p != NULL) { size_t len = STRLEN(p); if (fd != NULL) { assert(len <= INT_MAX); fputc((int)len, fd); x &= fwrite(p, len, 1, fd); } totlen += len; } else if (fd != NULL) fputc(0, fd); } assert(totlen <= INT_MAX); return (int)totlen; } // Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated. // Uses the character definitions from the .spl file. // When using a multi-byte 'encoding' the length may change! // Returns FAIL when something wrong. static int spell_casefold(char_u *str, int len, char_u *buf, int buflen) { int i; if (len >= buflen) { buf[0] = NUL; return FAIL; // result will not fit } if (has_mbyte) { int outi = 0; char_u *p; int c; // Fold one character at a time. for (p = str; p < str + len; ) { if (outi + MB_MAXBYTES > buflen) { buf[outi] = NUL; return FAIL; } c = mb_cptr2char_adv(&p); outi += mb_char2bytes(SPELL_TOFOLD(c), buf + outi); } buf[outi] = NUL; } else { // Be quick for non-multibyte encodings. for (i = 0; i < len; ++i) buf[i] = spelltab.st_fold[str[i]]; buf[i] = NUL; } return OK; } // values for sps_flags #define SPS_BEST 1 #define SPS_FAST 2 #define SPS_DOUBLE 4 static int sps_flags = SPS_BEST; // flags from 'spellsuggest' static int sps_limit = 9999; // max nr of suggestions given // Check the 'spellsuggest' option. Return FAIL if it's wrong. // Sets "sps_flags" and "sps_limit". int spell_check_sps(void) { char_u *p; char_u *s; char_u buf[MAXPATHL]; int f; sps_flags = 0; sps_limit = 9999; for (p = p_sps; *p != NUL; ) { copy_option_part(&p, buf, MAXPATHL, ","); f = 0; if (ascii_isdigit(*buf)) { s = buf; sps_limit = getdigits_int(&s); if (*s != NUL && !ascii_isdigit(*s)) f = -1; } else if (STRCMP(buf, "best") == 0) f = SPS_BEST; else if (STRCMP(buf, "fast") == 0) f = SPS_FAST; else if (STRCMP(buf, "double") == 0) f = SPS_DOUBLE; else if (STRNCMP(buf, "expr:", 5) != 0 && STRNCMP(buf, "file:", 5) != 0) f = -1; if (f == -1 || (sps_flags != 0 && f != 0)) { sps_flags = SPS_BEST; sps_limit = 9999; return FAIL; } if (f != 0) sps_flags = f; } if (sps_flags == 0) sps_flags = SPS_BEST; return OK; } // "z=": Find badly spelled word under or after the cursor. // Give suggestions for the properly spelled word. // In Visual mode use the highlighted word as the bad word. // When "count" is non-zero use that suggestion. void spell_suggest(int count) { char_u *line; pos_T prev_cursor = curwin->w_cursor; char_u wcopy[MAXWLEN + 2]; char_u *p; int c; suginfo_T sug; suggest_T *stp; int mouse_used; int need_cap; int limit; int selected = count; int badlen = 0; int msg_scroll_save = msg_scroll; if (no_spell_checking(curwin)) return; if (VIsual_active) { // Use the Visually selected text as the bad word. But reject // a multi-line selection. if (curwin->w_cursor.lnum != VIsual.lnum) { vim_beep(BO_SPELL); return; } badlen = (int)curwin->w_cursor.col - (int)VIsual.col; if (badlen < 0) badlen = -badlen; else curwin->w_cursor.col = VIsual.col; ++badlen; end_visual_mode(); } else // Find the start of the badly spelled word. if (spell_move_to(curwin, FORWARD, true, true, NULL) == 0 || curwin->w_cursor.col > prev_cursor.col) { // No bad word or it starts after the cursor: use the word under the // cursor. curwin->w_cursor = prev_cursor; line = get_cursor_line_ptr(); p = line + curwin->w_cursor.col; // Backup to before start of word. while (p > line && spell_iswordp_nmw(p, curwin)) mb_ptr_back(line, p); // Forward to start of word. while (*p != NUL && !spell_iswordp_nmw(p, curwin)) mb_ptr_adv(p); if (!spell_iswordp_nmw(p, curwin)) { // No word found. beep_flush(); return; } curwin->w_cursor.col = (colnr_T)(p - line); } // Get the word and its length. // Figure out if the word should be capitalised. need_cap = check_need_cap(curwin->w_cursor.lnum, curwin->w_cursor.col); // Make a copy of current line since autocommands may free the line. line = vim_strsave(get_cursor_line_ptr()); // Get the list of suggestions. Limit to 'lines' - 2 or the number in // 'spellsuggest', whatever is smaller. if (sps_limit > (int)Rows - 2) limit = (int)Rows - 2; else limit = sps_limit; spell_find_suggest(line + curwin->w_cursor.col, badlen, &sug, limit, true, need_cap, true); if (GA_EMPTY(&sug.su_ga)) MSG(_("Sorry, no suggestions")); else if (count > 0) { if (count > sug.su_ga.ga_len) smsg(_("Sorry, only %" PRId64 " suggestions"), (int64_t)sug.su_ga.ga_len); } else { xfree(repl_from); repl_from = NULL; xfree(repl_to); repl_to = NULL; // When 'rightleft' is set the list is drawn right-left. cmdmsg_rl = curwin->w_p_rl; if (cmdmsg_rl) msg_col = Columns - 1; // List the suggestions. msg_start(); msg_row = Rows - 1; // for when 'cmdheight' > 1 lines_left = Rows; // avoid more prompt vim_snprintf((char *)IObuff, IOSIZE, _("Change \"%.*s\" to:"), sug.su_badlen, sug.su_badptr); if (cmdmsg_rl && STRNCMP(IObuff, "Change", 6) == 0) { // And now the rabbit from the high hat: Avoid showing the // untranslated message rightleft. vim_snprintf((char *)IObuff, IOSIZE, ":ot \"%.*s\" egnahC", sug.su_badlen, sug.su_badptr); } msg_puts(IObuff); msg_clr_eos(); msg_putchar('\n'); msg_scroll = TRUE; for (int i = 0; i < sug.su_ga.ga_len; ++i) { stp = &SUG(sug.su_ga, i); // The suggested word may replace only part of the bad word, add // the not replaced part. STRLCPY(wcopy, stp->st_word, MAXWLEN + 1); if (sug.su_badlen > stp->st_orglen) STRLCPY(wcopy + stp->st_wordlen, sug.su_badptr + stp->st_orglen, sug.su_badlen - stp->st_orglen + 1); vim_snprintf((char *)IObuff, IOSIZE, "%2d", i + 1); if (cmdmsg_rl) rl_mirror(IObuff); msg_puts(IObuff); vim_snprintf((char *)IObuff, IOSIZE, " \"%s\"", wcopy); msg_puts(IObuff); // The word may replace more than "su_badlen". if (sug.su_badlen < stp->st_orglen) { vim_snprintf((char *)IObuff, IOSIZE, _(" < \"%.*s\""), stp->st_orglen, sug.su_badptr); msg_puts(IObuff); } if (p_verbose > 0) { // Add the score. if (sps_flags & (SPS_DOUBLE | SPS_BEST)) vim_snprintf((char *)IObuff, IOSIZE, " (%s%d - %d)", stp->st_salscore ? "s " : "", stp->st_score, stp->st_altscore); else vim_snprintf((char *)IObuff, IOSIZE, " (%d)", stp->st_score); if (cmdmsg_rl) // Mirror the numbers, but keep the leading space. rl_mirror(IObuff + 1); msg_advance(30); msg_puts(IObuff); } msg_putchar('\n'); } cmdmsg_rl = FALSE; msg_col = 0; // Ask for choice. selected = prompt_for_number(&mouse_used); if (mouse_used) selected -= lines_left; lines_left = Rows; // avoid more prompt // don't delay for 'smd' in normal_cmd() msg_scroll = msg_scroll_save; } if (selected > 0 && selected <= sug.su_ga.ga_len && u_save_cursor() == OK) { // Save the from and to text for :spellrepall. stp = &SUG(sug.su_ga, selected - 1); if (sug.su_badlen > stp->st_orglen) { // Replacing less than "su_badlen", append the remainder to // repl_to. repl_from = vim_strnsave(sug.su_badptr, sug.su_badlen); vim_snprintf((char *)IObuff, IOSIZE, "%s%.*s", stp->st_word, sug.su_badlen - stp->st_orglen, sug.su_badptr + stp->st_orglen); repl_to = vim_strsave(IObuff); } else { // Replacing su_badlen or more, use the whole word. repl_from = vim_strnsave(sug.su_badptr, stp->st_orglen); repl_to = vim_strsave(stp->st_word); } // Replace the word. p = xmalloc(STRLEN(line) - stp->st_orglen + stp->st_wordlen + 1); c = (int)(sug.su_badptr - line); memmove(p, line, c); STRCPY(p + c, stp->st_word); STRCAT(p, sug.su_badptr + stp->st_orglen); ml_replace(curwin->w_cursor.lnum, p, FALSE); curwin->w_cursor.col = c; // For redo we use a change-word command. ResetRedobuff(); AppendToRedobuff((char_u *)"ciw"); AppendToRedobuffLit(p + c, stp->st_wordlen + sug.su_badlen - stp->st_orglen); AppendCharToRedobuff(ESC); // After this "p" may be invalid. changed_bytes(curwin->w_cursor.lnum, c); } else curwin->w_cursor = prev_cursor; spell_find_cleanup(&sug); xfree(line); } // Check if the word at line "lnum" column "col" is required to start with a // capital. This uses 'spellcapcheck' of the current buffer. static bool check_need_cap(linenr_T lnum, colnr_T col) { bool need_cap = false; char_u *line; char_u *line_copy = NULL; char_u *p; colnr_T endcol; regmatch_T regmatch; if (curwin->w_s->b_cap_prog == NULL) return false; line = get_cursor_line_ptr(); endcol = 0; if ((int)(skipwhite(line) - line) >= (int)col) { // At start of line, check if previous line is empty or sentence // ends there. if (lnum == 1) need_cap = true; else { line = ml_get(lnum - 1); if (*skipwhite(line) == NUL) need_cap = true; else { // Append a space in place of the line break. line_copy = concat_str(line, (char_u *)" "); line = line_copy; endcol = (colnr_T)STRLEN(line); } } } else endcol = col; if (endcol > 0) { // Check if sentence ends before the bad word. regmatch.regprog = curwin->w_s->b_cap_prog; regmatch.rm_ic = FALSE; p = line + endcol; for (;; ) { mb_ptr_back(line, p); if (p == line || spell_iswordp_nmw(p, curwin)) break; if (vim_regexec(®match, p, 0) && regmatch.endp[0] == line + endcol) { need_cap = true; break; } } curwin->w_s->b_cap_prog = regmatch.regprog; } xfree(line_copy); return need_cap; } // ":spellrepall" void ex_spellrepall(exarg_T *eap) { pos_T pos = curwin->w_cursor; char_u *frompat; int addlen; char_u *line; char_u *p; bool save_ws = p_ws; linenr_T prev_lnum = 0; if (repl_from == NULL || repl_to == NULL) { EMSG(_("E752: No previous spell replacement")); return; } addlen = (int)(STRLEN(repl_to) - STRLEN(repl_from)); frompat = xmalloc(STRLEN(repl_from) + 7); sprintf((char *)frompat, "\\V\\<%s\\>", repl_from); p_ws = false; sub_nsubs = 0; sub_nlines = 0; curwin->w_cursor.lnum = 0; while (!got_int) { if (do_search(NULL, '/', frompat, 1L, SEARCH_KEEP, NULL) == 0 || u_save_cursor() == FAIL) break; // Only replace when the right word isn't there yet. This happens // when changing "etc" to "etc.". line = get_cursor_line_ptr(); if (addlen <= 0 || STRNCMP(line + curwin->w_cursor.col, repl_to, STRLEN(repl_to)) != 0) { p = xmalloc(STRLEN(line) + addlen + 1); memmove(p, line, curwin->w_cursor.col); STRCPY(p + curwin->w_cursor.col, repl_to); STRCAT(p, line + curwin->w_cursor.col + STRLEN(repl_from)); ml_replace(curwin->w_cursor.lnum, p, FALSE); changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col); if (curwin->w_cursor.lnum != prev_lnum) { ++sub_nlines; prev_lnum = curwin->w_cursor.lnum; } ++sub_nsubs; } curwin->w_cursor.col += (colnr_T)STRLEN(repl_to); } p_ws = save_ws; curwin->w_cursor = pos; xfree(frompat); if (sub_nsubs == 0) EMSG2(_("E753: Not found: %s"), repl_from); else do_sub_msg(false); } // Find spell suggestions for "word". Return them in the growarray "*gap" as // a list of allocated strings. void spell_suggest_list ( garray_T *gap, char_u *word, int maxcount, // maximum nr of suggestions bool need_cap, // 'spellcapcheck' matched bool interactive ) { suginfo_T sug; suggest_T *stp; char_u *wcopy; spell_find_suggest(word, 0, &sug, maxcount, false, need_cap, interactive); // Make room in "gap". ga_init(gap, sizeof(char_u *), sug.su_ga.ga_len + 1); ga_grow(gap, sug.su_ga.ga_len); for (int i = 0; i < sug.su_ga.ga_len; ++i) { stp = &SUG(sug.su_ga, i); // The suggested word may replace only part of "word", add the not // replaced part. wcopy = xmalloc(stp->st_wordlen + STRLEN(sug.su_badptr + stp->st_orglen) + 1); STRCPY(wcopy, stp->st_word); STRCPY(wcopy + stp->st_wordlen, sug.su_badptr + stp->st_orglen); ((char_u **)gap->ga_data)[gap->ga_len++] = wcopy; } spell_find_cleanup(&sug); } // Find spell suggestions for the word at the start of "badptr". // Return the suggestions in "su->su_ga". // The maximum number of suggestions is "maxcount". // Note: does use info for the current window. // This is based on the mechanisms of Aspell, but completely reimplemented. static void spell_find_suggest ( char_u *badptr, int badlen, // length of bad word or 0 if unknown suginfo_T *su, int maxcount, bool banbadword, // don't include badword in suggestions bool need_cap, // word should start with capital bool interactive ) { hlf_T attr = HLF_COUNT; char_u buf[MAXPATHL]; char_u *p; bool do_combine = false; char_u *sps_copy; static bool expr_busy = false; int c; langp_T *lp; // Set the info in "*su". memset(su, 0, sizeof(suginfo_T)); ga_init(&su->su_ga, (int)sizeof(suggest_T), 10); ga_init(&su->su_sga, (int)sizeof(suggest_T), 10); if (*badptr == NUL) return; hash_init(&su->su_banned); su->su_badptr = badptr; if (badlen != 0) su->su_badlen = badlen; else { size_t tmplen = spell_check(curwin, su->su_badptr, &attr, NULL, false); assert(tmplen <= INT_MAX); su->su_badlen = (int)tmplen; } su->su_maxcount = maxcount; su->su_maxscore = SCORE_MAXINIT; if (su->su_badlen >= MAXWLEN) su->su_badlen = MAXWLEN - 1; // just in case STRLCPY(su->su_badword, su->su_badptr, su->su_badlen + 1); (void)spell_casefold(su->su_badptr, su->su_badlen, su->su_fbadword, MAXWLEN); // get caps flags for bad word su->su_badflags = badword_captype(su->su_badptr, su->su_badptr + su->su_badlen); if (need_cap) su->su_badflags |= WF_ONECAP; // Find the default language for sound folding. We simply use the first // one in 'spelllang' that supports sound folding. That's good for when // using multiple files for one language, it's not that bad when mixing // languages (e.g., "pl,en"). for (int i = 0; i < curbuf->b_s.b_langp.ga_len; ++i) { lp = LANGP_ENTRY(curbuf->b_s.b_langp, i); if (lp->lp_sallang != NULL) { su->su_sallang = lp->lp_sallang; break; } } // Soundfold the bad word with the default sound folding, so that we don't // have to do this many times. if (su->su_sallang != NULL) spell_soundfold(su->su_sallang, su->su_fbadword, true, su->su_sal_badword); // If the word is not capitalised and spell_check() doesn't consider the // word to be bad then it might need to be capitalised. Add a suggestion // for that. c = PTR2CHAR(su->su_badptr); if (!SPELL_ISUPPER(c) && attr == HLF_COUNT) { make_case_word(su->su_badword, buf, WF_ONECAP); add_suggestion(su, &su->su_ga, buf, su->su_badlen, SCORE_ICASE, 0, true, su->su_sallang, false); } // Ban the bad word itself. It may appear in another region. if (banbadword) add_banned(su, su->su_badword); // Make a copy of 'spellsuggest', because the expression may change it. sps_copy = vim_strsave(p_sps); // Loop over the items in 'spellsuggest'. for (p = sps_copy; *p != NUL; ) { copy_option_part(&p, buf, MAXPATHL, ","); if (STRNCMP(buf, "expr:", 5) == 0) { // Evaluate an expression. Skip this when called recursively, // when using spellsuggest() in the expression. if (!expr_busy) { expr_busy = true; spell_suggest_expr(su, buf + 5); expr_busy = false; } } else if (STRNCMP(buf, "file:", 5) == 0) // Use list of suggestions in a file. spell_suggest_file(su, buf + 5); else { // Use internal method. spell_suggest_intern(su, interactive); if (sps_flags & SPS_DOUBLE) do_combine = true; } } xfree(sps_copy); if (do_combine) // Combine the two list of suggestions. This must be done last, // because sorting changes the order again. score_combine(su); } // Find suggestions by evaluating expression "expr". static void spell_suggest_expr(suginfo_T *su, char_u *expr) { list_T *list; listitem_T *li; int score; char_u *p; // The work is split up in a few parts to avoid having to export // suginfo_T. // First evaluate the expression and get the resulting list. list = eval_spell_expr(su->su_badword, expr); if (list != NULL) { // Loop over the items in the list. for (li = list->lv_first; li != NULL; li = li->li_next) if (li->li_tv.v_type == VAR_LIST) { // Get the word and the score from the items. score = get_spellword(li->li_tv.vval.v_list, &p); if (score >= 0 && score <= su->su_maxscore) add_suggestion(su, &su->su_ga, p, su->su_badlen, score, 0, true, su->su_sallang, false); } list_unref(list); } // Remove bogus suggestions, sort and truncate at "maxcount". check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); } // Find suggestions in file "fname". Used for "file:" in 'spellsuggest'. static void spell_suggest_file(suginfo_T *su, char_u *fname) { FILE *fd; char_u line[MAXWLEN * 2]; char_u *p; int len; char_u cword[MAXWLEN]; // Open the file. fd = mch_fopen((char *)fname, "r"); if (fd == NULL) { EMSG2(_(e_notopen), fname); return; } // Read it line by line. while (!vim_fgets(line, MAXWLEN * 2, fd) && !got_int) { line_breakcheck(); p = vim_strchr(line, '/'); if (p == NULL) continue; // No Tab found, just skip the line. *p++ = NUL; if (STRICMP(su->su_badword, line) == 0) { // Match! Isolate the good word, until CR or NL. for (len = 0; p[len] >= ' '; ++len) ; p[len] = NUL; // If the suggestion doesn't have specific case duplicate the case // of the bad word. if (captype(p, NULL) == 0) { make_case_word(p, cword, su->su_badflags); p = cword; } add_suggestion(su, &su->su_ga, p, su->su_badlen, SCORE_FILE, 0, true, su->su_sallang, false); } } fclose(fd); // Remove bogus suggestions, sort and truncate at "maxcount". check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); } // Find suggestions for the internal method indicated by "sps_flags". static void spell_suggest_intern(suginfo_T *su, bool interactive) { // Load the .sug file(s) that are available and not done yet. suggest_load_files(); // 1. Try special cases, such as repeating a word: "the the" -> "the". // // Set a maximum score to limit the combination of operations that is // tried. suggest_try_special(su); // 2. Try inserting/deleting/swapping/changing a letter, use REP entries // from the .aff file and inserting a space (split the word). suggest_try_change(su); // For the resulting top-scorers compute the sound-a-like score. if (sps_flags & SPS_DOUBLE) score_comp_sal(su); // 3. Try finding sound-a-like words. if ((sps_flags & SPS_FAST) == 0) { if (sps_flags & SPS_BEST) // Adjust the word score for the suggestions found so far for how // they sounds like. rescore_suggestions(su); // While going through the soundfold tree "su_maxscore" is the score // for the soundfold word, limits the changes that are being tried, // and "su_sfmaxscore" the rescored score, which is set by // cleanup_suggestions(). // First find words with a small edit distance, because this is much // faster and often already finds the top-N suggestions. If we didn't // find many suggestions try again with a higher edit distance. // "sl_sounddone" is used to avoid doing the same word twice. suggest_try_soundalike_prep(); su->su_maxscore = SCORE_SFMAX1; su->su_sfmaxscore = SCORE_MAXINIT * 3; suggest_try_soundalike(su); if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) { // We didn't find enough matches, try again, allowing more // changes to the soundfold word. su->su_maxscore = SCORE_SFMAX2; suggest_try_soundalike(su); if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) { // Still didn't find enough matches, try again, allowing even // more changes to the soundfold word. su->su_maxscore = SCORE_SFMAX3; suggest_try_soundalike(su); } } su->su_maxscore = su->su_sfmaxscore; suggest_try_soundalike_finish(); } // When CTRL-C was hit while searching do show the results. Only clear // got_int when using a command, not for spellsuggest(). os_breakcheck(); if (interactive && got_int) { (void)vgetc(); got_int = FALSE; } if ((sps_flags & SPS_DOUBLE) == 0 && su->su_ga.ga_len != 0) { if (sps_flags & SPS_BEST) // Adjust the word score for how it sounds like. rescore_suggestions(su); // Remove bogus suggestions, sort and truncate at "maxcount". check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); } } // Load the .sug files for languages that have one and weren't loaded yet. static void suggest_load_files(void) { langp_T *lp; slang_T *slang; char_u *dotp; FILE *fd; char_u buf[MAXWLEN]; int i; time_t timestamp; int wcount; int wordnr; garray_T ga; int c; // Do this for all languages that support sound folding. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (slang->sl_sugtime != 0 && !slang->sl_sugloaded) { // Change ".spl" to ".sug" and open the file. When the file isn't // found silently skip it. Do set "sl_sugloaded" so that we // don't try again and again. slang->sl_sugloaded = true; dotp = vim_strrchr(slang->sl_fname, '.'); if (dotp == NULL || fnamecmp(dotp, ".spl") != 0) continue; STRCPY(dotp, ".sug"); fd = mch_fopen((char *)slang->sl_fname, "r"); if (fd == NULL) goto nextone; // : for (i = 0; i < VIMSUGMAGICL; ++i) buf[i] = getc(fd); // if (STRNCMP(buf, VIMSUGMAGIC, VIMSUGMAGICL) != 0) { EMSG2(_("E778: This does not look like a .sug file: %s"), slang->sl_fname); goto nextone; } c = getc(fd); // if (c < VIMSUGVERSION) { EMSG2(_("E779: Old .sug file, needs to be updated: %s"), slang->sl_fname); goto nextone; } else if (c > VIMSUGVERSION) { EMSG2(_("E780: .sug file is for newer version of Vim: %s"), slang->sl_fname); goto nextone; } // Check the timestamp, it must be exactly the same as the one in // the .spl file. Otherwise the word numbers won't match. timestamp = get8ctime(fd); // if (timestamp != slang->sl_sugtime) { EMSG2(_("E781: .sug file doesn't match .spl file: %s"), slang->sl_fname); goto nextone; } // : // Read the trie with the soundfolded words. if (spell_read_tree(fd, &slang->sl_sbyts, &slang->sl_sidxs, false, 0) != 0) { someerror: EMSG2(_("E782: error while reading .sug file: %s"), slang->sl_fname); slang_clear_sug(slang); goto nextone; } // : ... // // Read the table with word numbers. We use a file buffer for // this, because it's so much like a file with lines. Makes it // possible to swap the info and save on memory use. slang->sl_sugbuf = open_spellbuf(); // wcount = get4c(fd); if (wcount < 0) goto someerror; // Read all the wordnr lists into the buffer, one NUL terminated // list per line. ga_init(&ga, 1, 100); for (wordnr = 0; wordnr < wcount; ++wordnr) { ga.ga_len = 0; for (;; ) { c = getc(fd); // if (c < 0) { goto someerror; } GA_APPEND(char_u, &ga, c); if (c == NUL) break; } if (ml_append_buf(slang->sl_sugbuf, (linenr_T)wordnr, ga.ga_data, ga.ga_len, TRUE) == FAIL) goto someerror; } ga_clear(&ga); // Need to put word counts in the word tries, so that we can find // a word by its number. tree_count_words(slang->sl_fbyts, slang->sl_fidxs); tree_count_words(slang->sl_sbyts, slang->sl_sidxs); nextone: if (fd != NULL) fclose(fd); STRCPY(dotp, ".spl"); } } } // Fill in the wordcount fields for a trie. // Returns the total number of words. static void tree_count_words(char_u *byts, idx_T *idxs) { int depth; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; int c; idx_T n; int wordcount[MAXWLEN]; arridx[0] = 0; curi[0] = 1; wordcount[0] = 0; depth = 0; while (depth >= 0 && !got_int) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. idxs[arridx[depth]] = wordcount[depth]; if (depth > 0) wordcount[depth - 1] += wordcount[depth]; --depth; fast_breakcheck(); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // End of word, count it. ++wordcount[depth]; // Skip over any other NUL bytes (same word with different // flags). while (byts[n + 1] == 0) { ++n; ++curi[depth]; } } else { // Normal char, go one level deeper to count the words. ++depth; arridx[depth] = idxs[n]; curi[depth] = 1; wordcount[depth] = 0; } } } } // Free the info put in "*su" by spell_find_suggest(). static void spell_find_cleanup(suginfo_T *su) { # define FREE_SUG_WORD(sug) xfree(sug->st_word) // Free the suggestions. GA_DEEP_CLEAR(&su->su_ga, suggest_T, FREE_SUG_WORD); GA_DEEP_CLEAR(&su->su_sga, suggest_T, FREE_SUG_WORD); // Free the banned words. hash_clear_all(&su->su_banned, 0); } // Make a copy of "word", with the first letter upper or lower cased, to // "wcopy[MAXWLEN]". "word" must not be empty. // The result is NUL terminated. static void onecap_copy ( char_u *word, char_u *wcopy, bool upper // true: first letter made upper case ) { char_u *p; int c; int l; p = word; if (has_mbyte) c = mb_cptr2char_adv(&p); else c = *p++; if (upper) c = SPELL_TOUPPER(c); else c = SPELL_TOFOLD(c); if (has_mbyte) l = mb_char2bytes(c, wcopy); else { l = 1; wcopy[0] = c; } STRLCPY(wcopy + l, p, MAXWLEN - l); } // Make a copy of "word" with all the letters upper cased into // "wcopy[MAXWLEN]". The result is NUL terminated. static void allcap_copy(char_u *word, char_u *wcopy) { char_u *s; char_u *d; int c; d = wcopy; for (s = word; *s != NUL; ) { if (has_mbyte) c = mb_cptr2char_adv(&s); else c = *s++; if (c == 0xdf) { c = 'S'; if (d - wcopy >= MAXWLEN - 1) break; *d++ = c; } else c = SPELL_TOUPPER(c); if (has_mbyte) { if (d - wcopy >= MAXWLEN - MB_MAXBYTES) break; d += mb_char2bytes(c, d); } else { if (d - wcopy >= MAXWLEN - 1) break; *d++ = c; } } *d = NUL; } // Try finding suggestions by recognizing specific situations. static void suggest_try_special(suginfo_T *su) { char_u *p; size_t len; int c; char_u word[MAXWLEN]; // Recognize a word that is repeated: "the the". p = skiptowhite(su->su_fbadword); len = p - su->su_fbadword; p = skipwhite(p); if (STRLEN(p) == len && STRNCMP(su->su_fbadword, p, len) == 0) { // Include badflags: if the badword is onecap or allcap // use that for the goodword too: "The the" -> "The". c = su->su_fbadword[len]; su->su_fbadword[len] = NUL; make_case_word(su->su_fbadword, word, su->su_badflags); su->su_fbadword[len] = c; // Give a soundalike score of 0, compute the score as if deleting one // character. add_suggestion(su, &su->su_ga, word, su->su_badlen, RESCORE(SCORE_REP, 0), 0, true, su->su_sallang, false); } } // Measure how much time is spent in each state. // Output is dumped in "suggestprof". #ifdef SUGGEST_PROFILE proftime_T current; proftime_T total; proftime_T times[STATE_FINAL + 1]; long counts[STATE_FINAL + 1]; static void prof_init(void) { for (int i = 0; i <= STATE_FINAL; i++) { profile_zero(×[i]); counts[i] = 0; } profile_start(¤t); profile_start(&total); } // call before changing state static void prof_store(state_T state) { profile_end(¤t); profile_add(×[state], ¤t); counts[state]++; profile_start(¤t); } # define PROF_STORE(state) prof_store(state); static void prof_report(char *name) { FILE *fd = fopen("suggestprof", "a"); profile_end(&total); fprintf(fd, "-----------------------\n"); fprintf(fd, "%s: %s\n", name, profile_msg(&total)); for (int i = 0; i <= STATE_FINAL; i++) { fprintf(fd, "%d: %s ("%" PRId64)\n", i, profile_msg(×[i]), counts[i]); } fclose(fd); } #else # define PROF_STORE(state) #endif // Try finding suggestions by adding/removing/swapping letters. static void suggest_try_change(suginfo_T *su) { char_u fword[MAXWLEN]; // copy of the bad word, case-folded int n; char_u *p; langp_T *lp; // We make a copy of the case-folded bad word, so that we can modify it // to find matches (esp. REP items). Append some more text, changing // chars after the bad word may help. STRCPY(fword, su->su_fbadword); n = (int)STRLEN(fword); p = su->su_badptr + su->su_badlen; (void)spell_casefold(p, (int)STRLEN(p), fword + n, MAXWLEN - n); for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); // If reloading a spell file fails it's still in the list but // everything has been cleared. if (lp->lp_slang->sl_fbyts == NULL) continue; // Try it for this language. Will add possible suggestions. // #ifdef SUGGEST_PROFILE prof_init(); #endif suggest_trie_walk(su, lp, fword, false); #ifdef SUGGEST_PROFILE prof_report("try_change"); #endif } } // Check the maximum score, if we go over it we won't try this change. #define TRY_DEEPER(su, stack, depth, add) \ (stack[depth].ts_score + (add) < su->su_maxscore) // Try finding suggestions by adding/removing/swapping letters. // // This uses a state machine. At each node in the tree we try various // operations. When trying if an operation works "depth" is increased and the // stack[] is used to store info. This allows combinations, thus insert one // character, replace one and delete another. The number of changes is // limited by su->su_maxscore. // // After implementing this I noticed an article by Kemal Oflazer that // describes something similar: "Error-tolerant Finite State Recognition with // Applications to Morphological Analysis and Spelling Correction" (1996). // The implementation in the article is simplified and requires a stack of // unknown depth. The implementation here only needs a stack depth equal to // the length of the word. // // This is also used for the sound-folded word, "soundfold" is true then. // The mechanism is the same, but we find a match with a sound-folded word // that comes from one or more original words. Each of these words may be // added, this is done by add_sound_suggest(). // Don't use: // the prefix tree or the keep-case tree // "su->su_badlen" // anything to do with upper and lower case // anything to do with word or non-word characters ("spell_iswordp()") // banned words // word flags (rare, region, compounding) // word splitting for now // "similar_chars()" // use "slang->sl_repsal" instead of "lp->lp_replang->sl_rep" static void suggest_trie_walk(suginfo_T *su, langp_T *lp, char_u *fword, bool soundfold) { char_u tword[MAXWLEN]; // good word collected so far trystate_T stack[MAXWLEN]; char_u preword[MAXWLEN * 3]; // word found with proper case; // concatenation of prefix compound // words and split word. NUL terminated // when going deeper but not when coming // back. char_u compflags[MAXWLEN]; // compound flags, one for each word trystate_T *sp; int newscore; int score; char_u *byts, *fbyts, *pbyts; idx_T *idxs, *fidxs, *pidxs; int depth; int c, c2, c3; int n = 0; int flags; garray_T *gap; idx_T arridx; int len; char_u *p; fromto_T *ftp; int fl = 0, tl; int repextra = 0; // extra bytes in fword[] from REP item slang_T *slang = lp->lp_slang; int fword_ends; bool goodword_ends; #ifdef DEBUG_TRIEWALK // Stores the name of the change made at each level. char_u changename[MAXWLEN][80]; #endif int breakcheckcount = 1000; bool compound_ok; // Go through the whole case-fold tree, try changes at each node. // "tword[]" contains the word collected from nodes in the tree. // "fword[]" the word we are trying to match with (initially the bad // word). depth = 0; sp = &stack[0]; memset(sp, 0, sizeof(trystate_T)); sp->ts_curi = 1; if (soundfold) { // Going through the soundfold tree. byts = fbyts = slang->sl_sbyts; idxs = fidxs = slang->sl_sidxs; pbyts = NULL; pidxs = NULL; sp->ts_prefixdepth = PFD_NOPREFIX; sp->ts_state = STATE_START; } else { // When there are postponed prefixes we need to use these first. At // the end of the prefix we continue in the case-fold tree. fbyts = slang->sl_fbyts; fidxs = slang->sl_fidxs; pbyts = slang->sl_pbyts; pidxs = slang->sl_pidxs; if (pbyts != NULL) { byts = pbyts; idxs = pidxs; sp->ts_prefixdepth = PFD_PREFIXTREE; sp->ts_state = STATE_NOPREFIX; // try without prefix first } else { byts = fbyts; idxs = fidxs; sp->ts_prefixdepth = PFD_NOPREFIX; sp->ts_state = STATE_START; } } // Loop to find all suggestions. At each round we either: // - For the current state try one operation, advance "ts_curi", // increase "depth". // - When a state is done go to the next, set "ts_state". // - When all states are tried decrease "depth". while (depth >= 0 && !got_int) { sp = &stack[depth]; switch (sp->ts_state) { case STATE_START: case STATE_NOPREFIX: // Start of node: Deal with NUL bytes, which means // tword[] may end here. arridx = sp->ts_arridx; // current node in the tree len = byts[arridx]; // bytes in this node arridx += sp->ts_curi; // index of current byte if (sp->ts_prefixdepth == PFD_PREFIXTREE) { // Skip over the NUL bytes, we use them later. for (n = 0; n < len && byts[arridx + n] == 0; ++n) ; sp->ts_curi += n; // Always past NUL bytes now. n = (int)sp->ts_state; PROF_STORE(sp->ts_state) sp->ts_state = STATE_ENDNUL; sp->ts_save_badflags = su->su_badflags; // At end of a prefix or at start of prefixtree: check for // following word. if (byts[arridx] == 0 || n == (int)STATE_NOPREFIX) { // Set su->su_badflags to the caps type at this position. // Use the caps type until here for the prefix itself. if (has_mbyte) n = nofold_len(fword, sp->ts_fidx, su->su_badptr); else n = sp->ts_fidx; flags = badword_captype(su->su_badptr, su->su_badptr + n); su->su_badflags = badword_captype(su->su_badptr + n, su->su_badptr + su->su_badlen); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "prefix"); #endif go_deeper(stack, depth, 0); ++depth; sp = &stack[depth]; sp->ts_prefixdepth = depth - 1; byts = fbyts; idxs = fidxs; sp->ts_arridx = 0; // Move the prefix to preword[] with the right case // and make find_keepcap_word() works. tword[sp->ts_twordlen] = NUL; make_case_word(tword + sp->ts_splitoff, preword + sp->ts_prewordlen, flags); sp->ts_prewordlen = (char_u)STRLEN(preword); sp->ts_splitoff = sp->ts_twordlen; } break; } if (sp->ts_curi > len || byts[arridx] != 0) { // Past bytes in node and/or past NUL bytes. PROF_STORE(sp->ts_state) sp->ts_state = STATE_ENDNUL; sp->ts_save_badflags = su->su_badflags; break; } // End of word in tree. ++sp->ts_curi; // eat one NUL byte flags = (int)idxs[arridx]; // Skip words with the NOSUGGEST flag. if (flags & WF_NOSUGGEST) break; fword_ends = (fword[sp->ts_fidx] == NUL || (soundfold ? ascii_iswhite(fword[sp->ts_fidx]) : !spell_iswordp(fword + sp->ts_fidx, curwin))); tword[sp->ts_twordlen] = NUL; if (sp->ts_prefixdepth <= PFD_NOTSPECIAL && (sp->ts_flags & TSF_PREFIXOK) == 0) { // There was a prefix before the word. Check that the prefix // can be used with this word. // Count the length of the NULs in the prefix. If there are // none this must be the first try without a prefix. n = stack[sp->ts_prefixdepth].ts_arridx; len = pbyts[n++]; for (c = 0; c < len && pbyts[n + c] == 0; ++c) ; if (c > 0) { c = valid_word_prefix(c, n, flags, tword + sp->ts_splitoff, slang, false); if (c == 0) break; // Use the WF_RARE flag for a rare prefix. if (c & WF_RAREPFX) flags |= WF_RARE; // Tricky: when checking for both prefix and compounding // we run into the prefix flag first. // Remember that it's OK, so that we accept the prefix // when arriving at a compound flag. sp->ts_flags |= TSF_PREFIXOK; } } // Check NEEDCOMPOUND: can't use word without compounding. Do try // appending another compound word below. if (sp->ts_complen == sp->ts_compsplit && fword_ends && (flags & WF_NEEDCOMP)) goodword_ends = false; else goodword_ends = true; p = NULL; compound_ok = true; if (sp->ts_complen > sp->ts_compsplit) { if (slang->sl_nobreak) { // There was a word before this word. When there was no // change in this word (it was correct) add the first word // as a suggestion. If this word was corrected too, we // need to check if a correct word follows. if (sp->ts_fidx - sp->ts_splitfidx == sp->ts_twordlen - sp->ts_splitoff && STRNCMP(fword + sp->ts_splitfidx, tword + sp->ts_splitoff, sp->ts_fidx - sp->ts_splitfidx) == 0) { preword[sp->ts_prewordlen] = NUL; newscore = score_wordcount_adj(slang, sp->ts_score, preword + sp->ts_prewordlen, sp->ts_prewordlen > 0); // Add the suggestion if the score isn't too bad. if (newscore <= su->su_maxscore) add_suggestion(su, &su->su_ga, preword, sp->ts_splitfidx - repextra, newscore, 0, false, lp->lp_sallang, false); break; } } else { // There was a compound word before this word. If this // word does not support compounding then give up // (splitting is tried for the word without compound // flag). if (((unsigned)flags >> 24) == 0 || sp->ts_twordlen - sp->ts_splitoff < slang->sl_compminlen) break; // For multi-byte chars check character length against // COMPOUNDMIN. if (has_mbyte && slang->sl_compminlen > 0 && mb_charlen(tword + sp->ts_splitoff) < slang->sl_compminlen) break; compflags[sp->ts_complen] = ((unsigned)flags >> 24); compflags[sp->ts_complen + 1] = NUL; STRLCPY(preword + sp->ts_prewordlen, tword + sp->ts_splitoff, sp->ts_twordlen - sp->ts_splitoff + 1); // Verify CHECKCOMPOUNDPATTERN rules. if (match_checkcompoundpattern(preword, sp->ts_prewordlen, &slang->sl_comppat)) compound_ok = false; if (compound_ok) { p = preword; while (*skiptowhite(p) != NUL) p = skipwhite(skiptowhite(p)); if (fword_ends && !can_compound(slang, p, compflags + sp->ts_compsplit)) // Compound is not allowed. But it may still be // possible if we add another (short) word. compound_ok = false; } // Get pointer to last char of previous word. p = preword + sp->ts_prewordlen; mb_ptr_back(preword, p); } } // Form the word with proper case in preword. // If there is a word from a previous split, append. // For the soundfold tree don't change the case, simply append. if (soundfold) STRCPY(preword + sp->ts_prewordlen, tword + sp->ts_splitoff); else if (flags & WF_KEEPCAP) // Must find the word in the keep-case tree. find_keepcap_word(slang, tword + sp->ts_splitoff, preword + sp->ts_prewordlen); else { // Include badflags: If the badword is onecap or allcap // use that for the goodword too. But if the badword is // allcap and it's only one char long use onecap. c = su->su_badflags; if ((c & WF_ALLCAP) && su->su_badlen == (*mb_ptr2len)(su->su_badptr) ) c = WF_ONECAP; c |= flags; // When appending a compound word after a word character don't // use Onecap. if (p != NULL && spell_iswordp_nmw(p, curwin)) c &= ~WF_ONECAP; make_case_word(tword + sp->ts_splitoff, preword + sp->ts_prewordlen, c); } if (!soundfold) { // Don't use a banned word. It may appear again as a good // word, thus remember it. if (flags & WF_BANNED) { add_banned(su, preword + sp->ts_prewordlen); break; } if ((sp->ts_complen == sp->ts_compsplit && WAS_BANNED(su, preword + sp->ts_prewordlen)) || WAS_BANNED(su, preword)) { if (slang->sl_compprog == NULL) break; // the word so far was banned but we may try compounding goodword_ends = false; } } newscore = 0; if (!soundfold) { // soundfold words don't have flags if ((flags & WF_REGION) && (((unsigned)flags >> 16) & lp->lp_region) == 0) newscore += SCORE_REGION; if (flags & WF_RARE) newscore += SCORE_RARE; if (!spell_valid_case(su->su_badflags, captype(preword + sp->ts_prewordlen, NULL))) newscore += SCORE_ICASE; } // TODO: how about splitting in the soundfold tree? if (fword_ends && goodword_ends && sp->ts_fidx >= sp->ts_fidxtry && compound_ok) { // The badword also ends: add suggestions. #ifdef DEBUG_TRIEWALK if (soundfold && STRCMP(preword, "smwrd") == 0) { int j; // print the stack of changes that brought us here smsg("------ %s -------", fword); for (j = 0; j < depth; ++j) smsg("%s", changename[j]); } #endif if (soundfold) { // For soundfolded words we need to find the original // words, the edit distance and then add them. add_sound_suggest(su, preword, sp->ts_score, lp); } else if (sp->ts_fidx > 0) { // Give a penalty when changing non-word char to word // char, e.g., "thes," -> "these". p = fword + sp->ts_fidx; mb_ptr_back(fword, p); if (!spell_iswordp(p, curwin)) { p = preword + STRLEN(preword); mb_ptr_back(preword, p); if (spell_iswordp(p, curwin)) newscore += SCORE_NONWORD; } // Give a bonus to words seen before. score = score_wordcount_adj(slang, sp->ts_score + newscore, preword + sp->ts_prewordlen, sp->ts_prewordlen > 0); // Add the suggestion if the score isn't too bad. if (score <= su->su_maxscore) { add_suggestion(su, &su->su_ga, preword, sp->ts_fidx - repextra, score, 0, false, lp->lp_sallang, false); if (su->su_badflags & WF_MIXCAP) { // We really don't know if the word should be // upper or lower case, add both. c = captype(preword, NULL); if (c == 0 || c == WF_ALLCAP) { make_case_word(tword + sp->ts_splitoff, preword + sp->ts_prewordlen, c == 0 ? WF_ALLCAP : 0); add_suggestion(su, &su->su_ga, preword, sp->ts_fidx - repextra, score + SCORE_ICASE, 0, false, lp->lp_sallang, false); } } } } } // Try word split and/or compounding. if ((sp->ts_fidx >= sp->ts_fidxtry || fword_ends) // Don't split in the middle of a character && (!has_mbyte || sp->ts_tcharlen == 0) ) { bool try_compound; int try_split; // If past the end of the bad word don't try a split. // Otherwise try changing the next word. E.g., find // suggestions for "the the" where the second "the" is // different. It's done like a split. // TODO: word split for soundfold words try_split = (sp->ts_fidx - repextra < su->su_badlen) && !soundfold; // Get here in several situations: // 1. The word in the tree ends: // If the word allows compounding try that. Otherwise try // a split by inserting a space. For both check that a // valid words starts at fword[sp->ts_fidx]. // For NOBREAK do like compounding to be able to check if // the next word is valid. // 2. The badword does end, but it was due to a change (e.g., // a swap). No need to split, but do check that the // following word is valid. // 3. The badword and the word in the tree end. It may still // be possible to compound another (short) word. try_compound = false; if (!soundfold && !slang->sl_nocompoundsugs && slang->sl_compprog != NULL && ((unsigned)flags >> 24) != 0 && sp->ts_twordlen - sp->ts_splitoff >= slang->sl_compminlen && (!has_mbyte || slang->sl_compminlen == 0 || mb_charlen(tword + sp->ts_splitoff) >= slang->sl_compminlen) && (slang->sl_compsylmax < MAXWLEN || sp->ts_complen + 1 - sp->ts_compsplit < slang->sl_compmax) && (can_be_compound(sp, slang, compflags, ((unsigned)flags >> 24)))) { try_compound = true; compflags[sp->ts_complen] = ((unsigned)flags >> 24); compflags[sp->ts_complen + 1] = NUL; } // For NOBREAK we never try splitting, it won't make any word // valid. if (slang->sl_nobreak && !slang->sl_nocompoundsugs) { try_compound = true; } else if (!fword_ends && try_compound && (sp->ts_flags & TSF_DIDSPLIT) == 0) { // If we could add a compound word, and it's also possible to // split at this point, do the split first and set // TSF_DIDSPLIT to avoid doing it again. try_compound = false; sp->ts_flags |= TSF_DIDSPLIT; --sp->ts_curi; // do the same NUL again compflags[sp->ts_complen] = NUL; } else { sp->ts_flags &= ~TSF_DIDSPLIT; } if (try_split || try_compound) { if (!try_compound && (!fword_ends || !goodword_ends)) { // If we're going to split need to check that the // words so far are valid for compounding. If there // is only one word it must not have the NEEDCOMPOUND // flag. if (sp->ts_complen == sp->ts_compsplit && (flags & WF_NEEDCOMP)) break; p = preword; while (*skiptowhite(p) != NUL) p = skipwhite(skiptowhite(p)); if (sp->ts_complen > sp->ts_compsplit && !can_compound(slang, p, compflags + sp->ts_compsplit)) break; if (slang->sl_nosplitsugs) newscore += SCORE_SPLIT_NO; else newscore += SCORE_SPLIT; // Give a bonus to words seen before. newscore = score_wordcount_adj(slang, newscore, preword + sp->ts_prewordlen, true); } if (TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK if (!try_compound && !fword_ends) sprintf(changename[depth], "%.*s-%s: split", sp->ts_twordlen, tword, fword + sp->ts_fidx); else sprintf(changename[depth], "%.*s-%s: compound", sp->ts_twordlen, tword, fword + sp->ts_fidx); #endif // Save things to be restored at STATE_SPLITUNDO. sp->ts_save_badflags = su->su_badflags; PROF_STORE(sp->ts_state) sp->ts_state = STATE_SPLITUNDO; ++depth; sp = &stack[depth]; // Append a space to preword when splitting. if (!try_compound && !fword_ends) STRCAT(preword, " "); sp->ts_prewordlen = (char_u)STRLEN(preword); sp->ts_splitoff = sp->ts_twordlen; sp->ts_splitfidx = sp->ts_fidx; // If the badword has a non-word character at this // position skip it. That means replacing the // non-word character with a space. Always skip a // character when the word ends. But only when the // good word can end. if (((!try_compound && !spell_iswordp_nmw(fword + sp->ts_fidx, curwin)) || fword_ends) && fword[sp->ts_fidx] != NUL && goodword_ends) { int l; if (has_mbyte) l = MB_BYTE2LEN(fword[sp->ts_fidx]); else l = 1; if (fword_ends) { // Copy the skipped character to preword. memmove(preword + sp->ts_prewordlen, fword + sp->ts_fidx, l); sp->ts_prewordlen += l; preword[sp->ts_prewordlen] = NUL; } else sp->ts_score -= SCORE_SPLIT - SCORE_SUBST; sp->ts_fidx += l; } // When compounding include compound flag in // compflags[] (already set above). When splitting we // may start compounding over again. if (try_compound) ++sp->ts_complen; else sp->ts_compsplit = sp->ts_complen; sp->ts_prefixdepth = PFD_NOPREFIX; // set su->su_badflags to the caps type at this // position if (has_mbyte) n = nofold_len(fword, sp->ts_fidx, su->su_badptr); else n = sp->ts_fidx; su->su_badflags = badword_captype(su->su_badptr + n, su->su_badptr + su->su_badlen); // Restart at top of the tree. sp->ts_arridx = 0; // If there are postponed prefixes, try these too. if (pbyts != NULL) { byts = pbyts; idxs = pidxs; sp->ts_prefixdepth = PFD_PREFIXTREE; PROF_STORE(sp->ts_state) sp->ts_state = STATE_NOPREFIX; } } } } break; case STATE_SPLITUNDO: // Undo the changes done for word split or compound word. su->su_badflags = sp->ts_save_badflags; // Continue looking for NUL bytes. PROF_STORE(sp->ts_state) sp->ts_state = STATE_START; // In case we went into the prefix tree. byts = fbyts; idxs = fidxs; break; case STATE_ENDNUL: // Past the NUL bytes in the node. su->su_badflags = sp->ts_save_badflags; if (fword[sp->ts_fidx] == NUL && sp->ts_tcharlen == 0 ) { // The badword ends, can't use STATE_PLAIN. PROF_STORE(sp->ts_state) sp->ts_state = STATE_DEL; break; } PROF_STORE(sp->ts_state) sp->ts_state = STATE_PLAIN; // FALLTHROUGH case STATE_PLAIN: // Go over all possible bytes at this node, add each to tword[] // and use child node. "ts_curi" is the index. arridx = sp->ts_arridx; if (sp->ts_curi > byts[arridx]) { // Done all bytes at this node, do next state. When still at // already changed bytes skip the other tricks. PROF_STORE(sp->ts_state) if (sp->ts_fidx >= sp->ts_fidxtry) { sp->ts_state = STATE_DEL; } else { sp->ts_state = STATE_FINAL; } } else { arridx += sp->ts_curi++; c = byts[arridx]; // Normal byte, go one level deeper. If it's not equal to the // byte in the bad word adjust the score. But don't even try // when the byte was already changed. And don't try when we // just deleted this byte, accepting it is always cheaper than // delete + substitute. if (c == fword[sp->ts_fidx] || (sp->ts_tcharlen > 0 && sp->ts_isdiff != DIFF_NONE) ) newscore = 0; else newscore = SCORE_SUBST; if ((newscore == 0 || (sp->ts_fidx >= sp->ts_fidxtry && ((sp->ts_flags & TSF_DIDDEL) == 0 || c != fword[sp->ts_delidx]))) && TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK if (newscore > 0) sprintf(changename[depth], "%.*s-%s: subst %c to %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, fword[sp->ts_fidx], c); else sprintf(changename[depth], "%.*s-%s: accept %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, fword[sp->ts_fidx]); #endif ++depth; sp = &stack[depth]; ++sp->ts_fidx; tword[sp->ts_twordlen++] = c; sp->ts_arridx = idxs[arridx]; if (newscore == SCORE_SUBST) sp->ts_isdiff = DIFF_YES; if (has_mbyte) { // Multi-byte characters are a bit complicated to // handle: They differ when any of the bytes differ // and then their length may also differ. if (sp->ts_tcharlen == 0) { // First byte. sp->ts_tcharidx = 0; sp->ts_tcharlen = MB_BYTE2LEN(c); sp->ts_fcharstart = sp->ts_fidx - 1; sp->ts_isdiff = (newscore != 0) ? DIFF_YES : DIFF_NONE; } else if (sp->ts_isdiff == DIFF_INSERT) // When inserting trail bytes don't advance in the // bad word. --sp->ts_fidx; if (++sp->ts_tcharidx == sp->ts_tcharlen) { // Last byte of character. if (sp->ts_isdiff == DIFF_YES) { // Correct ts_fidx for the byte length of the // character (we didn't check that before). sp->ts_fidx = sp->ts_fcharstart + MB_BYTE2LEN( fword[sp->ts_fcharstart]); // For changing a composing character adjust // the score from SCORE_SUBST to // SCORE_SUBCOMP. if (enc_utf8 && utf_iscomposing( mb_ptr2char(tword + sp->ts_twordlen - sp->ts_tcharlen)) && utf_iscomposing( mb_ptr2char(fword + sp->ts_fcharstart))) sp->ts_score -= SCORE_SUBST - SCORE_SUBCOMP; // For a similar character adjust score from // SCORE_SUBST to SCORE_SIMILAR. else if (!soundfold && slang->sl_has_map && similar_chars(slang, mb_ptr2char(tword + sp->ts_twordlen - sp->ts_tcharlen), mb_ptr2char(fword + sp->ts_fcharstart))) sp->ts_score -= SCORE_SUBST - SCORE_SIMILAR; } else if (sp->ts_isdiff == DIFF_INSERT && sp->ts_twordlen > sp->ts_tcharlen) { p = tword + sp->ts_twordlen - sp->ts_tcharlen; c = mb_ptr2char(p); if (enc_utf8 && utf_iscomposing(c)) { // Inserting a composing char doesn't // count that much. sp->ts_score -= SCORE_INS - SCORE_INSCOMP; } else { // If the previous character was the same, // thus doubling a character, give a bonus // to the score. Also for the soundfold // tree (might seem illogical but does // give better scores). mb_ptr_back(tword, p); if (c == mb_ptr2char(p)) sp->ts_score -= SCORE_INS - SCORE_INSDUP; } } // Starting a new char, reset the length. sp->ts_tcharlen = 0; } } else { // If we found a similar char adjust the score. // We do this after calling go_deeper() because // it's slow. if (newscore != 0 && !soundfold && slang->sl_has_map && similar_chars(slang, c, fword[sp->ts_fidx - 1])) sp->ts_score -= SCORE_SUBST - SCORE_SIMILAR; } } } break; case STATE_DEL: // When past the first byte of a multi-byte char don't try // delete/insert/swap a character. if (has_mbyte && sp->ts_tcharlen > 0) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } // Try skipping one character in the bad word (delete it). PROF_STORE(sp->ts_state) sp->ts_state = STATE_INS_PREP; sp->ts_curi = 1; if (soundfold && sp->ts_fidx == 0 && fword[sp->ts_fidx] == '*') // Deleting a vowel at the start of a word counts less, see // soundalike_score(). newscore = 2 * SCORE_DEL / 3; else newscore = SCORE_DEL; if (fword[sp->ts_fidx] != NUL && TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: delete %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, fword[sp->ts_fidx]); #endif ++depth; // Remember what character we deleted, so that we can avoid // inserting it again. stack[depth].ts_flags |= TSF_DIDDEL; stack[depth].ts_delidx = sp->ts_fidx; // Advance over the character in fword[]. Give a bonus to the // score if the same character is following "nn" -> "n". It's // a bit illogical for soundfold tree but it does give better // results. if (has_mbyte) { c = mb_ptr2char(fword + sp->ts_fidx); stack[depth].ts_fidx += MB_BYTE2LEN(fword[sp->ts_fidx]); if (enc_utf8 && utf_iscomposing(c)) stack[depth].ts_score -= SCORE_DEL - SCORE_DELCOMP; else if (c == mb_ptr2char(fword + stack[depth].ts_fidx)) stack[depth].ts_score -= SCORE_DEL - SCORE_DELDUP; } else { ++stack[depth].ts_fidx; if (fword[sp->ts_fidx] == fword[sp->ts_fidx + 1]) stack[depth].ts_score -= SCORE_DEL - SCORE_DELDUP; } break; } // FALLTHROUGH case STATE_INS_PREP: if (sp->ts_flags & TSF_DIDDEL) { // If we just deleted a byte then inserting won't make sense, // a substitute is always cheaper. PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP; break; } // skip over NUL bytes n = sp->ts_arridx; for (;; ) { if (sp->ts_curi > byts[n]) { // Only NUL bytes at this node, go to next state. PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP; break; } if (byts[n + sp->ts_curi] != NUL) { // Found a byte to insert. PROF_STORE(sp->ts_state) sp->ts_state = STATE_INS; break; } ++sp->ts_curi; } break; // FALLTHROUGH case STATE_INS: // Insert one byte. Repeat this for each possible byte at this // node. n = sp->ts_arridx; if (sp->ts_curi > byts[n]) { // Done all bytes at this node, go to next state. PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP; break; } // Do one more byte at this node, but: // - Skip NUL bytes. // - Skip the byte if it's equal to the byte in the word, // accepting that byte is always better. n += sp->ts_curi++; c = byts[n]; if (soundfold && sp->ts_twordlen == 0 && c == '*') // Inserting a vowel at the start of a word counts less, // see soundalike_score(). newscore = 2 * SCORE_INS / 3; else newscore = SCORE_INS; if (c != fword[sp->ts_fidx] && TRY_DEEPER(su, stack, depth, newscore)) { go_deeper(stack, depth, newscore); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: insert %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, c); #endif ++depth; sp = &stack[depth]; tword[sp->ts_twordlen++] = c; sp->ts_arridx = idxs[n]; if (has_mbyte) { fl = MB_BYTE2LEN(c); if (fl > 1) { // There are following bytes for the same character. // We must find all bytes before trying // delete/insert/swap/etc. sp->ts_tcharlen = fl; sp->ts_tcharidx = 1; sp->ts_isdiff = DIFF_INSERT; } } else fl = 1; if (fl == 1) { // If the previous character was the same, thus doubling a // character, give a bonus to the score. Also for // soundfold words (illogical but does give a better // score). if (sp->ts_twordlen >= 2 && tword[sp->ts_twordlen - 2] == c) sp->ts_score -= SCORE_INS - SCORE_INSDUP; } } break; case STATE_SWAP: // Swap two bytes in the bad word: "12" -> "21". // We change "fword" here, it's changed back afterwards at // STATE_UNSWAP. p = fword + sp->ts_fidx; c = *p; if (c == NUL) { // End of word, can't swap or replace. PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } // Don't swap if the first character is not a word character. // SWAP3 etc. also don't make sense then. if (!soundfold && !spell_iswordp(p, curwin)) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } if (has_mbyte) { n = mb_cptr2len(p); c = mb_ptr2char(p); if (p[n] == NUL) c2 = NUL; else if (!soundfold && !spell_iswordp(p + n, curwin)) c2 = c; // don't swap non-word char else c2 = mb_ptr2char(p + n); } else { if (p[1] == NUL) c2 = NUL; else if (!soundfold && !spell_iswordp(p + 1, curwin)) c2 = c; // don't swap non-word char else c2 = p[1]; } // When the second character is NUL we can't swap. if (c2 == NUL) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } // When characters are identical, swap won't do anything. // Also get here if the second char is not a word character. if (c == c2) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_SWAP3; break; } if (c2 != NUL && TRY_DEEPER(su, stack, depth, SCORE_SWAP)) { go_deeper(stack, depth, SCORE_SWAP); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: swap %c and %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, c, c2); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNSWAP; ++depth; if (has_mbyte) { fl = mb_char2len(c2); memmove(p, p + n, fl); mb_char2bytes(c, p + fl); stack[depth].ts_fidxtry = sp->ts_fidx + n + fl; } else { p[0] = c2; p[1] = c; stack[depth].ts_fidxtry = sp->ts_fidx + 2; } } else // If this swap doesn't work then SWAP3 won't either. PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; case STATE_UNSWAP: // Undo the STATE_SWAP swap: "21" -> "12". p = fword + sp->ts_fidx; if (has_mbyte) { n = MB_BYTE2LEN(*p); c = mb_ptr2char(p + n); memmove(p + MB_BYTE2LEN(p[n]), p, n); mb_char2bytes(c, p); } else { c = *p; *p = p[1]; p[1] = c; } // FALLTHROUGH case STATE_SWAP3: // Swap two bytes, skipping one: "123" -> "321". We change // "fword" here, it's changed back afterwards at STATE_UNSWAP3. p = fword + sp->ts_fidx; if (has_mbyte) { n = mb_cptr2len(p); c = mb_ptr2char(p); fl = mb_cptr2len(p + n); c2 = mb_ptr2char(p + n); if (!soundfold && !spell_iswordp(p + n + fl, curwin)) c3 = c; // don't swap non-word char else c3 = mb_ptr2char(p + n + fl); } else { c = *p; c2 = p[1]; if (!soundfold && !spell_iswordp(p + 2, curwin)) c3 = c; // don't swap non-word char else c3 = p[2]; } // When characters are identical: "121" then SWAP3 result is // identical, ROT3L result is same as SWAP: "211", ROT3L result is // same as SWAP on next char: "112". Thus skip all swapping. // Also skip when c3 is NUL. // Also get here when the third character is not a word character. // Second character may any char: "a.b" -> "b.a" if (c == c3 || c3 == NUL) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) { go_deeper(stack, depth, SCORE_SWAP3); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: swap3 %c and %c", sp->ts_twordlen, tword, fword + sp->ts_fidx, c, c3); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNSWAP3; ++depth; if (has_mbyte) { tl = mb_char2len(c3); memmove(p, p + n + fl, tl); mb_char2bytes(c2, p + tl); mb_char2bytes(c, p + fl + tl); stack[depth].ts_fidxtry = sp->ts_fidx + n + fl + tl; } else { p[0] = p[2]; p[2] = c; stack[depth].ts_fidxtry = sp->ts_fidx + 3; } } else { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNSWAP3: // Undo STATE_SWAP3: "321" -> "123" p = fword + sp->ts_fidx; if (has_mbyte) { n = MB_BYTE2LEN(*p); c2 = mb_ptr2char(p + n); fl = MB_BYTE2LEN(p[n]); c = mb_ptr2char(p + n + fl); tl = MB_BYTE2LEN(p[n + fl]); memmove(p + fl + tl, p, n); mb_char2bytes(c, p); mb_char2bytes(c2, p + tl); p = p + tl; } else { c = *p; *p = p[2]; p[2] = c; ++p; } if (!soundfold && !spell_iswordp(p, curwin)) { // Middle char is not a word char, skip the rotate. First and // third char were already checked at swap and swap3. PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; break; } // Rotate three characters left: "123" -> "231". We change // "fword" here, it's changed back afterwards at STATE_UNROT3L. if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) { go_deeper(stack, depth, SCORE_SWAP3); #ifdef DEBUG_TRIEWALK p = fword + sp->ts_fidx; sprintf(changename[depth], "%.*s-%s: rotate left %c%c%c", sp->ts_twordlen, tword, fword + sp->ts_fidx, p[0], p[1], p[2]); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNROT3L; ++depth; p = fword + sp->ts_fidx; if (has_mbyte) { n = mb_cptr2len(p); c = mb_ptr2char(p); fl = mb_cptr2len(p + n); fl += mb_cptr2len(p + n + fl); memmove(p, p + n, fl); mb_char2bytes(c, p + fl); stack[depth].ts_fidxtry = sp->ts_fidx + n + fl; } else { c = *p; *p = p[1]; p[1] = p[2]; p[2] = c; stack[depth].ts_fidxtry = sp->ts_fidx + 3; } } else { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNROT3L: // Undo ROT3L: "231" -> "123" p = fword + sp->ts_fidx; if (has_mbyte) { n = MB_BYTE2LEN(*p); n += MB_BYTE2LEN(p[n]); c = mb_ptr2char(p + n); tl = MB_BYTE2LEN(p[n]); memmove(p + tl, p, n); mb_char2bytes(c, p); } else { c = p[2]; p[2] = p[1]; p[1] = *p; *p = c; } // Rotate three bytes right: "123" -> "312". We change "fword" // here, it's changed back afterwards at STATE_UNROT3R. if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) { go_deeper(stack, depth, SCORE_SWAP3); #ifdef DEBUG_TRIEWALK p = fword + sp->ts_fidx; sprintf(changename[depth], "%.*s-%s: rotate right %c%c%c", sp->ts_twordlen, tword, fword + sp->ts_fidx, p[0], p[1], p[2]); #endif PROF_STORE(sp->ts_state) sp->ts_state = STATE_UNROT3R; ++depth; p = fword + sp->ts_fidx; if (has_mbyte) { n = mb_cptr2len(p); n += mb_cptr2len(p + n); c = mb_ptr2char(p + n); tl = mb_cptr2len(p + n); memmove(p + tl, p, n); mb_char2bytes(c, p); stack[depth].ts_fidxtry = sp->ts_fidx + n + tl; } else { c = p[2]; p[2] = p[1]; p[1] = *p; *p = c; stack[depth].ts_fidxtry = sp->ts_fidx + 3; } } else { PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_INI; } break; case STATE_UNROT3R: // Undo ROT3R: "312" -> "123" p = fword + sp->ts_fidx; if (has_mbyte) { c = mb_ptr2char(p); tl = MB_BYTE2LEN(*p); n = MB_BYTE2LEN(p[tl]); n += MB_BYTE2LEN(p[tl + n]); memmove(p, p + tl, n); mb_char2bytes(c, p + n); } else { c = *p; *p = p[1]; p[1] = p[2]; p[2] = c; } // FALLTHROUGH case STATE_REP_INI: // Check if matching with REP items from the .aff file would work. // Quickly skip if: // - there are no REP items and we are not in the soundfold trie // - the score is going to be too high anyway // - already applied a REP item or swapped here if ((lp->lp_replang == NULL && !soundfold) || sp->ts_score + SCORE_REP >= su->su_maxscore || sp->ts_fidx < sp->ts_fidxtry) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } // Use the first byte to quickly find the first entry that may // match. If the index is -1 there is none. if (soundfold) sp->ts_curi = slang->sl_repsal_first[fword[sp->ts_fidx]]; else sp->ts_curi = lp->lp_replang->sl_rep_first[fword[sp->ts_fidx]]; if (sp->ts_curi < 0) { PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; } PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP; // FALLTHROUGH case STATE_REP: // Try matching with REP items from the .aff file. For each match // replace the characters and check if the resulting word is // valid. p = fword + sp->ts_fidx; if (soundfold) gap = &slang->sl_repsal; else gap = &lp->lp_replang->sl_rep; while (sp->ts_curi < gap->ga_len) { ftp = (fromto_T *)gap->ga_data + sp->ts_curi++; if (*ftp->ft_from != *p) { // past possible matching entries sp->ts_curi = gap->ga_len; break; } if (STRNCMP(ftp->ft_from, p, STRLEN(ftp->ft_from)) == 0 && TRY_DEEPER(su, stack, depth, SCORE_REP)) { go_deeper(stack, depth, SCORE_REP); #ifdef DEBUG_TRIEWALK sprintf(changename[depth], "%.*s-%s: replace %s with %s", sp->ts_twordlen, tword, fword + sp->ts_fidx, ftp->ft_from, ftp->ft_to); #endif // Need to undo this afterwards. PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP_UNDO; // Change the "from" to the "to" string. ++depth; fl = (int)STRLEN(ftp->ft_from); tl = (int)STRLEN(ftp->ft_to); if (fl != tl) { STRMOVE(p + tl, p + fl); repextra += tl - fl; } memmove(p, ftp->ft_to, tl); stack[depth].ts_fidxtry = sp->ts_fidx + tl; stack[depth].ts_tcharlen = 0; break; } } if (sp->ts_curi >= gap->ga_len && sp->ts_state == STATE_REP) // No (more) matches. PROF_STORE(sp->ts_state) sp->ts_state = STATE_FINAL; break; case STATE_REP_UNDO: // Undo a REP replacement and continue with the next one. if (soundfold) gap = &slang->sl_repsal; else gap = &lp->lp_replang->sl_rep; ftp = (fromto_T *)gap->ga_data + sp->ts_curi - 1; fl = (int)STRLEN(ftp->ft_from); tl = (int)STRLEN(ftp->ft_to); p = fword + sp->ts_fidx; if (fl != tl) { STRMOVE(p + fl, p + tl); repextra -= tl - fl; } memmove(p, ftp->ft_from, fl); PROF_STORE(sp->ts_state) sp->ts_state = STATE_REP; break; default: // Did all possible states at this level, go up one level. --depth; if (depth >= 0 && stack[depth].ts_prefixdepth == PFD_PREFIXTREE) { // Continue in or go back to the prefix tree. byts = pbyts; idxs = pidxs; } // Don't check for CTRL-C too often, it takes time. if (--breakcheckcount == 0) { os_breakcheck(); breakcheckcount = 1000; } } } } // Go one level deeper in the tree. static void go_deeper(trystate_T *stack, int depth, int score_add) { stack[depth + 1] = stack[depth]; stack[depth + 1].ts_state = STATE_START; stack[depth + 1].ts_score = stack[depth].ts_score + score_add; stack[depth + 1].ts_curi = 1; // start just after length byte stack[depth + 1].ts_flags = 0; } // Case-folding may change the number of bytes: Count nr of chars in // fword[flen] and return the byte length of that many chars in "word". static int nofold_len(char_u *fword, int flen, char_u *word) { char_u *p; int i = 0; for (p = fword; p < fword + flen; mb_ptr_adv(p)) ++i; for (p = word; i > 0; mb_ptr_adv(p)) --i; return (int)(p - word); } // "fword" is a good word with case folded. Find the matching keep-case // words and put it in "kword". // Theoretically there could be several keep-case words that result in the // same case-folded word, but we only find one... static void find_keepcap_word(slang_T *slang, char_u *fword, char_u *kword) { char_u uword[MAXWLEN]; // "fword" in upper-case int depth; idx_T tryidx; // The following arrays are used at each depth in the tree. idx_T arridx[MAXWLEN]; int round[MAXWLEN]; int fwordidx[MAXWLEN]; int uwordidx[MAXWLEN]; int kwordlen[MAXWLEN]; int flen, ulen; int l; int len; int c; idx_T lo, hi, m; char_u *p; char_u *byts = slang->sl_kbyts; // array with bytes of the words idx_T *idxs = slang->sl_kidxs; // array with indexes if (byts == NULL) { // array is empty: "cannot happen" *kword = NUL; return; } // Make an all-cap version of "fword". allcap_copy(fword, uword); // Each character needs to be tried both case-folded and upper-case. // All this gets very complicated if we keep in mind that changing case // may change the byte length of a multi-byte character... depth = 0; arridx[0] = 0; round[0] = 0; fwordidx[0] = 0; uwordidx[0] = 0; kwordlen[0] = 0; while (depth >= 0) { if (fword[fwordidx[depth]] == NUL) { // We are at the end of "fword". If the tree allows a word to end // here we have found a match. if (byts[arridx[depth] + 1] == 0) { kword[kwordlen[depth]] = NUL; return; } // kword is getting too long, continue one level up --depth; } else if (++round[depth] > 2) { // tried both fold-case and upper-case character, continue one // level up --depth; } else { // round[depth] == 1: Try using the folded-case character. // round[depth] == 2: Try using the upper-case character. if (has_mbyte) { flen = mb_cptr2len(fword + fwordidx[depth]); ulen = mb_cptr2len(uword + uwordidx[depth]); } else ulen = flen = 1; if (round[depth] == 1) { p = fword + fwordidx[depth]; l = flen; } else { p = uword + uwordidx[depth]; l = ulen; } for (tryidx = arridx[depth]; l > 0; --l) { // Perform a binary search in the list of accepted bytes. len = byts[tryidx++]; c = *p++; lo = tryidx; hi = tryidx + len - 1; while (lo < hi) { m = (lo + hi) / 2; if (byts[m] > c) hi = m - 1; else if (byts[m] < c) lo = m + 1; else { lo = hi = m; break; } } // Stop if there is no matching byte. if (hi < lo || byts[lo] != c) break; // Continue at the child (if there is one). tryidx = idxs[lo]; } if (l == 0) { // Found the matching char. Copy it to "kword" and go a // level deeper. if (round[depth] == 1) { STRNCPY(kword + kwordlen[depth], fword + fwordidx[depth], flen); kwordlen[depth + 1] = kwordlen[depth] + flen; } else { STRNCPY(kword + kwordlen[depth], uword + uwordidx[depth], ulen); kwordlen[depth + 1] = kwordlen[depth] + ulen; } fwordidx[depth + 1] = fwordidx[depth] + flen; uwordidx[depth + 1] = uwordidx[depth] + ulen; ++depth; arridx[depth] = tryidx; round[depth] = 0; } } } // Didn't find it: "cannot happen". *kword = NUL; } // Compute the sound-a-like score for suggestions in su->su_ga and add them to // su->su_sga. static void score_comp_sal(suginfo_T *su) { langp_T *lp; char_u badsound[MAXWLEN]; int i; suggest_T *stp; suggest_T *sstp; int score; ga_grow(&su->su_sga, su->su_ga.ga_len); // Use the sound-folding of the first language that supports it. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the bad word spell_soundfold(lp->lp_slang, su->su_fbadword, true, badsound); for (i = 0; i < su->su_ga.ga_len; ++i) { stp = &SUG(su->su_ga, i); // Case-fold the suggested word, sound-fold it and compute the // sound-a-like score. score = stp_sal_score(stp, su, lp->lp_slang, badsound); if (score < SCORE_MAXMAX) { // Add the suggestion. sstp = &SUG(su->su_sga, su->su_sga.ga_len); sstp->st_word = vim_strsave(stp->st_word); sstp->st_wordlen = stp->st_wordlen; sstp->st_score = score; sstp->st_altscore = 0; sstp->st_orglen = stp->st_orglen; ++su->su_sga.ga_len; } } break; } } } // Combine the list of suggestions in su->su_ga and su->su_sga. // They are entwined. static void score_combine(suginfo_T *su) { garray_T ga; garray_T *gap; langp_T *lp; suggest_T *stp; char_u *p; char_u badsound[MAXWLEN]; int round; slang_T *slang = NULL; // Add the alternate score to su_ga. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the bad word slang = lp->lp_slang; spell_soundfold(slang, su->su_fbadword, true, badsound); for (int i = 0; i < su->su_ga.ga_len; ++i) { stp = &SUG(su->su_ga, i); stp->st_altscore = stp_sal_score(stp, su, slang, badsound); if (stp->st_altscore == SCORE_MAXMAX) stp->st_score = (stp->st_score * 3 + SCORE_BIG) / 4; else stp->st_score = (stp->st_score * 3 + stp->st_altscore) / 4; stp->st_salscore = false; } break; } } if (slang == NULL) { // Using "double" without sound folding. (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); return; } // Add the alternate score to su_sga. for (int i = 0; i < su->su_sga.ga_len; ++i) { stp = &SUG(su->su_sga, i); stp->st_altscore = spell_edit_score(slang, su->su_badword, stp->st_word); if (stp->st_score == SCORE_MAXMAX) stp->st_score = (SCORE_BIG * 7 + stp->st_altscore) / 8; else stp->st_score = (stp->st_score * 7 + stp->st_altscore) / 8; stp->st_salscore = true; } // Remove bad suggestions, sort the suggestions and truncate at "maxcount" // for both lists. check_suggestions(su, &su->su_ga); (void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount); check_suggestions(su, &su->su_sga); (void)cleanup_suggestions(&su->su_sga, su->su_maxscore, su->su_maxcount); ga_init(&ga, (int)sizeof(suginfo_T), 1); ga_grow(&ga, su->su_ga.ga_len + su->su_sga.ga_len); stp = &SUG(ga, 0); for (int i = 0; i < su->su_ga.ga_len || i < su->su_sga.ga_len; ++i) { // round 1: get a suggestion from su_ga // round 2: get a suggestion from su_sga for (round = 1; round <= 2; ++round) { gap = round == 1 ? &su->su_ga : &su->su_sga; if (i < gap->ga_len) { // Don't add a word if it's already there. p = SUG(*gap, i).st_word; int j; for (j = 0; j < ga.ga_len; ++j) if (STRCMP(stp[j].st_word, p) == 0) break; if (j == ga.ga_len) stp[ga.ga_len++] = SUG(*gap, i); else xfree(p); } } } ga_clear(&su->su_ga); ga_clear(&su->su_sga); // Truncate the list to the number of suggestions that will be displayed. if (ga.ga_len > su->su_maxcount) { for (int i = su->su_maxcount; i < ga.ga_len; ++i) { xfree(stp[i].st_word); } ga.ga_len = su->su_maxcount; } su->su_ga = ga; } // For the goodword in "stp" compute the soundalike score compared to the // badword. static int stp_sal_score ( suggest_T *stp, suginfo_T *su, slang_T *slang, char_u *badsound // sound-folded badword ) { char_u *p; char_u *pbad; char_u *pgood; char_u badsound2[MAXWLEN]; char_u fword[MAXWLEN]; char_u goodsound[MAXWLEN]; char_u goodword[MAXWLEN]; int lendiff; lendiff = su->su_badlen - stp->st_orglen; if (lendiff >= 0) pbad = badsound; else { // soundfold the bad word with more characters following (void)spell_casefold(su->su_badptr, stp->st_orglen, fword, MAXWLEN); // When joining two words the sound often changes a lot. E.g., "t he" // sounds like "t h" while "the" sounds like "@". Avoid that by // removing the space. Don't do it when the good word also contains a // space. if (ascii_iswhite(su->su_badptr[su->su_badlen]) && *skiptowhite(stp->st_word) == NUL) for (p = fword; *(p = skiptowhite(p)) != NUL; ) STRMOVE(p, p + 1); spell_soundfold(slang, fword, true, badsound2); pbad = badsound2; } if (lendiff > 0 && stp->st_wordlen + lendiff < MAXWLEN) { // Add part of the bad word to the good word, so that we soundfold // what replaces the bad word. STRCPY(goodword, stp->st_word); STRLCPY(goodword + stp->st_wordlen, su->su_badptr + su->su_badlen - lendiff, lendiff + 1); pgood = goodword; } else pgood = stp->st_word; // Sound-fold the word and compute the score for the difference. spell_soundfold(slang, pgood, false, goodsound); return soundalike_score(goodsound, pbad); } static sftword_T dumsft; #define HIKEY2SFT(p) ((sftword_T *)(p - (dumsft.sft_word - (char_u *)&dumsft))) #define HI2SFT(hi) HIKEY2SFT((hi)->hi_key) // Prepare for calling suggest_try_soundalike(). static void suggest_try_soundalike_prep(void) { langp_T *lp; slang_T *slang; // Do this for all languages that support sound folding and for which a // .sug file has been loaded. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) // prepare the hashtable used by add_sound_suggest() hash_init(&slang->sl_sounddone); } } // Find suggestions by comparing the word in a sound-a-like form. // Note: This doesn't support postponed prefixes. static void suggest_try_soundalike(suginfo_T *su) { char_u salword[MAXWLEN]; langp_T *lp; slang_T *slang; // Do this for all languages that support sound folding and for which a // .sug file has been loaded. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) { // soundfold the bad word spell_soundfold(slang, su->su_fbadword, true, salword); // try all kinds of inserts/deletes/swaps/etc. // TODO: also soundfold the next words, so that we can try joining // and splitting #ifdef SUGGEST_PROFILE prof_init(); #endif suggest_trie_walk(su, lp, salword, true); #ifdef SUGGEST_PROFILE prof_report("soundalike"); #endif } } } // Finish up after calling suggest_try_soundalike(). static void suggest_try_soundalike_finish(void) { langp_T *lp; slang_T *slang; int todo; hashitem_T *hi; // Do this for all languages that support sound folding and for which a // .sug file has been loaded. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) { // Free the info about handled words. todo = (int)slang->sl_sounddone.ht_used; for (hi = slang->sl_sounddone.ht_array; todo > 0; ++hi) if (!HASHITEM_EMPTY(hi)) { xfree(HI2SFT(hi)); --todo; } // Clear the hashtable, it may also be used by another region. hash_clear(&slang->sl_sounddone); hash_init(&slang->sl_sounddone); } } } // A match with a soundfolded word is found. Add the good word(s) that // produce this soundfolded word. static void add_sound_suggest ( suginfo_T *su, char_u *goodword, int score, // soundfold score langp_T *lp ) { slang_T *slang = lp->lp_slang; // language for sound folding int sfwordnr; char_u *nrline; int orgnr; char_u theword[MAXWLEN]; int i; int wlen; char_u *byts; idx_T *idxs; int n; int wordcount; int wc; int goodscore; hash_T hash; hashitem_T *hi; sftword_T *sft; int bc, gc; int limit; // It's very well possible that the same soundfold word is found several // times with different scores. Since the following is quite slow only do // the words that have a better score than before. Use a hashtable to // remember the words that have been done. hash = hash_hash(goodword); hi = hash_lookup(&slang->sl_sounddone, goodword, hash); if (HASHITEM_EMPTY(hi)) { sft = xmalloc(sizeof(sftword_T) + STRLEN(goodword)); sft->sft_score = score; STRCPY(sft->sft_word, goodword); hash_add_item(&slang->sl_sounddone, hi, sft->sft_word, hash); } else { sft = HI2SFT(hi); if (score >= sft->sft_score) return; sft->sft_score = score; } // Find the word nr in the soundfold tree. sfwordnr = soundfold_find(slang, goodword); if (sfwordnr < 0) { EMSG2(_(e_intern2), "add_sound_suggest()"); return; } // Go over the list of good words that produce this soundfold word nrline = ml_get_buf(slang->sl_sugbuf, (linenr_T)(sfwordnr + 1), FALSE); orgnr = 0; while (*nrline != NUL) { // The wordnr was stored in a minimal nr of bytes as an offset to the // previous wordnr. orgnr += bytes2offset(&nrline); byts = slang->sl_fbyts; idxs = slang->sl_fidxs; // Lookup the word "orgnr" one of the two tries. n = 0; wordcount = 0; for (wlen = 0; wlen < MAXWLEN - 3; ++wlen) { i = 1; if (wordcount == orgnr && byts[n + 1] == NUL) break; // found end of word if (byts[n + 1] == NUL) ++wordcount; // skip over the NUL bytes for (; byts[n + i] == NUL; ++i) if (i > byts[n]) { // safety check STRCPY(theword + wlen, "BAD"); wlen += 3; goto badword; } // One of the siblings must have the word. for (; i < byts[n]; ++i) { wc = idxs[idxs[n + i]]; // nr of words under this byte if (wordcount + wc > orgnr) break; wordcount += wc; } theword[wlen] = byts[n + i]; n = idxs[n + i]; } badword: theword[wlen] = NUL; // Go over the possible flags and regions. for (; i <= byts[n] && byts[n + i] == NUL; ++i) { char_u cword[MAXWLEN]; char_u *p; int flags = (int)idxs[n + i]; // Skip words with the NOSUGGEST flag if (flags & WF_NOSUGGEST) continue; if (flags & WF_KEEPCAP) { // Must find the word in the keep-case tree. find_keepcap_word(slang, theword, cword); p = cword; } else { flags |= su->su_badflags; if ((flags & WF_CAPMASK) != 0) { // Need to fix case according to "flags". make_case_word(theword, cword, flags); p = cword; } else p = theword; } // Add the suggestion. if (sps_flags & SPS_DOUBLE) { // Add the suggestion if the score isn't too bad. if (score <= su->su_maxscore) add_suggestion(su, &su->su_sga, p, su->su_badlen, score, 0, false, slang, false); } else { // Add a penalty for words in another region. if ((flags & WF_REGION) && (((unsigned)flags >> 16) & lp->lp_region) == 0) goodscore = SCORE_REGION; else goodscore = 0; // Add a small penalty for changing the first letter from // lower to upper case. Helps for "tath" -> "Kath", which is // less common than "tath" -> "path". Don't do it when the // letter is the same, that has already been counted. gc = PTR2CHAR(p); if (SPELL_ISUPPER(gc)) { bc = PTR2CHAR(su->su_badword); if (!SPELL_ISUPPER(bc) && SPELL_TOFOLD(bc) != SPELL_TOFOLD(gc)) goodscore += SCORE_ICASE / 2; } // Compute the score for the good word. This only does letter // insert/delete/swap/replace. REP items are not considered, // which may make the score a bit higher. // Use a limit for the score to make it work faster. Use // MAXSCORE(), because RESCORE() will change the score. // If the limit is very high then the iterative method is // inefficient, using an array is quicker. limit = MAXSCORE(su->su_sfmaxscore - goodscore, score); if (limit > SCORE_LIMITMAX) goodscore += spell_edit_score(slang, su->su_badword, p); else goodscore += spell_edit_score_limit(slang, su->su_badword, p, limit); // When going over the limit don't bother to do the rest. if (goodscore < SCORE_MAXMAX) { // Give a bonus to words seen before. goodscore = score_wordcount_adj(slang, goodscore, p, false); // Add the suggestion if the score isn't too bad. goodscore = RESCORE(goodscore, score); if (goodscore <= su->su_sfmaxscore) add_suggestion(su, &su->su_ga, p, su->su_badlen, goodscore, score, true, slang, true); } } } } } // Find word "word" in fold-case tree for "slang" and return the word number. static int soundfold_find(slang_T *slang, char_u *word) { idx_T arridx = 0; int len; int wlen = 0; int c; char_u *ptr = word; char_u *byts; idx_T *idxs; int wordnr = 0; byts = slang->sl_sbyts; idxs = slang->sl_sidxs; for (;; ) { // First byte is the number of possible bytes. len = byts[arridx++]; // If the first possible byte is a zero the word could end here. // If the word ends we found the word. If not skip the NUL bytes. c = ptr[wlen]; if (byts[arridx] == NUL) { if (c == NUL) break; // Skip over the zeros, there can be several. while (len > 0 && byts[arridx] == NUL) { ++arridx; --len; } if (len == 0) return -1; // no children, word should have ended here ++wordnr; } // If the word ends we didn't find it. if (c == NUL) return -1; // Perform a binary search in the list of accepted bytes. if (c == TAB) // is handled like c = ' '; while (byts[arridx] < c) { // The word count is in the first idxs[] entry of the child. wordnr += idxs[idxs[arridx]]; ++arridx; if (--len == 0) // end of the bytes, didn't find it return -1; } if (byts[arridx] != c) // didn't find the byte return -1; // Continue at the child (if there is one). arridx = idxs[arridx]; ++wlen; // One space in the good word may stand for several spaces in the // checked word. if (c == ' ') while (ptr[wlen] == ' ' || ptr[wlen] == TAB) ++wlen; } return wordnr; } // Copy "fword" to "cword", fixing case according to "flags". static void make_case_word(char_u *fword, char_u *cword, int flags) { if (flags & WF_ALLCAP) // Make it all upper-case allcap_copy(fword, cword); else if (flags & WF_ONECAP) // Make the first letter upper-case onecap_copy(fword, cword, true); else // Use goodword as-is. STRCPY(cword, fword); } // Use map string "map" for languages "lp". static void set_map_str(slang_T *lp, char_u *map) { char_u *p; int headc = 0; int c; int i; if (*map == NUL) { lp->sl_has_map = false; return; } lp->sl_has_map = true; // Init the array and hash tables empty. for (i = 0; i < 256; ++i) lp->sl_map_array[i] = 0; hash_init(&lp->sl_map_hash); // The similar characters are stored separated with slashes: // "aaa/bbb/ccc/". Fill sl_map_array[c] with the character before c and // before the same slash. For characters above 255 sl_map_hash is used. for (p = map; *p != NUL; ) { c = mb_cptr2char_adv(&p); if (c == '/') headc = 0; else { if (headc == 0) headc = c; // Characters above 255 don't fit in sl_map_array[], put them in // the hash table. Each entry is the char, a NUL the headchar and // a NUL. if (c >= 256) { int cl = mb_char2len(c); int headcl = mb_char2len(headc); char_u *b; hash_T hash; hashitem_T *hi; b = xmalloc(cl + headcl + 2); mb_char2bytes(c, b); b[cl] = NUL; mb_char2bytes(headc, b + cl + 1); b[cl + 1 + headcl] = NUL; hash = hash_hash(b); hi = hash_lookup(&lp->sl_map_hash, b, hash); if (HASHITEM_EMPTY(hi)) hash_add_item(&lp->sl_map_hash, hi, b, hash); else { // This should have been checked when generating the .spl // file. EMSG(_("E783: duplicate char in MAP entry")); xfree(b); } } else lp->sl_map_array[c] = headc; } } } // Returns true if "c1" and "c2" are similar characters according to the MAP // lines in the .aff file. static bool similar_chars(slang_T *slang, int c1, int c2) { int m1, m2; char_u buf[MB_MAXBYTES + 1]; hashitem_T *hi; if (c1 >= 256) { buf[mb_char2bytes(c1, buf)] = 0; hi = hash_find(&slang->sl_map_hash, buf); if (HASHITEM_EMPTY(hi)) m1 = 0; else m1 = mb_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1); } else m1 = slang->sl_map_array[c1]; if (m1 == 0) return false; if (c2 >= 256) { buf[mb_char2bytes(c2, buf)] = 0; hi = hash_find(&slang->sl_map_hash, buf); if (HASHITEM_EMPTY(hi)) m2 = 0; else m2 = mb_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1); } else m2 = slang->sl_map_array[c2]; return m1 == m2; } // Adds a suggestion to the list of suggestions. // For a suggestion that is already in the list the lowest score is remembered. static void add_suggestion ( suginfo_T *su, garray_T *gap, // either su_ga or su_sga char_u *goodword, int badlenarg, // len of bad word replaced with "goodword" int score, int altscore, bool had_bonus, // value for st_had_bonus slang_T *slang, // language for sound folding bool maxsf // su_maxscore applies to soundfold score, // su_sfmaxscore to the total score. ) { int goodlen; // len of goodword changed int badlen; // len of bad word changed suggest_T *stp; suggest_T new_sug; int i; char_u *pgood, *pbad; // Minimize "badlen" for consistency. Avoids that changing "the the" to // "thee the" is added next to changing the first "the" the "thee". pgood = goodword + STRLEN(goodword); pbad = su->su_badptr + badlenarg; for (;; ) { goodlen = (int)(pgood - goodword); badlen = (int)(pbad - su->su_badptr); if (goodlen <= 0 || badlen <= 0) break; mb_ptr_back(goodword, pgood); mb_ptr_back(su->su_badptr, pbad); if (has_mbyte) { if (mb_ptr2char(pgood) != mb_ptr2char(pbad)) break; } else if (*pgood != *pbad) break; } if (badlen == 0 && goodlen == 0) // goodword doesn't change anything; may happen for "the the" changing // the first "the" to itself. return; if (GA_EMPTY(gap)) i = -1; else { // Check if the word is already there. Also check the length that is // being replaced "thes," -> "these" is a different suggestion from // "thes" -> "these". stp = &SUG(*gap, 0); for (i = gap->ga_len; --i >= 0; ++stp) { if (stp->st_wordlen == goodlen && stp->st_orglen == badlen && STRNCMP(stp->st_word, goodword, goodlen) == 0) { // Found it. Remember the word with the lowest score. if (stp->st_slang == NULL) stp->st_slang = slang; new_sug.st_score = score; new_sug.st_altscore = altscore; new_sug.st_had_bonus = had_bonus; if (stp->st_had_bonus != had_bonus) { // Only one of the two had the soundalike score computed. // Need to do that for the other one now, otherwise the // scores can't be compared. This happens because // suggest_try_change() doesn't compute the soundalike // word to keep it fast, while some special methods set // the soundalike score to zero. if (had_bonus) rescore_one(su, stp); else { new_sug.st_word = stp->st_word; new_sug.st_wordlen = stp->st_wordlen; new_sug.st_slang = stp->st_slang; new_sug.st_orglen = badlen; rescore_one(su, &new_sug); } } if (stp->st_score > new_sug.st_score) { stp->st_score = new_sug.st_score; stp->st_altscore = new_sug.st_altscore; stp->st_had_bonus = new_sug.st_had_bonus; } break; } } } if (i < 0) { // Add a suggestion. stp = GA_APPEND_VIA_PTR(suggest_T, gap); stp->st_word = vim_strnsave(goodword, goodlen); stp->st_wordlen = goodlen; stp->st_score = score; stp->st_altscore = altscore; stp->st_had_bonus = had_bonus; stp->st_orglen = badlen; stp->st_slang = slang; // If we have too many suggestions now, sort the list and keep // the best suggestions. if (gap->ga_len > SUG_MAX_COUNT(su)) { if (maxsf) su->su_sfmaxscore = cleanup_suggestions(gap, su->su_sfmaxscore, SUG_CLEAN_COUNT(su)); else su->su_maxscore = cleanup_suggestions(gap, su->su_maxscore, SUG_CLEAN_COUNT(su)); } } } // Suggestions may in fact be flagged as errors. Esp. for banned words and // for split words, such as "the the". Remove these from the list here. static void check_suggestions ( suginfo_T *su, garray_T *gap // either su_ga or su_sga ) { suggest_T *stp; char_u longword[MAXWLEN + 1]; int len; hlf_T attr; stp = &SUG(*gap, 0); for (int i = gap->ga_len - 1; i >= 0; --i) { // Need to append what follows to check for "the the". STRLCPY(longword, stp[i].st_word, MAXWLEN + 1); len = stp[i].st_wordlen; STRLCPY(longword + len, su->su_badptr + stp[i].st_orglen, MAXWLEN - len + 1); attr = HLF_COUNT; (void)spell_check(curwin, longword, &attr, NULL, false); if (attr != HLF_COUNT) { // Remove this entry. xfree(stp[i].st_word); --gap->ga_len; if (i < gap->ga_len) memmove(stp + i, stp + i + 1, sizeof(suggest_T) * (gap->ga_len - i)); } } } // Add a word to be banned. static void add_banned(suginfo_T *su, char_u *word) { char_u *s; hash_T hash; hashitem_T *hi; hash = hash_hash(word); hi = hash_lookup(&su->su_banned, word, hash); if (HASHITEM_EMPTY(hi)) { s = vim_strsave(word); hash_add_item(&su->su_banned, hi, s, hash); } } // Recompute the score for all suggestions if sound-folding is possible. This // is slow, thus only done for the final results. static void rescore_suggestions(suginfo_T *su) { if (su->su_sallang != NULL) { for (int i = 0; i < su->su_ga.ga_len; ++i) { rescore_one(su, &SUG(su->su_ga, i)); } } } // Recompute the score for one suggestion if sound-folding is possible. static void rescore_one(suginfo_T *su, suggest_T *stp) { slang_T *slang = stp->st_slang; char_u sal_badword[MAXWLEN]; char_u *p; // Only rescore suggestions that have no sal score yet and do have a // language. if (slang != NULL && !GA_EMPTY(&slang->sl_sal) && !stp->st_had_bonus) { if (slang == su->su_sallang) p = su->su_sal_badword; else { spell_soundfold(slang, su->su_fbadword, true, sal_badword); p = sal_badword; } stp->st_altscore = stp_sal_score(stp, su, slang, p); if (stp->st_altscore == SCORE_MAXMAX) stp->st_altscore = SCORE_BIG; stp->st_score = RESCORE(stp->st_score, stp->st_altscore); stp->st_had_bonus = true; } } // Function given to qsort() to sort the suggestions on st_score. // First on "st_score", then "st_altscore" then alphabetically. static int sug_compare(const void *s1, const void *s2) { suggest_T *p1 = (suggest_T *)s1; suggest_T *p2 = (suggest_T *)s2; int n = p1->st_score - p2->st_score; if (n == 0) { n = p1->st_altscore - p2->st_altscore; if (n == 0) n = STRICMP(p1->st_word, p2->st_word); } return n; } // Cleanup the suggestions: // - Sort on score. // - Remove words that won't be displayed. // Returns the maximum score in the list or "maxscore" unmodified. static int cleanup_suggestions ( garray_T *gap, int maxscore, int keep // nr of suggestions to keep ) { suggest_T *stp = &SUG(*gap, 0); // Sort the list. qsort(gap->ga_data, (size_t)gap->ga_len, sizeof(suggest_T), sug_compare); // Truncate the list to the number of suggestions that will be displayed. if (gap->ga_len > keep) { for (int i = keep; i < gap->ga_len; ++i) { xfree(stp[i].st_word); } gap->ga_len = keep; return stp[keep - 1].st_score; } return maxscore; } // Soundfold a string, for soundfold(). // Result is in allocated memory, NULL for an error. char_u *eval_soundfold(char_u *word) { langp_T *lp; char_u sound[MAXWLEN]; if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) { // Use the sound-folding of the first language that supports it. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); if (!GA_EMPTY(&lp->lp_slang->sl_sal)) { // soundfold the word spell_soundfold(lp->lp_slang, word, false, sound); return vim_strsave(sound); } } } // No language with sound folding, return word as-is. return vim_strsave(word); } // Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]". // // There are many ways to turn a word into a sound-a-like representation. The // oldest is Soundex (1918!). A nice overview can be found in "Approximate // swedish name matching - survey and test of different algorithms" by Klas // Erikson. // // We support two methods: // 1. SOFOFROM/SOFOTO do a simple character mapping. // 2. SAL items define a more advanced sound-folding (and much slower). static void spell_soundfold ( slang_T *slang, char_u *inword, bool folded, // "inword" is already case-folded char_u *res ) { char_u fword[MAXWLEN]; char_u *word; if (slang->sl_sofo) // SOFOFROM and SOFOTO used spell_soundfold_sofo(slang, inword, res); else { // SAL items used. Requires the word to be case-folded. if (folded) word = inword; else { (void)spell_casefold(inword, (int)STRLEN(inword), fword, MAXWLEN); word = fword; } if (has_mbyte) spell_soundfold_wsal(slang, word, res); else spell_soundfold_sal(slang, word, res); } } // Perform sound folding of "inword" into "res" according to SOFOFROM and // SOFOTO lines. static void spell_soundfold_sofo(slang_T *slang, char_u *inword, char_u *res) { char_u *s; int ri = 0; int c; if (has_mbyte) { int prevc = 0; int *ip; // The sl_sal_first[] table contains the translation for chars up to // 255, sl_sal the rest. for (s = inword; *s != NUL; ) { c = mb_cptr2char_adv(&s); if (enc_utf8 ? utf_class(c) == 0 : ascii_iswhite(c)) c = ' '; else if (c < 256) c = slang->sl_sal_first[c]; else { ip = ((int **)slang->sl_sal.ga_data)[c & 0xff]; if (ip == NULL) // empty list, can't match c = NUL; else for (;; ) { // find "c" in the list if (*ip == 0) { // not found c = NUL; break; } if (*ip == c) { // match! c = ip[1]; break; } ip += 2; } } if (c != NUL && c != prevc) { ri += mb_char2bytes(c, res + ri); if (ri + MB_MAXBYTES > MAXWLEN) break; prevc = c; } } } else { // The sl_sal_first[] table contains the translation. for (s = inword; (c = *s) != NUL; ++s) { if (ascii_iswhite(c)) c = ' '; else c = slang->sl_sal_first[c]; if (c != NUL && (ri == 0 || res[ri - 1] != c)) res[ri++] = c; } } res[ri] = NUL; } static void spell_soundfold_sal(slang_T *slang, char_u *inword, char_u *res) { salitem_T *smp; char_u word[MAXWLEN]; char_u *s = inword; char_u *t; char_u *pf; int i, j, z; int reslen; int n, k = 0; int z0; int k0; int n0; int c; int pri; int p0 = -333; int c0; // Remove accents, if wanted. We actually remove all non-word characters. // But keep white space. We need a copy, the word may be changed here. if (slang->sl_rem_accents) { t = word; while (*s != NUL) { if (ascii_iswhite(*s)) { *t++ = ' '; s = skipwhite(s); } else { if (spell_iswordp_nmw(s, curwin)) *t++ = *s; ++s; } } *t = NUL; } else STRLCPY(word, s, MAXWLEN); smp = (salitem_T *)slang->sl_sal.ga_data; // This comes from Aspell phonet.cpp. Converted from C++ to C. // Changed to keep spaces. i = reslen = z = 0; while ((c = word[i]) != NUL) { // Start with the first rule that has the character in the word. n = slang->sl_sal_first[c]; z0 = 0; if (n >= 0) { // check all rules for the same letter for (; (s = smp[n].sm_lead)[0] == c; ++n) { // Quickly skip entries that don't match the word. Most // entries are less then three chars, optimize for that. k = smp[n].sm_leadlen; if (k > 1) { if (word[i + 1] != s[1]) continue; if (k > 2) { for (j = 2; j < k; ++j) if (word[i + j] != s[j]) break; if (j < k) continue; } } if ((pf = smp[n].sm_oneof) != NULL) { // Check for match with one of the chars in "sm_oneof". while (*pf != NUL && *pf != word[i + k]) ++pf; if (*pf == NUL) continue; ++k; } s = smp[n].sm_rules; pri = 5; // default priority p0 = *s; k0 = k; while (*s == '-' && k > 1) { k--; s++; } if (*s == '<') s++; if (ascii_isdigit(*s)) { // determine priority pri = *s - '0'; s++; } if (*s == '^' && *(s + 1) == '^') s++; if (*s == NUL || (*s == '^' && (i == 0 || !(word[i - 1] == ' ' || spell_iswordp(word + i - 1, curwin))) && (*(s + 1) != '$' || (!spell_iswordp(word + i + k0, curwin)))) || (*s == '$' && i > 0 && spell_iswordp(word + i - 1, curwin) && (!spell_iswordp(word + i + k0, curwin)))) { // search for followup rules, if: // followup and k > 1 and NO '-' in searchstring c0 = word[i + k - 1]; n0 = slang->sl_sal_first[c0]; if (slang->sl_followup && k > 1 && n0 >= 0 && p0 != '-' && word[i + k] != NUL) { // test follow-up rule for "word[i + k]" for (; (s = smp[n0].sm_lead)[0] == c0; ++n0) { // Quickly skip entries that don't match the word. k0 = smp[n0].sm_leadlen; if (k0 > 1) { if (word[i + k] != s[1]) continue; if (k0 > 2) { pf = word + i + k + 1; for (j = 2; j < k0; ++j) if (*pf++ != s[j]) break; if (j < k0) continue; } } k0 += k - 1; if ((pf = smp[n0].sm_oneof) != NULL) { // Check for match with one of the chars in // "sm_oneof". while (*pf != NUL && *pf != word[i + k0]) ++pf; if (*pf == NUL) continue; ++k0; } p0 = 5; s = smp[n0].sm_rules; while (*s == '-') { // "k0" gets NOT reduced because // "if (k0 == k)" s++; } if (*s == '<') s++; if (ascii_isdigit(*s)) { p0 = *s - '0'; s++; } if (*s == NUL // *s == '^' cuts || (*s == '$' && !spell_iswordp(word + i + k0, curwin))) { if (k0 == k) // this is just a piece of the string continue; if (p0 < pri) // priority too low continue; // rule fits; stop search break; } } if (p0 >= pri && smp[n0].sm_lead[0] == c0) continue; } // replace string s = smp[n].sm_to; if (s == NULL) s = (char_u *)""; pf = smp[n].sm_rules; p0 = (vim_strchr(pf, '<') != NULL) ? 1 : 0; if (p0 == 1 && z == 0) { // rule with '<' is used if (reslen > 0 && *s != NUL && (res[reslen - 1] == c || res[reslen - 1] == *s)) reslen--; z0 = 1; z = 1; k0 = 0; while (*s != NUL && word[i + k0] != NUL) { word[i + k0] = *s; k0++; s++; } if (k > k0) STRMOVE(word + i + k0, word + i + k); // new "actual letter" c = word[i]; } else { // no '<' rule used i += k - 1; z = 0; while (*s != NUL && s[1] != NUL && reslen < MAXWLEN) { if (reslen == 0 || res[reslen - 1] != *s) res[reslen++] = *s; s++; } // new "actual letter" c = *s; if (strstr((char *)pf, "^^") != NULL) { if (c != NUL) res[reslen++] = c; STRMOVE(word, word + i + 1); i = 0; z0 = 1; } } break; } } } else if (ascii_iswhite(c)) { c = ' '; k = 1; } if (z0 == 0) { if (k && !p0 && reslen < MAXWLEN && c != NUL && (!slang->sl_collapse || reslen == 0 || res[reslen - 1] != c)) // condense only double letters res[reslen++] = c; i++; z = 0; k = 0; } } res[reslen] = NUL; } // Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]". // Multi-byte version of spell_soundfold(). static void spell_soundfold_wsal(slang_T *slang, char_u *inword, char_u *res) { salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data; int word[MAXWLEN]; int wres[MAXWLEN]; int l; char_u *s; int *ws; char_u *t; int *pf; int i, j, z; int reslen; int n, k = 0; int z0; int k0; int n0; int c; int pri; int p0 = -333; int c0; bool did_white = false; int wordlen; // Convert the multi-byte string to a wide-character string. // Remove accents, if wanted. We actually remove all non-word characters. // But keep white space. wordlen = 0; for (s = inword; *s != NUL; ) { t = s; c = mb_cptr2char_adv(&s); if (slang->sl_rem_accents) { if (enc_utf8 ? utf_class(c) == 0 : ascii_iswhite(c)) { if (did_white) continue; c = ' '; did_white = true; } else { did_white = false; if (!spell_iswordp_nmw(t, curwin)) continue; } } word[wordlen++] = c; } word[wordlen] = NUL; // This algorithm comes from Aspell phonet.cpp. // Converted from C++ to C. Added support for multi-byte chars. // Changed to keep spaces. i = reslen = z = 0; while ((c = word[i]) != NUL) { // Start with the first rule that has the character in the word. n = slang->sl_sal_first[c & 0xff]; z0 = 0; if (n >= 0) { // Check all rules for the same index byte. // If c is 0x300 need extra check for the end of the array, as // (c & 0xff) is NUL. for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff) && ws[0] != NUL; ++n) { // Quickly skip entries that don't match the word. Most // entries are less then three chars, optimize for that. if (c != ws[0]) continue; k = smp[n].sm_leadlen; if (k > 1) { if (word[i + 1] != ws[1]) continue; if (k > 2) { for (j = 2; j < k; ++j) if (word[i + j] != ws[j]) break; if (j < k) continue; } } if ((pf = smp[n].sm_oneof_w) != NULL) { // Check for match with one of the chars in "sm_oneof". while (*pf != NUL && *pf != word[i + k]) ++pf; if (*pf == NUL) continue; ++k; } s = smp[n].sm_rules; pri = 5; // default priority p0 = *s; k0 = k; while (*s == '-' && k > 1) { k--; s++; } if (*s == '<') s++; if (ascii_isdigit(*s)) { // determine priority pri = *s - '0'; s++; } if (*s == '^' && *(s + 1) == '^') s++; if (*s == NUL || (*s == '^' && (i == 0 || !(word[i - 1] == ' ' || spell_iswordp_w(word + i - 1, curwin))) && (*(s + 1) != '$' || (!spell_iswordp_w(word + i + k0, curwin)))) || (*s == '$' && i > 0 && spell_iswordp_w(word + i - 1, curwin) && (!spell_iswordp_w(word + i + k0, curwin)))) { // search for followup rules, if: // followup and k > 1 and NO '-' in searchstring c0 = word[i + k - 1]; n0 = slang->sl_sal_first[c0 & 0xff]; if (slang->sl_followup && k > 1 && n0 >= 0 && p0 != '-' && word[i + k] != NUL) { // Test follow-up rule for "word[i + k]"; loop over // all entries with the same index byte. for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff) == (c0 & 0xff); ++n0) { // Quickly skip entries that don't match the word. if (c0 != ws[0]) continue; k0 = smp[n0].sm_leadlen; if (k0 > 1) { if (word[i + k] != ws[1]) continue; if (k0 > 2) { pf = word + i + k + 1; for (j = 2; j < k0; ++j) if (*pf++ != ws[j]) break; if (j < k0) continue; } } k0 += k - 1; if ((pf = smp[n0].sm_oneof_w) != NULL) { // Check for match with one of the chars in // "sm_oneof". while (*pf != NUL && *pf != word[i + k0]) ++pf; if (*pf == NUL) continue; ++k0; } p0 = 5; s = smp[n0].sm_rules; while (*s == '-') { // "k0" gets NOT reduced because // "if (k0 == k)" s++; } if (*s == '<') s++; if (ascii_isdigit(*s)) { p0 = *s - '0'; s++; } if (*s == NUL // *s == '^' cuts || (*s == '$' && !spell_iswordp_w(word + i + k0, curwin))) { if (k0 == k) // this is just a piece of the string continue; if (p0 < pri) // priority too low continue; // rule fits; stop search break; } } if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff) == (c0 & 0xff)) continue; } // replace string ws = smp[n].sm_to_w; s = smp[n].sm_rules; p0 = (vim_strchr(s, '<') != NULL) ? 1 : 0; if (p0 == 1 && z == 0) { // rule with '<' is used if (reslen > 0 && ws != NULL && *ws != NUL && (wres[reslen - 1] == c || wres[reslen - 1] == *ws)) reslen--; z0 = 1; z = 1; k0 = 0; if (ws != NULL) while (*ws != NUL && word[i + k0] != NUL) { word[i + k0] = *ws; k0++; ws++; } if (k > k0) memmove(word + i + k0, word + i + k, sizeof(int) * (wordlen - (i + k) + 1)); // new "actual letter" c = word[i]; } else { // no '<' rule used i += k - 1; z = 0; if (ws != NULL) while (*ws != NUL && ws[1] != NUL && reslen < MAXWLEN) { if (reslen == 0 || wres[reslen - 1] != *ws) wres[reslen++] = *ws; ws++; } // new "actual letter" if (ws == NULL) c = NUL; else c = *ws; if (strstr((char *)s, "^^") != NULL) { if (c != NUL) wres[reslen++] = c; memmove(word, word + i + 1, sizeof(int) * (wordlen - (i + 1) + 1)); i = 0; z0 = 1; } } break; } } } else if (ascii_iswhite(c)) { c = ' '; k = 1; } if (z0 == 0) { if (k && !p0 && reslen < MAXWLEN && c != NUL && (!slang->sl_collapse || reslen == 0 || wres[reslen - 1] != c)) // condense only double letters wres[reslen++] = c; i++; z = 0; k = 0; } } // Convert wide characters in "wres" to a multi-byte string in "res". l = 0; for (n = 0; n < reslen; ++n) { l += mb_char2bytes(wres[n], res + l); if (l + MB_MAXBYTES > MAXWLEN) break; } res[l] = NUL; } // Compute a score for two sound-a-like words. // This permits up to two inserts/deletes/swaps/etc. to keep things fast. // Instead of a generic loop we write out the code. That keeps it fast by // avoiding checks that will not be possible. static int soundalike_score ( char_u *goodstart, // sound-folded good word char_u *badstart // sound-folded bad word ) { char_u *goodsound = goodstart; char_u *badsound = badstart; int goodlen; int badlen; int n; char_u *pl, *ps; char_u *pl2, *ps2; int score = 0; // Adding/inserting "*" at the start (word starts with vowel) shouldn't be // counted so much, vowels in the middle of the word aren't counted at all. if ((*badsound == '*' || *goodsound == '*') && *badsound != *goodsound) { if ((badsound[0] == NUL && goodsound[1] == NUL) || (goodsound[0] == NUL && badsound[1] == NUL)) // changing word with vowel to word without a sound return SCORE_DEL; if (badsound[0] == NUL || goodsound[0] == NUL) // more than two changes return SCORE_MAXMAX; if (badsound[1] == goodsound[1] || (badsound[1] != NUL && goodsound[1] != NUL && badsound[2] == goodsound[2])) { // handle like a substitute } else { score = 2 * SCORE_DEL / 3; if (*badsound == '*') ++badsound; else ++goodsound; } } goodlen = (int)STRLEN(goodsound); badlen = (int)STRLEN(badsound); // Return quickly if the lengths are too different to be fixed by two // changes. n = goodlen - badlen; if (n < -2 || n > 2) return SCORE_MAXMAX; if (n > 0) { pl = goodsound; // goodsound is longest ps = badsound; } else { pl = badsound; // badsound is longest ps = goodsound; } // Skip over the identical part. while (*pl == *ps && *pl != NUL) { ++pl; ++ps; } switch (n) { case -2: case 2: // Must delete two characters from "pl". ++pl; // first delete while (*pl == *ps) { ++pl; ++ps; } // strings must be equal after second delete if (STRCMP(pl + 1, ps) == 0) return score + SCORE_DEL * 2; // Failed to compare. break; case -1: case 1: // Minimal one delete from "pl" required. // 1: delete pl2 = pl + 1; ps2 = ps; while (*pl2 == *ps2) { if (*pl2 == NUL) // reached the end return score + SCORE_DEL; ++pl2; ++ps2; } // 2: delete then swap, then rest must be equal if (pl2[0] == ps2[1] && pl2[1] == ps2[0] && STRCMP(pl2 + 2, ps2 + 2) == 0) return score + SCORE_DEL + SCORE_SWAP; // 3: delete then substitute, then the rest must be equal if (STRCMP(pl2 + 1, ps2 + 1) == 0) return score + SCORE_DEL + SCORE_SUBST; // 4: first swap then delete if (pl[0] == ps[1] && pl[1] == ps[0]) { pl2 = pl + 2; // swap, skip two chars ps2 = ps + 2; while (*pl2 == *ps2) { ++pl2; ++ps2; } // delete a char and then strings must be equal if (STRCMP(pl2 + 1, ps2) == 0) return score + SCORE_SWAP + SCORE_DEL; } // 5: first substitute then delete pl2 = pl + 1; // substitute, skip one char ps2 = ps + 1; while (*pl2 == *ps2) { ++pl2; ++ps2; } // delete a char and then strings must be equal if (STRCMP(pl2 + 1, ps2) == 0) return score + SCORE_SUBST + SCORE_DEL; // Failed to compare. break; case 0: // Lengths are equal, thus changes must result in same length: An // insert is only possible in combination with a delete. // 1: check if for identical strings if (*pl == NUL) return score; // 2: swap if (pl[0] == ps[1] && pl[1] == ps[0]) { pl2 = pl + 2; // swap, skip two chars ps2 = ps + 2; while (*pl2 == *ps2) { if (*pl2 == NUL) // reached the end return score + SCORE_SWAP; ++pl2; ++ps2; } // 3: swap and swap again if (pl2[0] == ps2[1] && pl2[1] == ps2[0] && STRCMP(pl2 + 2, ps2 + 2) == 0) return score + SCORE_SWAP + SCORE_SWAP; // 4: swap and substitute if (STRCMP(pl2 + 1, ps2 + 1) == 0) return score + SCORE_SWAP + SCORE_SUBST; } // 5: substitute pl2 = pl + 1; ps2 = ps + 1; while (*pl2 == *ps2) { if (*pl2 == NUL) // reached the end return score + SCORE_SUBST; ++pl2; ++ps2; } // 6: substitute and swap if (pl2[0] == ps2[1] && pl2[1] == ps2[0] && STRCMP(pl2 + 2, ps2 + 2) == 0) return score + SCORE_SUBST + SCORE_SWAP; // 7: substitute and substitute if (STRCMP(pl2 + 1, ps2 + 1) == 0) return score + SCORE_SUBST + SCORE_SUBST; // 8: insert then delete pl2 = pl; ps2 = ps + 1; while (*pl2 == *ps2) { ++pl2; ++ps2; } if (STRCMP(pl2 + 1, ps2) == 0) return score + SCORE_INS + SCORE_DEL; // 9: delete then insert pl2 = pl + 1; ps2 = ps; while (*pl2 == *ps2) { ++pl2; ++ps2; } if (STRCMP(pl2, ps2 + 1) == 0) return score + SCORE_INS + SCORE_DEL; // Failed to compare. break; } return SCORE_MAXMAX; } // Compute the "edit distance" to turn "badword" into "goodword". The less // deletes/inserts/substitutes/swaps are required the lower the score. // // The algorithm is described by Du and Chang, 1992. // The implementation of the algorithm comes from Aspell editdist.cpp, // edit_distance(). It has been converted from C++ to C and modified to // support multi-byte characters. static int spell_edit_score(slang_T *slang, char_u *badword, char_u *goodword) { int *cnt; int badlen, goodlen; // lengths including NUL int j, i; int t; int bc, gc; int pbc, pgc; char_u *p; int wbadword[MAXWLEN]; int wgoodword[MAXWLEN]; const bool l_has_mbyte = has_mbyte; if (l_has_mbyte) { // Get the characters from the multi-byte strings and put them in an // int array for easy access. for (p = badword, badlen = 0; *p != NUL; ) wbadword[badlen++] = mb_cptr2char_adv(&p); wbadword[badlen++] = 0; for (p = goodword, goodlen = 0; *p != NUL; ) wgoodword[goodlen++] = mb_cptr2char_adv(&p); wgoodword[goodlen++] = 0; } else { badlen = (int)STRLEN(badword) + 1; goodlen = (int)STRLEN(goodword) + 1; } // We use "cnt" as an array: CNT(badword_idx, goodword_idx). #define CNT(a, b) cnt[(a) + (b) * (badlen + 1)] cnt = xmalloc(sizeof(int) * (badlen + 1) * (goodlen + 1)); CNT(0, 0) = 0; for (j = 1; j <= goodlen; ++j) CNT(0, j) = CNT(0, j - 1) + SCORE_INS; for (i = 1; i <= badlen; ++i) { CNT(i, 0) = CNT(i - 1, 0) + SCORE_DEL; for (j = 1; j <= goodlen; ++j) { if (l_has_mbyte) { bc = wbadword[i - 1]; gc = wgoodword[j - 1]; } else { bc = badword[i - 1]; gc = goodword[j - 1]; } if (bc == gc) CNT(i, j) = CNT(i - 1, j - 1); else { // Use a better score when there is only a case difference. if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc)) CNT(i, j) = SCORE_ICASE + CNT(i - 1, j - 1); else { // For a similar character use SCORE_SIMILAR. if (slang != NULL && slang->sl_has_map && similar_chars(slang, gc, bc)) CNT(i, j) = SCORE_SIMILAR + CNT(i - 1, j - 1); else CNT(i, j) = SCORE_SUBST + CNT(i - 1, j - 1); } if (i > 1 && j > 1) { if (l_has_mbyte) { pbc = wbadword[i - 2]; pgc = wgoodword[j - 2]; } else { pbc = badword[i - 2]; pgc = goodword[j - 2]; } if (bc == pgc && pbc == gc) { t = SCORE_SWAP + CNT(i - 2, j - 2); if (t < CNT(i, j)) CNT(i, j) = t; } } t = SCORE_DEL + CNT(i - 1, j); if (t < CNT(i, j)) CNT(i, j) = t; t = SCORE_INS + CNT(i, j - 1); if (t < CNT(i, j)) CNT(i, j) = t; } } } i = CNT(badlen - 1, goodlen - 1); xfree(cnt); return i; } // Like spell_edit_score(), but with a limit on the score to make it faster. // May return SCORE_MAXMAX when the score is higher than "limit". // // This uses a stack for the edits still to be tried. // The idea comes from Aspell leditdist.cpp. Rewritten in C and added support // for multi-byte characters. static int spell_edit_score_limit(slang_T *slang, char_u *badword, char_u *goodword, int limit) { limitscore_T stack[10]; // allow for over 3 * 2 edits int stackidx; int bi, gi; int bi2, gi2; int bc, gc; int score; int score_off; int minscore; int round; // Multi-byte characters require a bit more work, use a different function // to avoid testing "has_mbyte" quite often. if (has_mbyte) return spell_edit_score_limit_w(slang, badword, goodword, limit); // The idea is to go from start to end over the words. So long as // characters are equal just continue, this always gives the lowest score. // When there is a difference try several alternatives. Each alternative // increases "score" for the edit distance. Some of the alternatives are // pushed unto a stack and tried later, some are tried right away. At the // end of the word the score for one alternative is known. The lowest // possible score is stored in "minscore". stackidx = 0; bi = 0; gi = 0; score = 0; minscore = limit + 1; for (;; ) { // Skip over an equal part, score remains the same. for (;; ) { bc = badword[bi]; gc = goodword[gi]; if (bc != gc) // stop at a char that's different break; if (bc == NUL) { // both words end if (score < minscore) minscore = score; goto pop; // do next alternative } ++bi; ++gi; } if (gc == NUL) { // goodword ends, delete badword chars do { if ((score += SCORE_DEL) >= minscore) goto pop; // do next alternative } while (badword[++bi] != NUL); minscore = score; } else if (bc == NUL) { // badword ends, insert badword chars do { if ((score += SCORE_INS) >= minscore) goto pop; // do next alternative } while (goodword[++gi] != NUL); minscore = score; } else { // both words continue // If not close to the limit, perform a change. Only try changes // that may lead to a lower score than "minscore". // round 0: try deleting a char from badword // round 1: try inserting a char in badword for (round = 0; round <= 1; ++round) { score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS); if (score_off < minscore) { if (score_off + SCORE_EDIT_MIN >= minscore) { // Near the limit, rest of the words must match. We // can check that right now, no need to push an item // onto the stack. bi2 = bi + 1 - round; gi2 = gi + round; while (goodword[gi2] == badword[bi2]) { if (goodword[gi2] == NUL) { minscore = score_off; break; } ++bi2; ++gi2; } } else { // try deleting/inserting a character later stack[stackidx].badi = bi + 1 - round; stack[stackidx].goodi = gi + round; stack[stackidx].score = score_off; ++stackidx; } } } if (score + SCORE_SWAP < minscore) { // If swapping two characters makes a match then the // substitution is more expensive, thus there is no need to // try both. if (gc == badword[bi + 1] && bc == goodword[gi + 1]) { // Swap two characters, that is: skip them. gi += 2; bi += 2; score += SCORE_SWAP; continue; } } // Substitute one character for another which is the same // thing as deleting a character from both goodword and badword. // Use a better score when there is only a case difference. if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc)) score += SCORE_ICASE; else { // For a similar character use SCORE_SIMILAR. if (slang != NULL && slang->sl_has_map && similar_chars(slang, gc, bc)) score += SCORE_SIMILAR; else score += SCORE_SUBST; } if (score < minscore) { // Do the substitution. ++gi; ++bi; continue; } } pop: // Get here to try the next alternative, pop it from the stack. if (stackidx == 0) // stack is empty, finished break; // pop an item from the stack --stackidx; gi = stack[stackidx].goodi; bi = stack[stackidx].badi; score = stack[stackidx].score; } // When the score goes over "limit" it may actually be much higher. // Return a very large number to avoid going below the limit when giving a // bonus. if (minscore > limit) return SCORE_MAXMAX; return minscore; } // Multi-byte version of spell_edit_score_limit(). // Keep it in sync with the above! static int spell_edit_score_limit_w(slang_T *slang, char_u *badword, char_u *goodword, int limit) { limitscore_T stack[10]; // allow for over 3 * 2 edits int stackidx; int bi, gi; int bi2, gi2; int bc, gc; int score; int score_off; int minscore; int round; char_u *p; int wbadword[MAXWLEN]; int wgoodword[MAXWLEN]; // Get the characters from the multi-byte strings and put them in an // int array for easy access. bi = 0; for (p = badword; *p != NUL; ) wbadword[bi++] = mb_cptr2char_adv(&p); wbadword[bi++] = 0; gi = 0; for (p = goodword; *p != NUL; ) wgoodword[gi++] = mb_cptr2char_adv(&p); wgoodword[gi++] = 0; // The idea is to go from start to end over the words. So long as // characters are equal just continue, this always gives the lowest score. // When there is a difference try several alternatives. Each alternative // increases "score" for the edit distance. Some of the alternatives are // pushed unto a stack and tried later, some are tried right away. At the // end of the word the score for one alternative is known. The lowest // possible score is stored in "minscore". stackidx = 0; bi = 0; gi = 0; score = 0; minscore = limit + 1; for (;; ) { // Skip over an equal part, score remains the same. for (;; ) { bc = wbadword[bi]; gc = wgoodword[gi]; if (bc != gc) // stop at a char that's different break; if (bc == NUL) { // both words end if (score < minscore) minscore = score; goto pop; // do next alternative } ++bi; ++gi; } if (gc == NUL) { // goodword ends, delete badword chars do { if ((score += SCORE_DEL) >= minscore) goto pop; // do next alternative } while (wbadword[++bi] != NUL); minscore = score; } else if (bc == NUL) { // badword ends, insert badword chars do { if ((score += SCORE_INS) >= minscore) goto pop; // do next alternative } while (wgoodword[++gi] != NUL); minscore = score; } else { // both words continue // If not close to the limit, perform a change. Only try changes // that may lead to a lower score than "minscore". // round 0: try deleting a char from badword // round 1: try inserting a char in badword for (round = 0; round <= 1; ++round) { score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS); if (score_off < minscore) { if (score_off + SCORE_EDIT_MIN >= minscore) { // Near the limit, rest of the words must match. We // can check that right now, no need to push an item // onto the stack. bi2 = bi + 1 - round; gi2 = gi + round; while (wgoodword[gi2] == wbadword[bi2]) { if (wgoodword[gi2] == NUL) { minscore = score_off; break; } ++bi2; ++gi2; } } else { // try deleting a character from badword later stack[stackidx].badi = bi + 1 - round; stack[stackidx].goodi = gi + round; stack[stackidx].score = score_off; ++stackidx; } } } if (score + SCORE_SWAP < minscore) { // If swapping two characters makes a match then the // substitution is more expensive, thus there is no need to // try both. if (gc == wbadword[bi + 1] && bc == wgoodword[gi + 1]) { // Swap two characters, that is: skip them. gi += 2; bi += 2; score += SCORE_SWAP; continue; } } // Substitute one character for another which is the same // thing as deleting a character from both goodword and badword. // Use a better score when there is only a case difference. if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc)) score += SCORE_ICASE; else { // For a similar character use SCORE_SIMILAR. if (slang != NULL && slang->sl_has_map && similar_chars(slang, gc, bc)) score += SCORE_SIMILAR; else score += SCORE_SUBST; } if (score < minscore) { // Do the substitution. ++gi; ++bi; continue; } } pop: // Get here to try the next alternative, pop it from the stack. if (stackidx == 0) // stack is empty, finished break; // pop an item from the stack --stackidx; gi = stack[stackidx].goodi; bi = stack[stackidx].badi; score = stack[stackidx].score; } // When the score goes over "limit" it may actually be much higher. // Return a very large number to avoid going below the limit when giving a // bonus. if (minscore > limit) return SCORE_MAXMAX; return minscore; } // ":spellinfo" void ex_spellinfo(exarg_T *eap) { langp_T *lp; char_u *p; if (no_spell_checking(curwin)) return; msg_start(); for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); msg_puts((char_u *)"file: "); msg_puts(lp->lp_slang->sl_fname); msg_putchar('\n'); p = lp->lp_slang->sl_info; if (p != NULL) { msg_puts(p); msg_putchar('\n'); } } msg_end(); } #define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree #define DUMPFLAG_COUNT 2 // include word count #define DUMPFLAG_ICASE 4 // ignore case when finding matches #define DUMPFLAG_ONECAP 8 // pattern starts with capital #define DUMPFLAG_ALLCAP 16 // pattern is all capitals // ":spelldump" void ex_spelldump(exarg_T *eap) { char_u *spl; long dummy; if (no_spell_checking(curwin)) return; get_option_value((char_u*)"spl", &dummy, &spl, OPT_LOCAL); // Create a new empty buffer in a new window. do_cmdline_cmd("new"); // enable spelling locally in the new window set_option_value((char_u*)"spell", true, (char_u*)"", OPT_LOCAL); set_option_value((char_u*)"spl", dummy, spl, OPT_LOCAL); xfree(spl); if (!bufempty() || !buf_valid(curbuf)) return; spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0); // Delete the empty line that we started with. if (curbuf->b_ml.ml_line_count > 1) ml_delete(curbuf->b_ml.ml_line_count, FALSE); redraw_later(NOT_VALID); } // Go through all possible words and: // 1. When "pat" is NULL: dump a list of all words in the current buffer. // "ic" and "dir" are not used. // 2. When "pat" is not NULL: add matching words to insert mode completion. void spell_dump_compl ( char_u *pat, // leading part of the word int ic, // ignore case int *dir, // direction for adding matches int dumpflags_arg // DUMPFLAG_* ) { langp_T *lp; slang_T *slang; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u word[MAXWLEN]; int c; char_u *byts; idx_T *idxs; linenr_T lnum = 0; int round; int depth; int n; int flags; char_u *region_names = NULL; // region names being used bool do_region = true; // dump region names and numbers char_u *p; int dumpflags = dumpflags_arg; int patlen; // When ignoring case or when the pattern starts with capital pass this on // to dump_word(). if (pat != NULL) { if (ic) dumpflags |= DUMPFLAG_ICASE; else { n = captype(pat, NULL); if (n == WF_ONECAP) dumpflags |= DUMPFLAG_ONECAP; else if (n == WF_ALLCAP && (int)STRLEN(pat) > mb_ptr2len(pat) ) dumpflags |= DUMPFLAG_ALLCAP; } } // Find out if we can support regions: All languages must support the same // regions or none at all. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); p = lp->lp_slang->sl_regions; if (p[0] != 0) { if (region_names == NULL) // first language with regions region_names = p; else if (STRCMP(region_names, p) != 0) { do_region = false; // region names are different break; } } } if (do_region && region_names != NULL) { if (pat == NULL) { vim_snprintf((char *)IObuff, IOSIZE, "/regions=%s", region_names); ml_append(lnum++, IObuff, (colnr_T)0, FALSE); } } else do_region = false; // Loop over all files loaded for the entries in 'spelllang'. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (slang->sl_fbyts == NULL) // reloading failed continue; if (pat == NULL) { vim_snprintf((char *)IObuff, IOSIZE, "# file: %s", slang->sl_fname); ml_append(lnum++, IObuff, (colnr_T)0, FALSE); } // When matching with a pattern and there are no prefixes only use // parts of the tree that match "pat". if (pat != NULL && slang->sl_pbyts == NULL) patlen = (int)STRLEN(pat); else patlen = -1; // round 1: case-folded tree // round 2: keep-case tree for (round = 1; round <= 2; ++round) { if (round == 1) { dumpflags &= ~DUMPFLAG_KEEPCASE; byts = slang->sl_fbyts; idxs = slang->sl_fidxs; } else { dumpflags |= DUMPFLAG_KEEPCASE; byts = slang->sl_kbyts; idxs = slang->sl_kidxs; } if (byts == NULL) continue; // array is empty depth = 0; arridx[0] = 0; curi[0] = 1; while (depth >= 0 && !got_int && (pat == NULL || !compl_interrupted)) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. --depth; line_breakcheck(); ins_compl_check_keys(50, false); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // End of word, deal with the word. // Don't use keep-case words in the fold-case tree, // they will appear in the keep-case tree. // Only use the word when the region matches. flags = (int)idxs[n]; if ((round == 2 || (flags & WF_KEEPCAP) == 0) && (flags & WF_NEEDCOMP) == 0 && (do_region || (flags & WF_REGION) == 0 || (((unsigned)flags >> 16) & lp->lp_region) != 0)) { word[depth] = NUL; if (!do_region) flags &= ~WF_REGION; // Dump the basic word if there is no prefix or // when it's the first one. c = (unsigned)flags >> 24; if (c == 0 || curi[depth] == 2) { dump_word(slang, word, pat, dir, dumpflags, flags, lnum); if (pat == NULL) ++lnum; } // Apply the prefix, if there is one. if (c != 0) lnum = dump_prefixes(slang, word, pat, dir, dumpflags, flags, lnum); } } else { // Normal char, go one level deeper. word[depth++] = c; arridx[depth] = idxs[n]; curi[depth] = 1; // Check if this characters matches with the pattern. // If not skip the whole tree below it. // Always ignore case here, dump_word() will check // proper case later. This isn't exactly right when // length changes for multi-byte characters with // ignore case... assert(depth >= 0); if (depth <= patlen && mb_strnicmp(word, pat, (size_t)depth) != 0) --depth; } } } } } } // Dumps one word: apply case modifications and append a line to the buffer. // When "lnum" is zero add insert mode completion. static void dump_word(slang_T *slang, char_u *word, char_u *pat, int *dir, int dumpflags, int wordflags, linenr_T lnum) { bool keepcap = false; char_u *p; char_u *tw; char_u cword[MAXWLEN]; char_u badword[MAXWLEN + 10]; int i; int flags = wordflags; if (dumpflags & DUMPFLAG_ONECAP) flags |= WF_ONECAP; if (dumpflags & DUMPFLAG_ALLCAP) flags |= WF_ALLCAP; if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) { // Need to fix case according to "flags". make_case_word(word, cword, flags); p = cword; } else { p = word; if ((dumpflags & DUMPFLAG_KEEPCASE) && ((captype(word, NULL) & WF_KEEPCAP) == 0 || (flags & WF_FIXCAP) != 0)) keepcap = true; } tw = p; if (pat == NULL) { // Add flags and regions after a slash. if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) { STRCPY(badword, p); STRCAT(badword, "/"); if (keepcap) STRCAT(badword, "="); if (flags & WF_BANNED) STRCAT(badword, "!"); else if (flags & WF_RARE) STRCAT(badword, "?"); if (flags & WF_REGION) for (i = 0; i < 7; ++i) if (flags & (0x10000 << i)) sprintf((char *)badword + STRLEN(badword), "%d", i + 1); p = badword; } if (dumpflags & DUMPFLAG_COUNT) { hashitem_T *hi; // Include the word count for ":spelldump!". hi = hash_find(&slang->sl_wordcount, tw); if (!HASHITEM_EMPTY(hi)) { vim_snprintf((char *)IObuff, IOSIZE, "%s\t%d", tw, HI2WC(hi)->wc_count); p = IObuff; } } ml_append(lnum, p, (colnr_T)0, FALSE); } else if (((dumpflags & DUMPFLAG_ICASE) ? mb_strnicmp(p, pat, STRLEN(pat)) == 0 : STRNCMP(p, pat, STRLEN(pat)) == 0) && ins_compl_add_infercase(p, (int)STRLEN(p), p_ic, NULL, *dir, 0) == OK) // if dir was BACKWARD then honor it just once *dir = FORWARD; } // For ":spelldump": Find matching prefixes for "word". Prepend each to // "word" and append a line to the buffer. // When "lnum" is zero add insert mode completion. // Return the updated line number. static linenr_T dump_prefixes ( slang_T *slang, char_u *word, // case-folded word char_u *pat, int *dir, int dumpflags, int flags, // flags with prefix ID linenr_T startlnum ) { idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u prefix[MAXWLEN]; char_u word_up[MAXWLEN]; bool has_word_up = false; int c; char_u *byts; idx_T *idxs; linenr_T lnum = startlnum; int depth; int n; int len; int i; // If the word starts with a lower-case letter make the word with an // upper-case letter in word_up[]. c = PTR2CHAR(word); if (SPELL_TOUPPER(c) != c) { onecap_copy(word, word_up, true); has_word_up = true; } byts = slang->sl_pbyts; idxs = slang->sl_pidxs; if (byts != NULL) { // array not is empty // Loop over all prefixes, building them byte-by-byte in prefix[]. // When at the end of a prefix check that it supports "flags". depth = 0; arridx[0] = 0; curi[0] = 1; while (depth >= 0 && !got_int) { n = arridx[depth]; len = byts[n]; if (curi[depth] > len) { // Done all bytes at this node, go up one level. --depth; line_breakcheck(); } else { // Do one more byte at this node. n += curi[depth]; ++curi[depth]; c = byts[n]; if (c == 0) { // End of prefix, find out how many IDs there are. for (i = 1; i < len; ++i) if (byts[n + i] != 0) break; curi[depth] += i - 1; c = valid_word_prefix(i, n, flags, word, slang, false); if (c != 0) { STRLCPY(prefix + depth, word, MAXWLEN - depth); dump_word(slang, prefix, pat, dir, dumpflags, (c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum); if (lnum != 0) ++lnum; } // Check for prefix that matches the word when the // first letter is upper-case, but only if the prefix has // a condition. if (has_word_up) { c = valid_word_prefix(i, n, flags, word_up, slang, true); if (c != 0) { STRLCPY(prefix + depth, word_up, MAXWLEN - depth); dump_word(slang, prefix, pat, dir, dumpflags, (c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum); if (lnum != 0) ++lnum; } } } else { // Normal char, go one level deeper. prefix[depth++] = c; arridx[depth] = idxs[n]; curi[depth] = 1; } } } } return lnum; } // Move "p" to the end of word "start". // Uses the spell-checking word characters. char_u *spell_to_word_end(char_u *start, win_T *win) { char_u *p = start; while (*p != NUL && spell_iswordp(p, win)) mb_ptr_adv(p); return p; } // For Insert mode completion CTRL-X s: // Find start of the word in front of column "startcol". // We don't check if it is badly spelled, with completion we can only change // the word in front of the cursor. // Returns the column number of the word. int spell_word_start(int startcol) { char_u *line; char_u *p; int col = 0; if (no_spell_checking(curwin)) return startcol; // Find a word character before "startcol". line = get_cursor_line_ptr(); for (p = line + startcol; p > line; ) { mb_ptr_back(line, p); if (spell_iswordp_nmw(p, curwin)) break; } // Go back to start of the word. while (p > line) { col = (int)(p - line); mb_ptr_back(line, p); if (!spell_iswordp(p, curwin)) break; col = 0; } return col; } // Need to check for 'spellcapcheck' now, the word is removed before // expand_spelling() is called. Therefore the ugly global variable. static bool spell_expand_need_cap; void spell_expand_check_cap(colnr_T col) { spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col); } // Get list of spelling suggestions. // Used for Insert mode completion CTRL-X ?. // Returns the number of matches. The matches are in "matchp[]", array of // allocated strings. int expand_spelling(linenr_T lnum, char_u *pat, char_u ***matchp) { garray_T ga; spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true); *matchp = ga.ga_data; return ga.ga_len; }