// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com // spellfile.c: code for reading and writing spell files. // // See spell.c for information about spell checking. // Vim spell file format:
// // // // // //
: // // 8 bytes "VIMspell" // 1 byte VIMSPELLVERSION // // // Sections make it possible to add information to the .spl file without // making it incompatible with previous versions. There are two kinds of // sections: // 1. Not essential for correct spell checking. E.g. for making suggestions. // These are skipped when not supported. // 2. Optional information, but essential for spell checking when present. // E.g. conditions for affixes. When this section is present but not // supported an error message is given. // // :
... // //
: (section contents) // // 1 byte number from 0 to 254 identifying the section // // 1 byte SNF_REQUIRED: this section is required for correct // spell checking // // 4 bytes length of section contents, MSB first // // 1 byte SN_END // // // sectionID == SN_INFO: // N bytes free format text with spell file info (version, // website, etc) // // sectionID == SN_REGION: ... // 2 bytes Up to MAXREGIONS region names: ca, au, etc. // Lower case. // First is region 1. // // sectionID == SN_CHARFLAGS: // // 1 byte Number of bytes in (should be 128). // N bytes List of flags (first one is for character 128): // 0x01 word character CF_WORD // 0x02 upper-case character CF_UPPER // 2 bytes Number of bytes in . // N bytes Folded characters, first one is for character 128. // // sectionID == SN_MIDWORD: // N bytes Characters that are word characters only when used // in the middle of a word. // // sectionID == SN_PREFCOND: ... // 2 bytes Number of items following. // : // 1 byte Length of . // N bytes Condition for the prefix. // // sectionID == SN_REP: ... // 2 bytes number of items, MSB first. // : // 1 byte length of // N bytes "from" part of replacement // 1 byte length of // N bytes "to" part of replacement // // sectionID == SN_REPSAL: ... // just like SN_REP but for soundfolded words // // sectionID == SN_SAL: ... // 1 byte flags for soundsalike conversion: // SAL_F0LLOWUP // SAL_COLLAPSE // SAL_REM_ACCENTS // 2 bytes number of items following // : // 1 byte length of // N bytes "from" part of soundsalike // 1 byte length of // N bytes "to" part of soundsalike // // sectionID == SN_SOFO: // 2 bytes length of // N bytes "from" part of soundfold // 2 bytes length of // N bytes "to" part of soundfold // // sectionID == SN_SUGFILE: // 8 bytes time in seconds that must match with .sug file // // sectionID == SN_NOSPLITSUGS: nothing // // sectionID == SN_NOCOMPOUNDSUGS: nothing // // sectionID == SN_WORDS: ... // N bytes NUL terminated common word // // sectionID == SN_MAP: // N bytes String with sequences of similar characters, // separated by slashes. // // sectionID == SN_COMPOUND: // ... // 1 byte Maximum nr of words in compound word. // 1 byte Minimal word length for compounding. // 1 byte Maximum nr of syllables in compound word. // 2 bytes COMP_ flags. // 2 bytes number of following // N bytes Flags from COMPOUNDRULE items, separated by // slashes. // // : // 1 byte length of // N bytes end or begin chars from CHECKCOMPOUNDPATTERN // // sectionID == SN_NOBREAK: (empty, its presence is what matters) // // sectionID == SN_SYLLABLE: // N bytes String from SYLLABLE item. // // : // // : // // : // // // : ... // // 4 bytes Number of nodes following. MSB first. // // : ... // // 1 byte Number of siblings in this node. The siblings // follow in sorted order. // // : [ // | [] [] [] // | [] ] // // 1 byte Byte value of the sibling. Special cases: // BY_NOFLAGS: End of word without flags and for all // regions. // For PREFIXTREE and // follow. // BY_FLAGS: End of word, follow. // For PREFIXTREE , // and follow. // BY_FLAGS2: End of word, and // follow. Not used in PREFIXTREE. // BY_INDEX: Child of sibling is shared, // and follow. // // 3 bytes Index of child for this sibling, MSB first. // // 1 byte Byte value of the sibling. // // 1 byte Bitmask of: // WF_ALLCAP word must have only capitals // WF_ONECAP first char of word must be capital // WF_KEEPCAP keep-case word // WF_FIXCAP keep-case word, all caps not allowed // WF_RARE rare word // WF_BANNED bad word // WF_REGION follows // WF_AFX follows // // 1 byte Bitmask of: // WF_HAS_AFF >> 8 word includes affix // WF_NEEDCOMP >> 8 word only valid in compound // WF_NOSUGGEST >> 8 word not used for suggestions // WF_COMPROOT >> 8 word already a compound // WF_NOCOMPBEF >> 8 no compounding before this word // WF_NOCOMPAFT >> 8 no compounding after this word // // 1 byte Bitmask of: // WFP_RARE rare prefix // WFP_NC non-combining prefix // WFP_UP letter after prefix made upper case // // 1 byte Bitmask for regions in which word is valid. When // omitted it's valid in all regions. // Lowest bit is for region 1. // // 1 byte ID of affix that can be used with this word. In // PREFIXTREE used for the required prefix ID. // // 2 bytes Prefix condition number, index in list // from HEADER. // // All text characters are in 'encoding', but stored as single bytes. // Vim .sug file format: // // // // : // // 6 bytes "VIMsug" // 1 byte VIMSUGVERSION // 8 bytes timestamp that must match with .spl file // // // : (see above, no flags or region used) // // // : ... // // 4 bytes number of following // // : ... NUL // // : X bytes word number that results in this soundfolded word, // stored as an offset to the previous number in as // few bytes as possible, see offset2bytes()) #include #include #include #include "nvim/arglist.h" #include "nvim/ascii.h" #include "nvim/buffer.h" #include "nvim/charset.h" #include "nvim/drawscreen.h" #include "nvim/ex_cmds2.h" #include "nvim/fileio.h" #include "nvim/memline.h" #include "nvim/memory.h" #include "nvim/option.h" #include "nvim/os/input.h" #include "nvim/os/os.h" #include "nvim/path.h" #include "nvim/regexp.h" #include "nvim/runtime.h" #include "nvim/spell.h" #include "nvim/spell_defs.h" #include "nvim/spellfile.h" #include "nvim/ui.h" #include "nvim/undo.h" #include "nvim/vim.h" #ifndef UNIX // it's in os/unix_defs.h for Unix # include // for time_t #endif // Special byte values for . Some are only used in the tree for // postponed prefixes, some only in the other trees. This is a bit messy... #define BY_NOFLAGS 0 // end of word without flags or region; for // postponed prefix: no #define BY_INDEX 1 // child is shared, index follows #define BY_FLAGS 2 // end of word, byte follows; for // postponed prefix: follows #define BY_FLAGS2 3 // end of word, and bytes // follow; never used in prefix tree #define BY_SPECIAL BY_FLAGS2 // highest special byte value #define ZERO_FLAG 65009 // used when flag is zero: "0" // Flags used in .spl file for soundsalike flags. #define SAL_F0LLOWUP 1 #define SAL_COLLAPSE 2 #define SAL_REM_ACCENTS 4 #define VIMSPELLMAGIC "VIMspell" // string at start of Vim spell file #define VIMSPELLMAGICL (sizeof(VIMSPELLMAGIC) - 1) #define VIMSPELLVERSION 50 // Section IDs. Only renumber them when VIMSPELLVERSION changes! #define SN_REGION 0 // section #define SN_CHARFLAGS 1 // charflags section #define SN_MIDWORD 2 // section #define SN_PREFCOND 3 // section #define SN_REP 4 // REP items section #define SN_SAL 5 // SAL items section #define SN_SOFO 6 // soundfolding section #define SN_MAP 7 // MAP items section #define SN_COMPOUND 8 // compound words section #define SN_SYLLABLE 9 // syllable section #define SN_NOBREAK 10 // NOBREAK section #define SN_SUGFILE 11 // timestamp for .sug file #define SN_REPSAL 12 // REPSAL items section #define SN_WORDS 13 // common words #define SN_NOSPLITSUGS 14 // don't split word for suggestions #define SN_INFO 15 // info section #define SN_NOCOMPOUNDSUGS 16 // don't compound for suggestions #define SN_END 255 // end of sections #define SNF_REQUIRED 1 // : required section #define CF_WORD 0x01 #define CF_UPPER 0x02 static char *e_spell_trunc = N_("E758: Truncated spell file"); static char *e_illegal_character_in_word = N_("E1280: Illegal character in word"); static char *e_afftrailing = N_("Trailing text in %s line %d: %s"); static char *e_affname = N_("Affix name too long in %s line %d: %s"); static char *msg_compressing = N_("Compressing word tree..."); #define MAXLINELEN 500 // Maximum length in bytes of a line in a .aff // and .dic file. // Main structure to store the contents of a ".aff" file. typedef struct afffile_S { char_u *af_enc; // "SET", normalized, alloc'ed string or NULL int af_flagtype; // AFT_CHAR, AFT_LONG, AFT_NUM or AFT_CAPLONG unsigned af_rare; // RARE ID for rare word unsigned af_keepcase; // KEEPCASE ID for keep-case word unsigned af_bad; // BAD ID for banned word unsigned af_needaffix; // NEEDAFFIX ID unsigned af_circumfix; // CIRCUMFIX ID unsigned af_needcomp; // NEEDCOMPOUND ID unsigned af_comproot; // COMPOUNDROOT ID unsigned af_compforbid; // COMPOUNDFORBIDFLAG ID unsigned af_comppermit; // COMPOUNDPERMITFLAG ID unsigned af_nosuggest; // NOSUGGEST ID int af_pfxpostpone; // postpone prefixes without chop string and // without flags bool af_ignoreextra; // IGNOREEXTRA present hashtab_T af_pref; // hashtable for prefixes, affheader_T hashtab_T af_suff; // hashtable for suffixes, affheader_T hashtab_T af_comp; // hashtable for compound flags, compitem_T } afffile_T; #define AFT_CHAR 0 // flags are one character #define AFT_LONG 1 // flags are two characters #define AFT_CAPLONG 2 // flags are one or two characters #define AFT_NUM 3 // flags are numbers, comma separated typedef struct affentry_S affentry_T; // Affix entry from ".aff" file. Used for prefixes and suffixes. struct affentry_S { affentry_T *ae_next; // next affix with same name/number char_u *ae_chop; // text to chop off basic word (can be NULL) char_u *ae_add; // text to add to basic word (can be NULL) char_u *ae_flags; // flags on the affix (can be NULL) char_u *ae_cond; // condition (NULL for ".") regprog_T *ae_prog; // regexp program for ae_cond or NULL char ae_compforbid; // COMPOUNDFORBIDFLAG found char ae_comppermit; // COMPOUNDPERMITFLAG found }; #define AH_KEY_LEN 17 // 2 x 8 bytes + NUL // Affix header from ".aff" file. Used for af_pref and af_suff. typedef struct affheader_S { char ah_key[AH_KEY_LEN]; // key for hashtab == name of affix unsigned ah_flag; // affix name as number, uses "af_flagtype" int ah_newID; // prefix ID after renumbering; 0 if not used int ah_combine; // suffix may combine with prefix int ah_follows; // another affix block should be following affentry_T *ah_first; // first affix entry } affheader_T; #define HI2AH(hi) ((affheader_T *)(hi)->hi_key) // Flag used in compound items. typedef struct compitem_S { char_u ci_key[AH_KEY_LEN]; // key for hashtab == name of compound unsigned ci_flag; // affix name as number, uses "af_flagtype" int ci_newID; // affix ID after renumbering. } compitem_T; #define HI2CI(hi) ((compitem_T *)(hi)->hi_key) // Structure that is used to store the items in the word tree. This avoids // the need to keep track of each allocated thing, everything is freed all at // once after ":mkspell" is done. // Note: "sb_next" must be just before "sb_data" to make sure the alignment of // "sb_data" is correct for systems where pointers must be aligned on // pointer-size boundaries and sizeof(pointer) > sizeof(int) (e.g., Sparc). #define SBLOCKSIZE 16000 // size of sb_data typedef struct sblock_S sblock_T; struct sblock_S { int sb_used; // nr of bytes already in use sblock_T *sb_next; // next block in list char_u sb_data[1]; // data, actually longer }; // A node in the tree. typedef struct wordnode_S wordnode_T; struct wordnode_S { union { // shared to save space char_u hashkey[6]; // the hash key, only used while compressing int index; // index in written nodes (valid after first // round) } wn_u1; union { // shared to save space wordnode_T *next; // next node with same hash key wordnode_T *wnode; // parent node that will write this node } wn_u2; wordnode_T *wn_child; // child (next byte in word) wordnode_T *wn_sibling; // next sibling (alternate byte in word, // always sorted) int wn_refs; // Nr. of references to this node. Only // relevant for first node in a list of // siblings, in following siblings it is // always one. char_u wn_byte; // Byte for this node. NUL for word end // Info for when "wn_byte" is NUL. // In PREFIXTREE "wn_region" is used for the prefcondnr. // In the soundfolded word tree "wn_flags" has the MSW of the wordnr and // "wn_region" the LSW of the wordnr. char_u wn_affixID; // supported/required prefix ID or 0 uint16_t wn_flags; // WF_ flags short wn_region; // region mask #ifdef SPELL_PRINTTREE int wn_nr; // sequence nr for printing #endif }; #define WN_MASK 0xffff // mask relevant bits of "wn_flags" #define HI2WN(hi) (wordnode_T *)((hi)->hi_key) // Info used while reading the spell files. typedef struct spellinfo_S { wordnode_T *si_foldroot; // tree with case-folded words long si_foldwcount; // nr of words in si_foldroot wordnode_T *si_keeproot; // tree with keep-case words long si_keepwcount; // nr of words in si_keeproot wordnode_T *si_prefroot; // tree with postponed prefixes long si_sugtree; // creating the soundfolding trie sblock_T *si_blocks; // memory blocks used long si_blocks_cnt; // memory blocks allocated int si_did_emsg; // true when ran out of memory long si_compress_cnt; // words to add before lowering // compression limit wordnode_T *si_first_free; // List of nodes that have been freed during // compression, linked by "wn_child" field. long si_free_count; // number of nodes in si_first_free #ifdef SPELL_PRINTTREE int si_wordnode_nr; // sequence nr for nodes #endif buf_T *si_spellbuf; // buffer used to store soundfold word table int si_ascii; // handling only ASCII words int si_add; // addition file int si_clear_chartab; // when true clear char tables int si_region; // region mask vimconv_T si_conv; // for conversion to 'encoding' int si_memtot; // runtime memory used int si_verbose; // verbose messages int si_msg_count; // number of words added since last message char_u *si_info; // info text chars or NULL int si_region_count; // number of regions supported (1 when there // are no regions) char_u si_region_name[MAXREGIONS * 2 + 1]; // region names; used only if // si_region_count > 1) garray_T si_rep; // list of fromto_T entries from REP lines garray_T si_repsal; // list of fromto_T entries from REPSAL lines garray_T si_sal; // list of fromto_T entries from SAL lines char_u *si_sofofr; // SOFOFROM text char_u *si_sofoto; // SOFOTO text int si_nosugfile; // NOSUGFILE item found int si_nosplitsugs; // NOSPLITSUGS item found int si_nocompoundsugs; // NOCOMPOUNDSUGS item found int si_followup; // soundsalike: ? int si_collapse; // soundsalike: ? hashtab_T si_commonwords; // hashtable for common words time_t si_sugtime; // timestamp for .sug file int si_rem_accents; // soundsalike: remove accents garray_T si_map; // MAP info concatenated char_u *si_midword; // MIDWORD chars or NULL int si_compmax; // max nr of words for compounding int si_compminlen; // minimal length for compounding int si_compsylmax; // max nr of syllables for compounding int si_compoptions; // COMP_ flags garray_T si_comppat; // CHECKCOMPOUNDPATTERN items, each stored as // a string char_u *si_compflags; // flags used for compounding char_u si_nobreak; // NOBREAK char_u *si_syllable; // syllable string garray_T si_prefcond; // table with conditions for postponed // prefixes, each stored as a string int si_newprefID; // current value for ah_newID int si_newcompID; // current value for compound ID } spellinfo_T; #ifdef INCLUDE_GENERATED_DECLARATIONS # include "spellfile.c.generated.h" #endif /// Read n bytes from fd to buf, returning on errors /// /// @param[out] buf Buffer to read to, must be at least n bytes long. /// @param[in] n Amount of bytes to read. /// @param fd FILE* to read from. /// @param exit_code Code to run before returning. /// /// @return Allows to proceed if everything is OK, returns SP_TRUNCERROR if /// there are not enough bytes, returns SP_OTHERERROR if reading failed. #define SPELL_READ_BYTES(buf, n, fd, exit_code) \ do { \ const size_t n__SPRB = (n); \ FILE *const fd__SPRB = (fd); \ char *const buf__SPRB = (buf); \ const size_t read_bytes__SPRB = fread(buf__SPRB, 1, n__SPRB, fd__SPRB); \ if (read_bytes__SPRB != n__SPRB) { \ exit_code; \ return feof(fd__SPRB) ? SP_TRUNCERROR : SP_OTHERERROR; \ } \ } while (0) /// Like #SPELL_READ_BYTES, but also error out if NUL byte was read /// /// @return Allows to proceed if everything is OK, returns SP_TRUNCERROR if /// there are not enough bytes, returns SP_OTHERERROR if reading failed, /// returns SP_FORMERROR if read out a NUL byte. #define SPELL_READ_NONNUL_BYTES(buf, n, fd, exit_code) \ do { \ const size_t n__SPRNB = (n); \ FILE *const fd__SPRNB = (fd); \ char *const buf__SPRNB = (buf); \ SPELL_READ_BYTES(buf__SPRNB, n__SPRNB, fd__SPRNB, exit_code); \ if (memchr(buf__SPRNB, NUL, (size_t)n__SPRNB)) { \ exit_code; \ return SP_FORMERROR; \ } \ } while (0) /// Check that spell file starts with a magic string /// /// Does not check for version of the file. /// /// @param fd File to check. /// /// @return 0 in case of success, SP_TRUNCERROR if file contains not enough /// bytes, SP_FORMERROR if it does not match magic string and /// SP_OTHERERROR if reading file failed. static inline int spell_check_magic_string(FILE *const fd) FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_ALWAYS_INLINE { char buf[VIMSPELLMAGICL]; SPELL_READ_BYTES(buf, VIMSPELLMAGICL, fd,; ); if (memcmp(buf, VIMSPELLMAGIC, VIMSPELLMAGICL) != 0) { return SP_FORMERROR; } return 0; } /// Load one spell file and store the info into a slang_T. /// /// This is invoked in three ways: /// - From spell_load_cb() to load a spell file for the first time. "lang" is /// the language name, "old_lp" is NULL. Will allocate an slang_T. /// - To reload a spell file that was changed. "lang" is NULL and "old_lp" /// points to the existing slang_T. /// - Just after writing a .spl file; it's read back to produce the .sug file. /// "old_lp" is NULL and "lang" is NULL. Will allocate an slang_T. /// /// @param silent no error if file doesn't exist /// /// @return the slang_T the spell file was loaded into. NULL for error. slang_T *spell_load_file(char *fname, char *lang, slang_T *old_lp, bool silent) { FILE *fd; char *p; int n; int len; slang_T *lp = NULL; int c = 0; int res; bool did_estack_push = false; fd = os_fopen(fname, "r"); if (fd == NULL) { if (!silent) { semsg(_(e_notopen), fname); } else if (p_verbose > 2) { verbose_enter(); smsg((char *)e_notopen, fname); verbose_leave(); } goto endFAIL; } if (p_verbose > 2) { verbose_enter(); smsg(_("Reading spell file \"%s\""), fname); verbose_leave(); } if (old_lp == NULL) { lp = slang_alloc(lang); // Remember the file name, used to reload the file when it's updated. lp->sl_fname = xstrdup(fname); // Check for .add.spl. lp->sl_add = strstr(path_tail(fname), SPL_FNAME_ADD) != NULL; } else { lp = old_lp; } // Set sourcing_name, so that error messages mention the file name. estack_push(ETYPE_SPELL, fname, 0); did_estack_push = true; //
: const int scms_ret = spell_check_magic_string(fd); switch (scms_ret) { case SP_FORMERROR: case SP_TRUNCERROR: semsg("%s", _("E757: This does not look like a spell file")); goto endFAIL; case SP_OTHERERROR: semsg(_("E5042: Failed to read spell file %s: %s"), fname, strerror(ferror(fd))); goto endFAIL; case 0: break; } c = getc(fd); // if (c < VIMSPELLVERSION) { emsg(_("E771: Old spell file, needs to be updated")); goto endFAIL; } else if (c > VIMSPELLVERSION) { emsg(_("E772: Spell file is for newer version of Vim")); goto endFAIL; } // :
... //
: (section contents) for (;;) { n = getc(fd); // or if (n == SN_END) { break; } c = getc(fd); // len = get4c(fd); // if (len < 0) { goto truncerr; } res = 0; switch (n) { case SN_INFO: lp->sl_info = READ_STRING(fd, len); // if (lp->sl_info == NULL) { goto endFAIL; } break; case SN_REGION: res = read_region_section(fd, lp, len); break; case SN_CHARFLAGS: res = read_charflags_section(fd); break; case SN_MIDWORD: lp->sl_midword = READ_STRING(fd, len); // if (lp->sl_midword == NULL) { goto endFAIL; } break; case SN_PREFCOND: res = read_prefcond_section(fd, lp); break; case SN_REP: res = read_rep_section(fd, &lp->sl_rep, lp->sl_rep_first); break; case SN_REPSAL: res = read_rep_section(fd, &lp->sl_repsal, lp->sl_repsal_first); break; case SN_SAL: res = read_sal_section(fd, lp); break; case SN_SOFO: res = read_sofo_section(fd, lp); break; case SN_MAP: p = (char *)READ_STRING(fd, len); // if (p == NULL) { goto endFAIL; } set_map_str(lp, (char_u *)p); xfree(p); break; case SN_WORDS: res = read_words_section(fd, lp, len); break; case SN_SUGFILE: lp->sl_sugtime = get8ctime(fd); // break; case SN_NOSPLITSUGS: lp->sl_nosplitsugs = true; break; case SN_NOCOMPOUNDSUGS: lp->sl_nocompoundsugs = true; break; case SN_COMPOUND: res = read_compound(fd, lp, len); break; case SN_NOBREAK: lp->sl_nobreak = true; break; case SN_SYLLABLE: lp->sl_syllable = READ_STRING(fd, len); // if (lp->sl_syllable == NULL) { goto endFAIL; } if (init_syl_tab(lp) != OK) { goto endFAIL; } break; default: // Unsupported section. When it's required give an error // message. When it's not required skip the contents. if (c & SNF_REQUIRED) { emsg(_("E770: Unsupported section in spell file")); goto endFAIL; } while (--len >= 0) { if (getc(fd) < 0) { goto truncerr; } } break; } someerror: if (res == SP_FORMERROR) { emsg(_(e_format)); goto endFAIL; } if (res == SP_TRUNCERROR) { truncerr: emsg(_(e_spell_trunc)); goto endFAIL; } if (res == SP_OTHERERROR) { goto endFAIL; } } // res = spell_read_tree(fd, &lp->sl_fbyts, &lp->sl_fbyts_len, &lp->sl_fidxs, false, 0); if (res != 0) { goto someerror; } // res = spell_read_tree(fd, &lp->sl_kbyts, NULL, &lp->sl_kidxs, false, 0); if (res != 0) { goto someerror; } // res = spell_read_tree(fd, &lp->sl_pbyts, NULL, &lp->sl_pidxs, true, lp->sl_prefixcnt); if (res != 0) { goto someerror; } // For a new file link it in the list of spell files. if (old_lp == NULL && lang != NULL) { lp->sl_next = first_lang; first_lang = lp; } goto endOK; endFAIL: if (lang != NULL) { // truncating the name signals the error to spell_load_lang() *lang = NUL; } if (lp != NULL && old_lp == NULL) { slang_free(lp); } lp = NULL; endOK: if (fd != NULL) { fclose(fd); } if (did_estack_push) { estack_pop(); } return lp; } // Fill in the wordcount fields for a trie. // Returns the total number of words. static void tree_count_words(char_u *byts, idx_T *idxs) { int depth; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; int c; idx_T n; int wordcount[MAXWLEN]; arridx[0] = 0; curi[0] = 1; wordcount[0] = 0; depth = 0; while (depth >= 0 && !got_int) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. idxs[arridx[depth]] = wordcount[depth]; if (depth > 0) { wordcount[depth - 1] += wordcount[depth]; } depth--; fast_breakcheck(); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; curi[depth]++; c = byts[n]; if (c == 0) { // End of word, count it. wordcount[depth]++; // Skip over any other NUL bytes (same word with different // flags). while (byts[n + 1] == 0) { n++; curi[depth]++; } } else { // Normal char, go one level deeper to count the words. depth++; arridx[depth] = idxs[n]; curi[depth] = 1; wordcount[depth] = 0; } } } } /// Load the .sug files for languages that have one and weren't loaded yet. void suggest_load_files(void) { langp_T *lp; slang_T *slang; char *dotp; FILE *fd; char_u buf[MAXWLEN]; int i; time_t timestamp; int wcount; int wordnr; garray_T ga; int c; // Do this for all languages that support sound folding. for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) { lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi); slang = lp->lp_slang; if (slang->sl_sugtime != 0 && !slang->sl_sugloaded) { // Change ".spl" to ".sug" and open the file. When the file isn't // found silently skip it. Do set "sl_sugloaded" so that we // don't try again and again. slang->sl_sugloaded = true; dotp = strrchr(slang->sl_fname, '.'); if (dotp == NULL || path_fnamecmp(dotp, ".spl") != 0) { continue; } STRCPY(dotp, ".sug"); fd = os_fopen(slang->sl_fname, "r"); if (fd == NULL) { goto nextone; } // : for (i = 0; i < VIMSUGMAGICL; i++) { buf[i] = (char_u)getc(fd); // } if (STRNCMP(buf, VIMSUGMAGIC, VIMSUGMAGICL) != 0) { semsg(_("E778: This does not look like a .sug file: %s"), slang->sl_fname); goto nextone; } c = getc(fd); // if (c < VIMSUGVERSION) { semsg(_("E779: Old .sug file, needs to be updated: %s"), slang->sl_fname); goto nextone; } else if (c > VIMSUGVERSION) { semsg(_("E780: .sug file is for newer version of Vim: %s"), slang->sl_fname); goto nextone; } // Check the timestamp, it must be exactly the same as the one in // the .spl file. Otherwise the word numbers won't match. timestamp = get8ctime(fd); // if (timestamp != slang->sl_sugtime) { semsg(_("E781: .sug file doesn't match .spl file: %s"), slang->sl_fname); goto nextone; } // : // Read the trie with the soundfolded words. if (spell_read_tree(fd, &slang->sl_sbyts, NULL, &slang->sl_sidxs, false, 0) != 0) { someerror: semsg(_("E782: error while reading .sug file: %s"), slang->sl_fname); slang_clear_sug(slang); goto nextone; } // : ... // // Read the table with word numbers. We use a file buffer for // this, because it's so much like a file with lines. Makes it // possible to swap the info and save on memory use. slang->sl_sugbuf = open_spellbuf(); // wcount = get4c(fd); if (wcount < 0) { goto someerror; } // Read all the wordnr lists into the buffer, one NUL terminated // list per line. ga_init(&ga, 1, 100); for (wordnr = 0; wordnr < wcount; wordnr++) { ga.ga_len = 0; for (;;) { c = getc(fd); // if (c < 0) { goto someerror; } GA_APPEND(char_u, &ga, (char_u)c); if (c == NUL) { break; } } if (ml_append_buf(slang->sl_sugbuf, (linenr_T)wordnr, ga.ga_data, ga.ga_len, true) == FAIL) { goto someerror; } } ga_clear(&ga); // Need to put word counts in the word tries, so that we can find // a word by its number. tree_count_words(slang->sl_fbyts, slang->sl_fidxs); tree_count_words(slang->sl_sbyts, slang->sl_sidxs); nextone: if (fd != NULL) { fclose(fd); } STRCPY(dotp, ".spl"); } } } // Read a length field from "fd" in "cnt_bytes" bytes. // Allocate memory, read the string into it and add a NUL at the end. // Returns NULL when the count is zero. // Sets "*cntp" to SP_*ERROR when there is an error, length of the result // otherwise. static char_u *read_cnt_string(FILE *fd, int cnt_bytes, int *cntp) { int cnt = 0; char_u *str; // read the length bytes, MSB first for (int i = 0; i < cnt_bytes; i++) { const int c = getc(fd); if (c == EOF) { *cntp = SP_TRUNCERROR; return NULL; } cnt = (int)(((unsigned)cnt << 8) + (unsigned)c); } *cntp = cnt; if (cnt == 0) { return NULL; // nothing to read, return NULL } str = READ_STRING(fd, cnt); if (str == NULL) { *cntp = SP_OTHERERROR; } return str; } // Read SN_REGION: ... // Return SP_*ERROR flags. static int read_region_section(FILE *fd, slang_T *lp, int len) { if (len > MAXREGIONS * 2) { return SP_FORMERROR; } SPELL_READ_NONNUL_BYTES((char *)lp->sl_regions, (size_t)len, fd,; ); lp->sl_regions[len] = NUL; return 0; } // Read SN_CHARFLAGS section: // // Return SP_*ERROR flags. static int read_charflags_section(FILE *fd) { char_u *flags; char_u *fol; int flagslen, follen; // flags = read_cnt_string(fd, 1, &flagslen); if (flagslen < 0) { return flagslen; } // fol = read_cnt_string(fd, 2, &follen); if (follen < 0) { xfree(flags); return follen; } // Set the word-char flags and fill SPELL_ISUPPER() table. if (flags != NULL && fol != NULL) { set_spell_charflags(flags, flagslen, fol); } xfree(flags); xfree(fol); // When is zero then must also be zero. if ((flags == NULL) != (fol == NULL)) { return SP_FORMERROR; } return 0; } // Read SN_PREFCOND section. // Return SP_*ERROR flags. static int read_prefcond_section(FILE *fd, slang_T *lp) { // ... const int cnt = get2c(fd); // if (cnt <= 0) { return SP_FORMERROR; } lp->sl_prefprog = xcalloc((size_t)cnt, sizeof(regprog_T *)); lp->sl_prefixcnt = cnt; for (int i = 0; i < cnt; i++) { // : const int n = getc(fd); // if (n < 0 || n >= MAXWLEN) { return SP_FORMERROR; } // When is zero we have an empty condition. Otherwise // compile the regexp program used to check for the condition. if (n > 0) { char buf[MAXWLEN + 1]; buf[0] = '^'; // always match at one position only SPELL_READ_NONNUL_BYTES(buf + 1, (size_t)n, fd,; ); buf[n + 1] = NUL; lp->sl_prefprog[i] = vim_regcomp(buf, RE_MAGIC | RE_STRING); } } return 0; } // Read REP or REPSAL items section from "fd": ... // Return SP_*ERROR flags. static int read_rep_section(FILE *fd, garray_T *gap, int16_t *first) { int cnt; fromto_T *ftp; cnt = get2c(fd); // if (cnt < 0) { return SP_TRUNCERROR; } ga_grow(gap, cnt); // : for (; gap->ga_len < cnt; ++gap->ga_len) { int c; ftp = &((fromto_T *)gap->ga_data)[gap->ga_len]; ftp->ft_from = read_cnt_string(fd, 1, &c); if (c < 0) { return c; } if (c == 0) { return SP_FORMERROR; } ftp->ft_to = read_cnt_string(fd, 1, &c); if (c <= 0) { xfree(ftp->ft_from); if (c < 0) { return c; } return SP_FORMERROR; } } // Fill the first-index table. for (int i = 0; i < 256; i++) { first[i] = -1; } for (int i = 0; i < gap->ga_len; i++) { ftp = &((fromto_T *)gap->ga_data)[i]; if (first[*ftp->ft_from] == -1) { first[*ftp->ft_from] = (int16_t)i; } } return 0; } // Read SN_SAL section: ... // Return SP_*ERROR flags. static int read_sal_section(FILE *fd, slang_T *slang) { int cnt; garray_T *gap; salitem_T *smp; int ccnt; char_u *p; slang->sl_sofo = false; const int flags = getc(fd); // if (flags & SAL_F0LLOWUP) { slang->sl_followup = true; } if (flags & SAL_COLLAPSE) { slang->sl_collapse = true; } if (flags & SAL_REM_ACCENTS) { slang->sl_rem_accents = true; } cnt = get2c(fd); // if (cnt < 0) { return SP_TRUNCERROR; } gap = &slang->sl_sal; ga_init(gap, sizeof(salitem_T), 10); ga_grow(gap, cnt + 1); // : for (; gap->ga_len < cnt; gap->ga_len++) { int c = NUL; smp = &((salitem_T *)gap->ga_data)[gap->ga_len]; ccnt = getc(fd); // if (ccnt < 0) { return SP_TRUNCERROR; } p = xmalloc((size_t)ccnt + 2); smp->sm_lead = p; // Read up to the first special char into sm_lead. int i = 0; for (; i < ccnt; i++) { c = getc(fd); // if (vim_strchr("0123456789(-<^$", c) != NULL) { break; } *p++ = (char_u)c; } smp->sm_leadlen = (int)(p - smp->sm_lead); *p++ = NUL; // Put (abc) chars in sm_oneof, if any. if (c == '(') { smp->sm_oneof = p; for (++i; i < ccnt; i++) { c = getc(fd); // if (c == ')') { break; } *p++ = (char_u)c; } *p++ = NUL; if (++i < ccnt) { c = getc(fd); } } else { smp->sm_oneof = NULL; } // Any following chars go in sm_rules. smp->sm_rules = p; if (i < ccnt) { // store the char we got while checking for end of sm_lead *p++ = (char_u)c; } i++; if (i < ccnt) { SPELL_READ_NONNUL_BYTES( // (char *)p, (size_t)(ccnt - i), fd, xfree(smp->sm_lead)); p += (ccnt - i); } *p++ = NUL; // smp->sm_to = read_cnt_string(fd, 1, &ccnt); if (ccnt < 0) { xfree(smp->sm_lead); return ccnt; } // convert the multi-byte strings to wide char strings smp->sm_lead_w = mb_str2wide(smp->sm_lead); smp->sm_leadlen = mb_charlen(smp->sm_lead); if (smp->sm_oneof == NULL) { smp->sm_oneof_w = NULL; } else { smp->sm_oneof_w = mb_str2wide(smp->sm_oneof); } if (smp->sm_to == NULL) { smp->sm_to_w = NULL; } else { smp->sm_to_w = mb_str2wide(smp->sm_to); } } if (!GA_EMPTY(gap)) { // Add one extra entry to mark the end with an empty sm_lead. Avoids // that we need to check the index every time. smp = &((salitem_T *)gap->ga_data)[gap->ga_len]; p = xmalloc(1); p[0] = NUL; smp->sm_lead = p; smp->sm_lead_w = mb_str2wide(smp->sm_lead); smp->sm_leadlen = 0; smp->sm_oneof = NULL; smp->sm_oneof_w = NULL; smp->sm_rules = p; smp->sm_to = NULL; smp->sm_to_w = NULL; gap->ga_len++; } // Fill the first-index table. set_sal_first(slang); return 0; } // Read SN_WORDS: ... // Return SP_*ERROR flags. static int read_words_section(FILE *fd, slang_T *lp, int len) { int done = 0; int i; int c; char_u word[MAXWLEN]; while (done < len) { // Read one word at a time. for (i = 0;; i++) { c = getc(fd); if (c == EOF) { return SP_TRUNCERROR; } word[i] = (char_u)c; if (word[i] == NUL) { break; } if (i == MAXWLEN - 1) { return SP_FORMERROR; } } // Init the count to 10. count_common_word(lp, word, -1, 10); done += i + 1; } return 0; } // SN_SOFO: // Return SP_*ERROR flags. static int read_sofo_section(FILE *fd, slang_T *slang) { int cnt; char_u *from, *to; int res; slang->sl_sofo = true; // from = read_cnt_string(fd, 2, &cnt); if (cnt < 0) { return cnt; } // to = read_cnt_string(fd, 2, &cnt); if (cnt < 0) { xfree(from); return cnt; } // Store the info in slang->sl_sal and/or slang->sl_sal_first. if (from != NULL && to != NULL) { res = set_sofo(slang, from, to); } else if (from != NULL || to != NULL) { res = SP_FORMERROR; // only one of two strings is an error } else { res = 0; } xfree(from); xfree(to); return res; } // Read the compound section from the .spl file: // // Returns SP_*ERROR flags. static int read_compound(FILE *fd, slang_T *slang, int len) { int todo = len; int c; int atstart; int cnt; garray_T *gap; if (todo < 2) { return SP_FORMERROR; // need at least two bytes } todo--; c = getc(fd); // if (c < 2) { c = MAXWLEN; } slang->sl_compmax = c; todo--; c = getc(fd); // if (c < 1) { c = 0; } slang->sl_compminlen = c; todo--; c = getc(fd); // if (c < 1) { c = MAXWLEN; } slang->sl_compsylmax = c; c = getc(fd); // if (c != 0) { ungetc(c, fd); // be backwards compatible with Vim 7.0b } else { todo--; c = getc(fd); // only use the lower byte for now todo--; slang->sl_compoptions = c; gap = &slang->sl_comppat; c = get2c(fd); // if (c < 0) { return SP_TRUNCERROR; } todo -= 2; ga_init(gap, sizeof(char_u *), c); ga_grow(gap, c); while (--c >= 0) { ((char **)(gap->ga_data))[gap->ga_len++] = (char *)read_cnt_string(fd, 1, &cnt); // if (cnt < 0) { return cnt; } todo -= cnt + 1; } } if (todo < 0) { return SP_FORMERROR; } // Turn the COMPOUNDRULE items into a regexp pattern: // "a[bc]/a*b+" -> "^\(a[bc]\|a*b\+\)$". // Inserting backslashes may double the length, "^\(\)$" is 7 bytes. // Conversion to utf-8 may double the size. c = todo * 2 + 7; c += todo * 2; char_u *pat = xmalloc((size_t)c); // We also need a list of all flags that can appear at the start and one // for all flags. char_u *cp = xmalloc((size_t)todo + 1); slang->sl_compstartflags = cp; *cp = NUL; char_u *ap = xmalloc((size_t)todo + 1); slang->sl_compallflags = ap; *ap = NUL; // And a list of all patterns in their original form, for checking whether // compounding may work in match_compoundrule(). This is freed when we // encounter a wildcard, the check doesn't work then. char_u *crp = xmalloc((size_t)todo + 1); slang->sl_comprules = crp; char_u *pp = pat; *pp++ = '^'; *pp++ = '\\'; *pp++ = '('; atstart = 1; while (todo-- > 0) { c = getc(fd); // if (c == EOF) { xfree(pat); return SP_TRUNCERROR; } // Add all flags to "sl_compallflags". if (vim_strchr("?*+[]/", c) == NULL && !byte_in_str(slang->sl_compallflags, c)) { *ap++ = (char_u)c; *ap = NUL; } if (atstart != 0) { // At start of item: copy flags to "sl_compstartflags". For a // [abc] item set "atstart" to 2 and copy up to the ']'. if (c == '[') { atstart = 2; } else if (c == ']') { atstart = 0; } else { if (!byte_in_str(slang->sl_compstartflags, c)) { *cp++ = (char_u)c; *cp = NUL; } if (atstart == 1) { atstart = 0; } } } // Copy flag to "sl_comprules", unless we run into a wildcard. if (crp != NULL) { if (c == '?' || c == '+' || c == '*') { XFREE_CLEAR(slang->sl_comprules); crp = NULL; } else { *crp++ = (char_u)c; } } if (c == '/') { // slash separates two items *pp++ = '\\'; *pp++ = '|'; atstart = 1; } else { // normal char, "[abc]" and '*' are copied as-is if (c == '?' || c == '+' || c == '~') { *pp++ = '\\'; // "a?" becomes "a\?", "a+" becomes "a\+" } pp += utf_char2bytes(c, (char *)pp); } } *pp++ = '\\'; *pp++ = ')'; *pp++ = '$'; *pp = NUL; if (crp != NULL) { *crp = NUL; } slang->sl_compprog = vim_regcomp((char *)pat, RE_MAGIC + RE_STRING + RE_STRICT); xfree(pat); if (slang->sl_compprog == NULL) { return SP_FORMERROR; } return 0; } // Set the SOFOFROM and SOFOTO items in language "lp". // Returns SP_*ERROR flags when there is something wrong. static int set_sofo(slang_T *lp, char_u *from, char_u *to) { char_u *s; char_u *p; // Use "sl_sal" as an array with 256 pointers to a list of wide // characters. The index is the low byte of the character. // The list contains from-to pairs with a terminating NUL. // sl_sal_first[] is used for latin1 "from" characters. garray_T *gap = &lp->sl_sal; ga_init(gap, sizeof(int *), 1); ga_grow(gap, 256); memset(gap->ga_data, 0, sizeof(int *) * 256); gap->ga_len = 256; // First count the number of items for each list. Temporarily use // sl_sal_first[] for this. for (p = from, s = to; *p != NUL && *s != NUL;) { const int c = mb_cptr2char_adv((const char_u **)&p); MB_CPTR_ADV(s); if (c >= 256) { lp->sl_sal_first[c & 0xff]++; } } if (*p != NUL || *s != NUL) { // lengths differ return SP_FORMERROR; } // Allocate the lists. for (int i = 0; i < 256; i++) { if (lp->sl_sal_first[i] > 0) { p = xmalloc(sizeof(int) * (size_t)(lp->sl_sal_first[i] * 2 + 1)); ((int **)gap->ga_data)[i] = (int *)p; *(int *)p = 0; } } // Put the characters up to 255 in sl_sal_first[] the rest in a sl_sal // list. memset(lp->sl_sal_first, 0, sizeof(salfirst_T) * 256); for (p = from, s = to; *p != NUL && *s != NUL;) { const int c = mb_cptr2char_adv((const char_u **)&p); const int i = mb_cptr2char_adv((const char_u **)&s); if (c >= 256) { // Append the from-to chars at the end of the list with // the low byte. int *inp = ((int **)gap->ga_data)[c & 0xff]; while (*inp != 0) { inp++; } *inp++ = c; // from char *inp++ = i; // to char *inp++ = NUL; // NUL at the end } else { // mapping byte to char is done in sl_sal_first[] lp->sl_sal_first[c] = i; } } return 0; } // Fill the first-index table for "lp". static void set_sal_first(slang_T *lp) { salfirst_T *sfirst; salitem_T *smp; int c; garray_T *gap = &lp->sl_sal; sfirst = lp->sl_sal_first; for (int i = 0; i < 256; i++) { sfirst[i] = -1; } smp = (salitem_T *)gap->ga_data; for (int i = 0; i < gap->ga_len; i++) { // Use the lowest byte of the first character. For latin1 it's // the character, for other encodings it should differ for most // characters. c = *smp[i].sm_lead_w & 0xff; if (sfirst[c] == -1) { sfirst[c] = i; // Make sure all entries with this byte are following each // other. Move the ones that are in the wrong position. Do // keep the same ordering! while (i + 1 < gap->ga_len && (*smp[i + 1].sm_lead_w & 0xff) == c) { // Skip over entry with same index byte. i++; } for (int n = 1; i + n < gap->ga_len; n++) { if ((*smp[i + n].sm_lead_w & 0xff) == c) { salitem_T tsal; // Move entry with same index byte after the entries // we already found. i++; n--; tsal = smp[i + n]; memmove(smp + i + 1, smp + i, sizeof(salitem_T) * (size_t)n); smp[i] = tsal; } } } } } // Turn a multi-byte string into a wide character string. // Return it in allocated memory. static int *mb_str2wide(char_u *s) { int i = 0; int *res = xmalloc(((size_t)mb_charlen(s) + 1) * sizeof(int)); for (char_u *p = s; *p != NUL;) { res[i++] = mb_ptr2char_adv((const char_u **)&p); } res[i] = NUL; return res; } /// Reads a tree from the .spl or .sug file. /// Allocates the memory and stores pointers in "bytsp" and "idxsp". /// This is skipped when the tree has zero length. /// /// @param prefixtree true for the prefix tree /// @param prefixcnt when "prefixtree" is true: prefix count /// /// @return zero when OK, SP_ value for an error. static int spell_read_tree(FILE *fd, char_u **bytsp, long *bytsp_len, idx_T **idxsp, bool prefixtree, int prefixcnt) FUNC_ATTR_NONNULL_ARG(1, 2, 4) { int idx; char_u *bp; idx_T *ip; // The tree size was computed when writing the file, so that we can // allocate it as one long block. long len = get4c(fd); if (len < 0) { return SP_TRUNCERROR; } if ((size_t)len >= SIZE_MAX / sizeof(int)) { // -V547 // Invalid length, multiply with sizeof(int) would overflow. return SP_FORMERROR; } if (len > 0) { // Allocate the byte array. bp = xmalloc((size_t)len); *bytsp = bp; if (bytsp_len != NULL) { *bytsp_len = len; } // Allocate the index array. ip = xcalloc((size_t)len, sizeof(*ip)); *idxsp = ip; // Recursively read the tree and store it in the array. idx = read_tree_node(fd, bp, ip, (int)len, 0, prefixtree, prefixcnt); if (idx < 0) { return idx; } } return 0; } /// Read one row of siblings from the spell file and store it in the byte array /// "byts" and index array "idxs". Recursively read the children. /// /// NOTE: The code here must match put_node()! /// /// Returns the index (>= 0) following the siblings. /// Returns SP_TRUNCERROR if the file is shorter than expected. /// Returns SP_FORMERROR if there is a format error. /// /// @param maxidx size of arrays /// @param startidx current index in "byts" and "idxs" /// @param prefixtree true for reading PREFIXTREE /// @param maxprefcondnr maximum for static idx_T read_tree_node(FILE *fd, char_u *byts, idx_T *idxs, int maxidx, idx_T startidx, bool prefixtree, int maxprefcondnr) { int len; int i; int n; idx_T idx = startidx; int c; int c2; #define SHARED_MASK 0x8000000 len = getc(fd); // if (len <= 0) { return SP_TRUNCERROR; } if (startidx + len >= maxidx) { return SP_FORMERROR; } byts[idx++] = (char_u)len; // Read the byte values, flag/region bytes and shared indexes. for (i = 1; i <= len; i++) { c = getc(fd); // if (c < 0) { return SP_TRUNCERROR; } if (c <= BY_SPECIAL) { if (c == BY_NOFLAGS && !prefixtree) { // No flags, all regions. idxs[idx] = 0; } else if (c != BY_INDEX) { if (prefixtree) { // Read the optional pflags byte, the prefix ID and the // condition nr. In idxs[] store the prefix ID in the low // byte, the condition index shifted up 8 bits, the flags // shifted up 24 bits. if (c == BY_FLAGS) { c = getc(fd) << 24; // } else { c = 0; } c |= getc(fd); // n = get2c(fd); // if (n >= maxprefcondnr) { return SP_FORMERROR; } c |= (n << 8); } else { // c must be BY_FLAGS or BY_FLAGS2 // Read flags and optional region and prefix ID. In // idxs[] the flags go in the low two bytes, region above // that and prefix ID above the region. c2 = c; c = getc(fd); // if (c2 == BY_FLAGS2) { c = (getc(fd) << 8) + c; // } if (c & WF_REGION) { c = (getc(fd) << 16) + c; // } if (c & WF_AFX) { c = (getc(fd) << 24) + c; // } } idxs[idx] = c; c = 0; } else { // c == BY_INDEX // n = get3c(fd); if (n < 0 || n >= maxidx) { return SP_FORMERROR; } idxs[idx] = n + SHARED_MASK; c = getc(fd); // } } byts[idx++] = (char_u)c; } // Recursively read the children for non-shared siblings. // Skip the end-of-word ones (zero byte value) and the shared ones (and // remove SHARED_MASK) for (i = 1; i <= len; i++) { if (byts[startidx + i] != 0) { if (idxs[startidx + i] & SHARED_MASK) { idxs[startidx + i] &= ~SHARED_MASK; } else { idxs[startidx + i] = idx; idx = read_tree_node(fd, byts, idxs, maxidx, idx, prefixtree, maxprefcondnr); if (idx < 0) { break; } } } } return idx; } /// Reload the spell file "fname" if it's loaded. /// /// @param added_word invoked through "zg" static void spell_reload_one(char_u *fname, bool added_word) { slang_T *slang; bool didit = false; for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare((char *)fname, slang->sl_fname, false, true) == kEqualFiles) { slang_clear(slang); if (spell_load_file((char *)fname, NULL, slang, false) == NULL) { // reloading failed, clear the language slang_clear(slang); } redraw_all_later(UPD_SOME_VALID); didit = true; } } // When "zg" was used and the file wasn't loaded yet, should redo // 'spelllang' to load it now. if (added_word && !didit) { did_set_spelllang(curwin); } } // Functions for ":mkspell". // In the postponed prefixes tree wn_flags is used to store the WFP_ flags, // but it must be negative to indicate the prefix tree to tree_add_word(). // Use a negative number with the lower 8 bits zero. #define PFX_FLAGS (-256) // flags for "condit" argument of store_aff_word() #define CONDIT_COMB 1 // affix must combine #define CONDIT_CFIX 2 // affix must have CIRCUMFIX flag #define CONDIT_SUF 4 // add a suffix for matching flags #define CONDIT_AFF 8 // word already has an affix // Tunable parameters for when the tree is compressed. Filled from the // 'mkspellmem' option. static long compress_start = 30000; // memory / SBLOCKSIZE static long compress_inc = 100; // memory / SBLOCKSIZE static long compress_added = 500000; // word count // Check the 'mkspellmem' option. Return FAIL if it's wrong. // Sets "sps_flags". int spell_check_msm(void) { char *p = p_msm; long start = 0; long incr = 0; long added = 0; if (!ascii_isdigit(*p)) { return FAIL; } // block count = (value * 1024) / SBLOCKSIZE (but avoid overflow) start = (getdigits_long(&p, true, 0) * 10) / (SBLOCKSIZE / 102); if (*p != ',') { return FAIL; } p++; if (!ascii_isdigit(*p)) { return FAIL; } incr = (getdigits_long(&p, true, 0) * 102) / (SBLOCKSIZE / 10); if (*p != ',') { return FAIL; } p++; if (!ascii_isdigit(*p)) { return FAIL; } added = getdigits_long(&p, true, 0) * 1024; if (*p != NUL) { return FAIL; } if (start == 0 || incr == 0 || added == 0 || incr > start) { return FAIL; } compress_start = start; compress_inc = incr; compress_added = added; return OK; } #ifdef SPELL_PRINTTREE // For debugging the tree code: print the current tree in a (more or less) // readable format, so that we can see what happens when adding a word and/or // compressing the tree. // Based on code from Olaf Seibert. # define PRINTLINESIZE 1000 # define PRINTWIDTH 6 # define PRINTSOME(l, depth, fmt, a1, a2) vim_snprintf(l + depth * PRINTWIDTH, \ PRINTLINESIZE - PRINTWIDTH * depth, fmt, a1, \ a2) static char line1[PRINTLINESIZE]; static char line2[PRINTLINESIZE]; static char line3[PRINTLINESIZE]; static void spell_clear_flags(wordnode_T *node) { wordnode_T *np; for (np = node; np != NULL; np = np->wn_sibling) { np->wn_u1.index = false; spell_clear_flags(np->wn_child); } } static void spell_print_node(wordnode_T *node, int depth) { if (node->wn_u1.index) { // Done this node before, print the reference. PRINTSOME(line1, depth, "(%d)", node->wn_nr, 0); PRINTSOME(line2, depth, " ", 0, 0); PRINTSOME(line3, depth, " ", 0, 0); msg((char_u *)line1); msg((char_u *)line2); msg((char_u *)line3); } else { node->wn_u1.index = true; if (node->wn_byte != NUL) { if (node->wn_child != NULL) { PRINTSOME(line1, depth, " %c -> ", node->wn_byte, 0); } else { // Cannot happen? PRINTSOME(line1, depth, " %c ???", node->wn_byte, 0); } } else { PRINTSOME(line1, depth, " $ ", 0, 0); } PRINTSOME(line2, depth, "%d/%d ", node->wn_nr, node->wn_refs); if (node->wn_sibling != NULL) { PRINTSOME(line3, depth, " | ", 0, 0); } else { PRINTSOME(line3, depth, " ", 0, 0); } if (node->wn_byte == NUL) { msg((char_u *)line1); msg((char_u *)line2); msg((char_u *)line3); } // do the children if (node->wn_byte != NUL && node->wn_child != NULL) { spell_print_node(node->wn_child, depth + 1); } // do the siblings if (node->wn_sibling != NULL) { // get rid of all parent details except | STRCPY(line1, line3); STRCPY(line2, line3); spell_print_node(node->wn_sibling, depth); } } } static void spell_print_tree(wordnode_T *root) { if (root != NULL) { // Clear the "wn_u1.index" fields, used to remember what has been // done. spell_clear_flags(root); // Recursively print the tree. spell_print_node(root, 0); } } #endif // SPELL_PRINTTREE // Reads the affix file "fname". // Returns an afffile_T, NULL for complete failure. static afffile_T *spell_read_aff(spellinfo_T *spin, char_u *fname) { FILE *fd; char_u rline[MAXLINELEN]; char_u *line; char_u *pc = NULL; #define MAXITEMCNT 30 char *(items[MAXITEMCNT]); int itemcnt; char *p; int lnum = 0; affheader_T *cur_aff = NULL; bool did_postpone_prefix = false; int aff_todo = 0; hashtab_T *tp; char *low = NULL; char *fol = NULL; char *upp = NULL; int do_rep; int do_repsal; int do_sal; int do_mapline; bool found_map = false; hashitem_T *hi; int l; int compminlen = 0; // COMPOUNDMIN value int compsylmax = 0; // COMPOUNDSYLMAX value int compoptions = 0; // COMP_ flags int compmax = 0; // COMPOUNDWORDMAX value char_u *compflags = NULL; // COMPOUNDFLAG and COMPOUNDRULE // concatenated char_u *midword = NULL; // MIDWORD value char_u *syllable = NULL; // SYLLABLE value char_u *sofofrom = NULL; // SOFOFROM value char_u *sofoto = NULL; // SOFOTO value // Open the file. fd = os_fopen((char *)fname, "r"); if (fd == NULL) { semsg(_(e_notopen), fname); return NULL; } vim_snprintf((char *)IObuff, IOSIZE, _("Reading affix file %s..."), fname); spell_message(spin, (char *)IObuff); // Only do REP lines when not done in another .aff file already. do_rep = GA_EMPTY(&spin->si_rep); // Only do REPSAL lines when not done in another .aff file already. do_repsal = GA_EMPTY(&spin->si_repsal); // Only do SAL lines when not done in another .aff file already. do_sal = GA_EMPTY(&spin->si_sal); // Only do MAP lines when not done in another .aff file already. do_mapline = GA_EMPTY(&spin->si_map); // Allocate and init the afffile_T structure. afffile_T *aff = getroom(spin, sizeof(*aff), true); hash_init(&aff->af_pref); hash_init(&aff->af_suff); hash_init(&aff->af_comp); // Read all the lines in the file one by one. while (!vim_fgets(rline, MAXLINELEN, fd) && !got_int) { line_breakcheck(); lnum++; // Skip comment lines. if (*rline == '#') { continue; } // Convert from "SET" to 'encoding' when needed. xfree(pc); if (spin->si_conv.vc_type != CONV_NONE) { pc = (char_u *)string_convert(&spin->si_conv, (char *)rline, NULL); if (pc == NULL) { smsg(_("Conversion failure for word in %s line %d: %s"), fname, lnum, rline); continue; } line = pc; } else { pc = NULL; line = rline; } // Split the line up in white separated items. Put a NUL after each // item. itemcnt = 0; for (p = (char *)line;;) { while (*p != NUL && (uint8_t)(*p) <= ' ') { // skip white space and CR/NL p++; } if (*p == NUL) { break; } if (itemcnt == MAXITEMCNT) { // too many items break; } items[itemcnt++] = p; // A few items have arbitrary text argument, don't split them. if (itemcnt == 2 && spell_info_item(items[0])) { while ((uint8_t)(*p) >= ' ' || *p == TAB) { // skip until CR/NL p++; } } else { while ((uint8_t)(*p) > ' ') { // skip until white space or CR/NL p++; } } if (*p == NUL) { break; } *p++ = NUL; } // Handle non-empty lines. if (itemcnt > 0) { if (is_aff_rule(items, itemcnt, "SET", 2) && aff->af_enc == NULL) { // Setup for conversion from "ENC" to 'encoding'. aff->af_enc = (char_u *)enc_canonize((char *)items[1]); if (!spin->si_ascii && convert_setup(&spin->si_conv, (char *)aff->af_enc, p_enc) == FAIL) { smsg(_("Conversion in %s not supported: from %s to %s"), fname, aff->af_enc, p_enc); } spin->si_conv.vc_fail = true; } else if (is_aff_rule(items, itemcnt, "FLAG", 2) && aff->af_flagtype == AFT_CHAR) { if (strcmp(items[1], "long") == 0) { aff->af_flagtype = AFT_LONG; } else if (strcmp(items[1], "num") == 0) { aff->af_flagtype = AFT_NUM; } else if (strcmp(items[1], "caplong") == 0) { aff->af_flagtype = AFT_CAPLONG; } else { smsg(_("Invalid value for FLAG in %s line %d: %s"), fname, lnum, items[1]); } if (aff->af_rare != 0 || aff->af_keepcase != 0 || aff->af_bad != 0 || aff->af_needaffix != 0 || aff->af_circumfix != 0 || aff->af_needcomp != 0 || aff->af_comproot != 0 || aff->af_nosuggest != 0 || compflags != NULL || aff->af_suff.ht_used > 0 || aff->af_pref.ht_used > 0) { smsg(_("FLAG after using flags in %s line %d: %s"), fname, lnum, items[1]); } } else if (spell_info_item(items[0]) && itemcnt > 1) { p = getroom(spin, (spin->si_info == NULL ? 0 : STRLEN(spin->si_info)) + strlen(items[0]) + strlen(items[1]) + 3, false); if (spin->si_info != NULL) { STRCPY(p, spin->si_info); STRCAT(p, "\n"); } STRCAT(p, items[0]); STRCAT(p, " "); STRCAT(p, items[1]); spin->si_info = (char_u *)p; } else if (is_aff_rule(items, itemcnt, "MIDWORD", 2) && midword == NULL) { midword = (char_u *)getroom_save(spin, (char_u *)items[1]); } else if (is_aff_rule(items, itemcnt, "TRY", 2)) { // ignored, we look in the tree for what chars may appear } // TODO: remove "RAR" later else if ((is_aff_rule(items, itemcnt, "RAR", 2) || is_aff_rule(items, itemcnt, "RARE", 2)) && aff->af_rare == 0) { aff->af_rare = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } // TODO: remove "KEP" later else if ((is_aff_rule(items, itemcnt, "KEP", 2) || is_aff_rule(items, itemcnt, "KEEPCASE", 2)) && aff->af_keepcase == 0) { aff->af_keepcase = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if ((is_aff_rule(items, itemcnt, "BAD", 2) || is_aff_rule(items, itemcnt, "FORBIDDENWORD", 2)) && aff->af_bad == 0) { aff->af_bad = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "NEEDAFFIX", 2) && aff->af_needaffix == 0) { aff->af_needaffix = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "CIRCUMFIX", 2) && aff->af_circumfix == 0) { aff->af_circumfix = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "NOSUGGEST", 2) && aff->af_nosuggest == 0) { aff->af_nosuggest = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if ((is_aff_rule(items, itemcnt, "NEEDCOMPOUND", 2) || is_aff_rule(items, itemcnt, "ONLYINCOMPOUND", 2)) && aff->af_needcomp == 0) { aff->af_needcomp = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "COMPOUNDROOT", 2) && aff->af_comproot == 0) { aff->af_comproot = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); } else if (is_aff_rule(items, itemcnt, "COMPOUNDFORBIDFLAG", 2) && aff->af_compforbid == 0) { aff->af_compforbid = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); if (aff->af_pref.ht_used > 0) { smsg(_("Defining COMPOUNDFORBIDFLAG after PFX item may give wrong results in %s line %d"), fname, lnum); } } else if (is_aff_rule(items, itemcnt, "COMPOUNDPERMITFLAG", 2) && aff->af_comppermit == 0) { aff->af_comppermit = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); if (aff->af_pref.ht_used > 0) { smsg(_("Defining COMPOUNDPERMITFLAG after PFX item may give wrong results in %s line %d"), fname, lnum); } } else if (is_aff_rule(items, itemcnt, "COMPOUNDFLAG", 2) && compflags == NULL) { // Turn flag "c" into COMPOUNDRULE compatible string "c+", // "Na" into "Na+", "1234" into "1234+". p = getroom(spin, strlen(items[1]) + 2, false); STRCPY(p, items[1]); STRCAT(p, "+"); compflags = (char_u *)p; } else if (is_aff_rule(items, itemcnt, "COMPOUNDRULES", 2)) { // We don't use the count, but do check that it's a number and // not COMPOUNDRULE mistyped. if (atoi((char *)items[1]) == 0) { smsg(_("Wrong COMPOUNDRULES value in %s line %d: %s"), fname, lnum, items[1]); } } else if (is_aff_rule(items, itemcnt, "COMPOUNDRULE", 2)) { // Don't use the first rule if it is a number. if (compflags != NULL || *skipdigits((char *)items[1]) != NUL) { // Concatenate this string to previously defined ones, // using a slash to separate them. l = (int)strlen(items[1]) + 1; if (compflags != NULL) { l += (int)STRLEN(compflags) + 1; } p = getroom(spin, (size_t)l, false); if (compflags != NULL) { STRCPY(p, compflags); STRCAT(p, "/"); } STRCAT(p, items[1]); compflags = (char_u *)p; } } else if (is_aff_rule(items, itemcnt, "COMPOUNDWORDMAX", 2) && compmax == 0) { compmax = atoi((char *)items[1]); if (compmax == 0) { smsg(_("Wrong COMPOUNDWORDMAX value in %s line %d: %s"), fname, lnum, items[1]); } } else if (is_aff_rule(items, itemcnt, "COMPOUNDMIN", 2) && compminlen == 0) { compminlen = atoi((char *)items[1]); if (compminlen == 0) { smsg(_("Wrong COMPOUNDMIN value in %s line %d: %s"), fname, lnum, items[1]); } } else if (is_aff_rule(items, itemcnt, "COMPOUNDSYLMAX", 2) && compsylmax == 0) { compsylmax = atoi((char *)items[1]); if (compsylmax == 0) { smsg(_("Wrong COMPOUNDSYLMAX value in %s line %d: %s"), fname, lnum, items[1]); } } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDDUP", 1)) { compoptions |= COMP_CHECKDUP; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDREP", 1)) { compoptions |= COMP_CHECKREP; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDCASE", 1)) { compoptions |= COMP_CHECKCASE; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDTRIPLE", 1)) { compoptions |= COMP_CHECKTRIPLE; } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 2)) { if (atoi((char *)items[1]) == 0) { smsg(_("Wrong CHECKCOMPOUNDPATTERN value in %s line %d: %s"), fname, lnum, items[1]); } } else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 3)) { garray_T *gap = &spin->si_comppat; int i; // Only add the couple if it isn't already there. for (i = 0; i < gap->ga_len - 1; i += 2) { if (strcmp(((char **)(gap->ga_data))[i], items[1]) == 0 && strcmp(((char **)(gap->ga_data))[i + 1], items[2]) == 0) { break; } } if (i >= gap->ga_len) { ga_grow(gap, 2); ((char **)(gap->ga_data))[gap->ga_len++] = getroom_save(spin, (char_u *)items[1]); ((char **)(gap->ga_data))[gap->ga_len++] = getroom_save(spin, (char_u *)items[2]); } } else if (is_aff_rule(items, itemcnt, "SYLLABLE", 2) && syllable == NULL) { syllable = (char_u *)getroom_save(spin, (char_u *)items[1]); } else if (is_aff_rule(items, itemcnt, "NOBREAK", 1)) { spin->si_nobreak = true; } else if (is_aff_rule(items, itemcnt, "NOSPLITSUGS", 1)) { spin->si_nosplitsugs = true; } else if (is_aff_rule(items, itemcnt, "NOCOMPOUNDSUGS", 1)) { spin->si_nocompoundsugs = true; } else if (is_aff_rule(items, itemcnt, "NOSUGFILE", 1)) { spin->si_nosugfile = true; } else if (is_aff_rule(items, itemcnt, "PFXPOSTPONE", 1)) { aff->af_pfxpostpone = true; } else if (is_aff_rule(items, itemcnt, "IGNOREEXTRA", 1)) { aff->af_ignoreextra = true; } else if ((strcmp(items[0], "PFX") == 0 || strcmp(items[0], "SFX") == 0) && aff_todo == 0 && itemcnt >= 4) { int lasti = 4; char_u key[AH_KEY_LEN]; if (*items[0] == 'P') { tp = &aff->af_pref; } else { tp = &aff->af_suff; } // Myspell allows the same affix name to be used multiple // times. The affix files that do this have an undocumented // "S" flag on all but the last block, thus we check for that // and store it in ah_follows. STRLCPY(key, items[1], AH_KEY_LEN); hi = hash_find(tp, (char *)key); if (!HASHITEM_EMPTY(hi)) { cur_aff = HI2AH(hi); if (cur_aff->ah_combine != (*items[2] == 'Y')) { smsg(_("Different combining flag in continued affix block in %s line %d: %s"), fname, lnum, items[1]); } if (!cur_aff->ah_follows) { smsg(_("Duplicate affix in %s line %d: %s"), fname, lnum, items[1]); } } else { // New affix letter. cur_aff = getroom(spin, sizeof(*cur_aff), true); cur_aff->ah_flag = affitem2flag(aff->af_flagtype, (char_u *)items[1], fname, lnum); if (cur_aff->ah_flag == 0 || strlen(items[1]) >= AH_KEY_LEN) { break; } if (cur_aff->ah_flag == aff->af_bad || cur_aff->ah_flag == aff->af_rare || cur_aff->ah_flag == aff->af_keepcase || cur_aff->ah_flag == aff->af_needaffix || cur_aff->ah_flag == aff->af_circumfix || cur_aff->ah_flag == aff->af_nosuggest || cur_aff->ah_flag == aff->af_needcomp || cur_aff->ah_flag == aff->af_comproot) { smsg(_("Affix also used for " "BAD/RARE/KEEPCASE/NEEDAFFIX/NEEDCOMPOUND/NOSUGGEST " "in %s line %d: %s"), fname, lnum, items[1]); } STRCPY(cur_aff->ah_key, items[1]); hash_add(tp, (char_u *)cur_aff->ah_key); cur_aff->ah_combine = (*items[2] == 'Y'); } // Check for the "S" flag, which apparently means that another // block with the same affix name is following. if (itemcnt > lasti && strcmp(items[lasti], "S") == 0) { lasti++; cur_aff->ah_follows = true; } else { cur_aff->ah_follows = false; } // Myspell allows extra text after the item, but that might // mean mistakes go unnoticed. Require a comment-starter, // unless IGNOREEXTRA is used. Hunspell uses a "-" item. if (itemcnt > lasti && !aff->af_ignoreextra && *items[lasti] != '#') { smsg(_(e_afftrailing), fname, lnum, items[lasti]); } if (strcmp(items[2], "Y") != 0 && strcmp(items[2], "N") != 0) { smsg(_("Expected Y or N in %s line %d: %s"), fname, lnum, items[2]); } if (*items[0] == 'P' && aff->af_pfxpostpone) { if (cur_aff->ah_newID == 0) { // Use a new number in the .spl file later, to be able // to handle multiple .aff files. check_renumber(spin); cur_aff->ah_newID = ++spin->si_newprefID; // We only really use ah_newID if the prefix is // postponed. We know that only after handling all // the items. did_postpone_prefix = false; } else { // Did use the ID in a previous block. did_postpone_prefix = true; } } aff_todo = atoi((char *)items[3]); } else if ((strcmp(items[0], "PFX") == 0 || strcmp(items[0], "SFX") == 0) && aff_todo > 0 && strcmp(cur_aff->ah_key, items[1]) == 0 && itemcnt >= 5) { affentry_T *aff_entry; bool upper = false; int lasti = 5; // Myspell allows extra text after the item, but that might // mean mistakes go unnoticed. Require a comment-starter. // Hunspell uses a "-" item. if (itemcnt > lasti && *items[lasti] != '#' && (strcmp(items[lasti], "-") != 0 || itemcnt != lasti + 1)) { smsg(_(e_afftrailing), fname, lnum, items[lasti]); } // New item for an affix letter. aff_todo--; aff_entry = getroom(spin, sizeof(*aff_entry), true); if (strcmp(items[2], "0") != 0) { aff_entry->ae_chop = (char_u *)getroom_save(spin, (char_u *)items[2]); } if (strcmp(items[3], "0") != 0) { aff_entry->ae_add = (char_u *)getroom_save(spin, (char_u *)items[3]); // Recognize flags on the affix: abcd/XYZ aff_entry->ae_flags = (char_u *)vim_strchr((char *)aff_entry->ae_add, '/'); if (aff_entry->ae_flags != NULL) { *aff_entry->ae_flags++ = NUL; aff_process_flags(aff, aff_entry); } } // Don't use an affix entry with non-ASCII characters when // "spin->si_ascii" is true. if (!spin->si_ascii || !(has_non_ascii(aff_entry->ae_chop) || has_non_ascii(aff_entry->ae_add))) { aff_entry->ae_next = cur_aff->ah_first; cur_aff->ah_first = aff_entry; if (strcmp(items[4], ".") != 0) { char_u buf[MAXLINELEN]; aff_entry->ae_cond = (char_u *)getroom_save(spin, (char_u *)items[4]); if (*items[0] == 'P') { sprintf((char *)buf, "^%s", items[4]); } else { sprintf((char *)buf, "%s$", items[4]); } aff_entry->ae_prog = vim_regcomp((char *)buf, RE_MAGIC + RE_STRING + RE_STRICT); if (aff_entry->ae_prog == NULL) { smsg(_("Broken condition in %s line %d: %s"), fname, lnum, items[4]); } } // For postponed prefixes we need an entry in si_prefcond // for the condition. Use an existing one if possible. // Can't be done for an affix with flags, ignoring // COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG. if (*items[0] == 'P' && aff->af_pfxpostpone && aff_entry->ae_flags == NULL) { // When the chop string is one lower-case letter and // the add string ends in the upper-case letter we set // the "upper" flag, clear "ae_chop" and remove the // letters from "ae_add". The condition must either // be empty or start with the same letter. if (aff_entry->ae_chop != NULL && aff_entry->ae_add != NULL && aff_entry->ae_chop[utfc_ptr2len((char *)aff_entry->ae_chop)] == NUL) { int c, c_up; c = utf_ptr2char((char *)aff_entry->ae_chop); c_up = SPELL_TOUPPER(c); if (c_up != c && (aff_entry->ae_cond == NULL || utf_ptr2char((char *)aff_entry->ae_cond) == c)) { p = (char *)aff_entry->ae_add + STRLEN(aff_entry->ae_add); MB_PTR_BACK(aff_entry->ae_add, p); if (utf_ptr2char(p) == c_up) { upper = true; aff_entry->ae_chop = NULL; *p = NUL; // The condition is matched with the // actual word, thus must check for the // upper-case letter. if (aff_entry->ae_cond != NULL) { char_u buf[MAXLINELEN]; onecap_copy((char_u *)items[4], buf, true); aff_entry->ae_cond = (char_u *)getroom_save(spin, buf); if (aff_entry->ae_cond != NULL) { sprintf((char *)buf, "^%s", aff_entry->ae_cond); vim_regfree(aff_entry->ae_prog); aff_entry->ae_prog = vim_regcomp((char *)buf, RE_MAGIC + RE_STRING); } } } } } if (aff_entry->ae_chop == NULL) { int idx; char_u **pp; int n; // Find a previously used condition. for (idx = spin->si_prefcond.ga_len - 1; idx >= 0; idx--) { p = ((char **)spin->si_prefcond.ga_data)[idx]; if (str_equal(p, (char *)aff_entry->ae_cond)) { break; } } if (idx < 0) { // Not found, add a new condition. idx = spin->si_prefcond.ga_len; pp = GA_APPEND_VIA_PTR(char_u *, &spin->si_prefcond); *pp = (aff_entry->ae_cond == NULL) ? NULL : (char_u *)getroom_save(spin, aff_entry->ae_cond); } // Add the prefix to the prefix tree. if (aff_entry->ae_add == NULL) { p = ""; } else { p = (char *)aff_entry->ae_add; } // PFX_FLAGS is a negative number, so that // tree_add_word() knows this is the prefix tree. n = PFX_FLAGS; if (!cur_aff->ah_combine) { n |= WFP_NC; } if (upper) { n |= WFP_UP; } if (aff_entry->ae_comppermit) { n |= WFP_COMPPERMIT; } if (aff_entry->ae_compforbid) { n |= WFP_COMPFORBID; } tree_add_word(spin, (char_u *)p, spin->si_prefroot, n, idx, cur_aff->ah_newID); did_postpone_prefix = true; } // Didn't actually use ah_newID, backup si_newprefID. if (aff_todo == 0 && !did_postpone_prefix) { spin->si_newprefID--; cur_aff->ah_newID = 0; } } } } else if (is_aff_rule(items, itemcnt, "FOL", 2) && fol == NULL) { fol = xstrdup(items[1]); } else if (is_aff_rule(items, itemcnt, "LOW", 2) && low == NULL) { low = xstrdup(items[1]); } else if (is_aff_rule(items, itemcnt, "UPP", 2) && upp == NULL) { upp = xstrdup(items[1]); } else if (is_aff_rule(items, itemcnt, "REP", 2) || is_aff_rule(items, itemcnt, "REPSAL", 2)) { // Ignore REP/REPSAL count if (!isdigit(*items[1])) { smsg(_("Expected REP(SAL) count in %s line %d"), fname, lnum); } } else if ((strcmp(items[0], "REP") == 0 || strcmp(items[0], "REPSAL") == 0) && itemcnt >= 3) { // REP/REPSAL item // Myspell ignores extra arguments, we require it starts with // # to detect mistakes. if (itemcnt > 3 && items[3][0] != '#') { smsg(_(e_afftrailing), fname, lnum, items[3]); } if (items[0][3] == 'S' ? do_repsal : do_rep) { // Replace underscore with space (can't include a space // directly). for (p = items[1]; *p != NUL; MB_PTR_ADV(p)) { if (*p == '_') { *p = ' '; } } for (p = items[2]; *p != NUL; MB_PTR_ADV(p)) { if (*p == '_') { *p = ' '; } } add_fromto(spin, items[0][3] == 'S' ? &spin->si_repsal : &spin->si_rep, (char_u *)items[1], (char_u *)items[2]); } } else if (is_aff_rule(items, itemcnt, "MAP", 2)) { // MAP item or count if (!found_map) { // First line contains the count. found_map = true; if (!isdigit(*items[1])) { smsg(_("Expected MAP count in %s line %d"), fname, lnum); } } else if (do_mapline) { int c; // Check that every character appears only once. for (p = items[1]; *p != NUL;) { c = mb_ptr2char_adv((const char_u **)&p); if ((!GA_EMPTY(&spin->si_map) && vim_strchr(spin->si_map.ga_data, c) != NULL) || vim_strchr(p, c) != NULL) { smsg(_("Duplicate character in MAP in %s line %d"), fname, lnum); } } // We simply concatenate all the MAP strings, separated by // slashes. ga_concat(&spin->si_map, (char *)items[1]); ga_append(&spin->si_map, '/'); } } // Accept "SAL from to" and "SAL from to #comment". else if (is_aff_rule(items, itemcnt, "SAL", 3)) { if (do_sal) { // SAL item (sounds-a-like) // Either one of the known keys or a from-to pair. if (strcmp(items[1], "followup") == 0) { spin->si_followup = sal_to_bool(items[2]); } else if (strcmp(items[1], "collapse_result") == 0) { spin->si_collapse = sal_to_bool(items[2]); } else if (strcmp(items[1], "remove_accents") == 0) { spin->si_rem_accents = sal_to_bool(items[2]); } else { // when "to" is "_" it means empty add_fromto(spin, &spin->si_sal, (char_u *)items[1], strcmp(items[2], "_") == 0 ? (char_u *)"" : (char_u *)items[2]); } } } else if (is_aff_rule(items, itemcnt, "SOFOFROM", 2) && sofofrom == NULL) { sofofrom = (char_u *)getroom_save(spin, (char_u *)items[1]); } else if (is_aff_rule(items, itemcnt, "SOFOTO", 2) && sofoto == NULL) { sofoto = (char_u *)getroom_save(spin, (char_u *)items[1]); } else if (strcmp(items[0], "COMMON") == 0) { int i; for (i = 1; i < itemcnt; i++) { if (HASHITEM_EMPTY(hash_find(&spin->si_commonwords, (char *)items[i]))) { p = xstrdup(items[i]); hash_add(&spin->si_commonwords, (char_u *)p); } } } else { smsg(_("Unrecognized or duplicate item in %s line %d: %s"), fname, lnum, items[0]); } } } if (fol != NULL || low != NULL || upp != NULL) { if (spin->si_clear_chartab) { // Clear the char type tables, don't want to use any of the // currently used spell properties. init_spell_chartab(); spin->si_clear_chartab = false; } xfree(fol); xfree(low); xfree(upp); } // Use compound specifications of the .aff file for the spell info. if (compmax != 0) { aff_check_number(spin->si_compmax, compmax, "COMPOUNDWORDMAX"); spin->si_compmax = compmax; } if (compminlen != 0) { aff_check_number(spin->si_compminlen, compminlen, "COMPOUNDMIN"); spin->si_compminlen = compminlen; } if (compsylmax != 0) { if (syllable == NULL) { smsg("%s", _("COMPOUNDSYLMAX used without SYLLABLE")); } aff_check_number(spin->si_compsylmax, compsylmax, "COMPOUNDSYLMAX"); spin->si_compsylmax = compsylmax; } if (compoptions != 0) { aff_check_number(spin->si_compoptions, compoptions, "COMPOUND options"); spin->si_compoptions |= compoptions; } if (compflags != NULL) { process_compflags(spin, aff, compflags); } // Check that we didn't use too many renumbered flags. if (spin->si_newcompID < spin->si_newprefID) { if (spin->si_newcompID == 127 || spin->si_newcompID == 255) { msg(_("Too many postponed prefixes")); } else if (spin->si_newprefID == 0 || spin->si_newprefID == 127) { msg(_("Too many compound flags")); } else { msg(_("Too many postponed prefixes and/or compound flags")); } } if (syllable != NULL) { aff_check_string((char *)spin->si_syllable, (char *)syllable, "SYLLABLE"); spin->si_syllable = syllable; } if (sofofrom != NULL || sofoto != NULL) { if (sofofrom == NULL || sofoto == NULL) { smsg(_("Missing SOFO%s line in %s"), sofofrom == NULL ? "FROM" : "TO", fname); } else if (!GA_EMPTY(&spin->si_sal)) { smsg(_("Both SAL and SOFO lines in %s"), fname); } else { aff_check_string((char *)spin->si_sofofr, (char *)sofofrom, "SOFOFROM"); aff_check_string((char *)spin->si_sofoto, (char *)sofoto, "SOFOTO"); spin->si_sofofr = sofofrom; spin->si_sofoto = sofoto; } } if (midword != NULL) { aff_check_string((char *)spin->si_midword, (char *)midword, "MIDWORD"); spin->si_midword = midword; } xfree(pc); fclose(fd); return aff; } /// @return true when items[0] equals "rulename", there are "mincount" items or /// a comment is following after item "mincount". static bool is_aff_rule(char **items, int itemcnt, char *rulename, int mincount) { return strcmp(items[0], rulename) == 0 && (itemcnt == mincount || (itemcnt > mincount && items[mincount][0] == '#')); } // For affix "entry" move COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG from // ae_flags to ae_comppermit and ae_compforbid. static void aff_process_flags(afffile_T *affile, affentry_T *entry) { char_u *p; char_u *prevp; unsigned flag; if (entry->ae_flags != NULL && (affile->af_compforbid != 0 || affile->af_comppermit != 0)) { for (p = entry->ae_flags; *p != NUL;) { prevp = p; flag = get_affitem(affile->af_flagtype, &p); if (flag == affile->af_comppermit || flag == affile->af_compforbid) { STRMOVE(prevp, p); p = prevp; if (flag == affile->af_comppermit) { entry->ae_comppermit = true; } else { entry->ae_compforbid = true; } } if (affile->af_flagtype == AFT_NUM && *p == ',') { p++; } } if (*entry->ae_flags == NUL) { entry->ae_flags = NULL; // nothing left } } } /// @return true if "s" is the name of an info item in the affix file. static bool spell_info_item(char *s) { return strcmp(s, "NAME") == 0 || strcmp(s, "HOME") == 0 || strcmp(s, "VERSION") == 0 || strcmp(s, "AUTHOR") == 0 || strcmp(s, "EMAIL") == 0 || strcmp(s, "COPYRIGHT") == 0; } // Turn an affix flag name into a number, according to the FLAG type. // returns zero for failure. static unsigned affitem2flag(int flagtype, char_u *item, char_u *fname, int lnum) { unsigned res; char_u *p = item; res = get_affitem(flagtype, &p); if (res == 0) { if (flagtype == AFT_NUM) { smsg(_("Flag is not a number in %s line %d: %s"), fname, lnum, item); } else { smsg(_("Illegal flag in %s line %d: %s"), fname, lnum, item); } } if (*p != NUL) { smsg(_(e_affname), fname, lnum, item); return 0; } return res; } // Get one affix name from "*pp" and advance the pointer. // Returns ZERO_FLAG for "0". // Returns zero for an error, still advances the pointer then. static unsigned get_affitem(int flagtype, char_u **pp) { int res; if (flagtype == AFT_NUM) { if (!ascii_isdigit(**pp)) { ++*pp; // always advance, avoid getting stuck return 0; } res = getdigits_int((char **)pp, true, 0); if (res == 0) { res = ZERO_FLAG; } } else { res = mb_ptr2char_adv((const char_u **)pp); if (flagtype == AFT_LONG || (flagtype == AFT_CAPLONG && res >= 'A' && res <= 'Z')) { if (**pp == NUL) { return 0; } res = mb_ptr2char_adv((const char_u **)pp) + (res << 16); } } return (unsigned)res; } // Process the "compflags" string used in an affix file and append it to // spin->si_compflags. // The processing involves changing the affix names to ID numbers, so that // they fit in one byte. static void process_compflags(spellinfo_T *spin, afffile_T *aff, char_u *compflags) { char_u *p; char_u *prevp; unsigned flag; compitem_T *ci; int id; int len; char_u *tp; char_u key[AH_KEY_LEN]; hashitem_T *hi; // Make room for the old and the new compflags, concatenated with a / in // between. Processing it makes it shorter, but we don't know by how // much, thus allocate the maximum. len = (int)STRLEN(compflags) + 1; if (spin->si_compflags != NULL) { len += (int)STRLEN(spin->si_compflags) + 1; } p = getroom(spin, (size_t)len, false); if (spin->si_compflags != NULL) { STRCPY(p, spin->si_compflags); STRCAT(p, "/"); } spin->si_compflags = p; tp = p + STRLEN(p); for (p = compflags; *p != NUL;) { if (vim_strchr("/?*+[]", *p) != NULL) { // Copy non-flag characters directly. *tp++ = *p++; } else { // First get the flag number, also checks validity. prevp = p; flag = get_affitem(aff->af_flagtype, &p); if (flag != 0) { // Find the flag in the hashtable. If it was used before, use // the existing ID. Otherwise add a new entry. STRLCPY(key, prevp, p - prevp + 1); hi = hash_find(&aff->af_comp, (char *)key); if (!HASHITEM_EMPTY(hi)) { id = HI2CI(hi)->ci_newID; } else { ci = getroom(spin, sizeof(compitem_T), true); STRCPY(ci->ci_key, key); ci->ci_flag = flag; // Avoid using a flag ID that has a special meaning in a // regexp (also inside []). do { check_renumber(spin); id = spin->si_newcompID--; } while (vim_strchr("/?*+[]\\-^", id) != NULL); ci->ci_newID = id; hash_add(&aff->af_comp, ci->ci_key); } *tp++ = (char_u)id; } if (aff->af_flagtype == AFT_NUM && *p == ',') { p++; } } } *tp = NUL; } // Check that the new IDs for postponed affixes and compounding don't overrun // each other. We have almost 255 available, but start at 0-127 to avoid // using two bytes for utf-8. When the 0-127 range is used up go to 128-255. // When that is used up an error message is given. static void check_renumber(spellinfo_T *spin) { if (spin->si_newprefID == spin->si_newcompID && spin->si_newcompID < 128) { spin->si_newprefID = 127; spin->si_newcompID = 255; } } // Returns true if flag "flag" appears in affix list "afflist". static bool flag_in_afflist(int flagtype, char_u *afflist, unsigned flag) { char *p; unsigned n; switch (flagtype) { case AFT_CHAR: return vim_strchr((char *)afflist, (int)flag) != NULL; case AFT_CAPLONG: case AFT_LONG: for (p = (char *)afflist; *p != NUL;) { n = (unsigned)mb_ptr2char_adv((const char_u **)&p); if ((flagtype == AFT_LONG || (n >= 'A' && n <= 'Z')) && *p != NUL) { n = (unsigned)mb_ptr2char_adv((const char_u **)&p) + (n << 16); } if (n == flag) { return true; } } break; case AFT_NUM: for (p = (char *)afflist; *p != NUL;) { int digits = getdigits_int(&p, true, 0); assert(digits >= 0); n = (unsigned int)digits; if (n == 0) { n = ZERO_FLAG; } if (n == flag) { return true; } if (*p != NUL) { // skip over comma p++; } } break; } return false; } // Give a warning when "spinval" and "affval" numbers are set and not the same. static void aff_check_number(int spinval, int affval, char *name) { if (spinval != 0 && spinval != affval) { smsg(_("%s value differs from what is used in another .aff file"), name); } } /// Give a warning when "spinval" and "affval" strings are set and not the same. static void aff_check_string(char *spinval, char *affval, char *name) { if (spinval != NULL && strcmp(spinval, affval) != 0) { smsg(_("%s value differs from what is used in another .aff file"), name); } } /// @return true if strings "s1" and "s2" are equal. Also consider both being /// NULL as equal. static bool str_equal(char *s1, char *s2) { if (s1 == NULL || s2 == NULL) { return s1 == s2; } return strcmp(s1, s2) == 0; } // Add a from-to item to "gap". Used for REP and SAL items. // They are stored case-folded. static void add_fromto(spellinfo_T *spin, garray_T *gap, char_u *from, char_u *to) { char_u word[MAXWLEN]; fromto_T *ftp = GA_APPEND_VIA_PTR(fromto_T, gap); (void)spell_casefold(curwin, from, (int)STRLEN(from), word, MAXWLEN); ftp->ft_from = (char_u *)getroom_save(spin, word); (void)spell_casefold(curwin, to, (int)STRLEN(to), word, MAXWLEN); ftp->ft_to = (char_u *)getroom_save(spin, word); } /// Converts a boolean argument in a SAL line to true or false; static bool sal_to_bool(char *s) { return strcmp(s, "1") == 0 || strcmp(s, "true") == 0; } // Free the structure filled by spell_read_aff(). static void spell_free_aff(afffile_T *aff) { hashtab_T *ht; hashitem_T *hi; int todo; affheader_T *ah; affentry_T *ae; xfree(aff->af_enc); // All this trouble to free the "ae_prog" items... for (ht = &aff->af_pref;; ht = &aff->af_suff) { todo = (int)ht->ht_used; for (hi = ht->ht_array; todo > 0; hi++) { if (!HASHITEM_EMPTY(hi)) { todo--; ah = HI2AH(hi); for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) { vim_regfree(ae->ae_prog); } } } if (ht == &aff->af_suff) { break; } } hash_clear(&aff->af_pref); hash_clear(&aff->af_suff); hash_clear(&aff->af_comp); } // Read dictionary file "fname". // Returns OK or FAIL; static int spell_read_dic(spellinfo_T *spin, char_u *fname, afffile_T *affile) { hashtab_T ht; char_u line[MAXLINELEN]; char_u *p; char_u *afflist; char_u store_afflist[MAXWLEN]; int pfxlen; bool need_affix; char_u *dw; char_u *pc; char_u *w; int l; hash_T hash; hashitem_T *hi; FILE *fd; int lnum = 1; int non_ascii = 0; int retval = OK; char_u message[MAXLINELEN + MAXWLEN]; int flags; int duplicate = 0; Timestamp last_msg_time = 0; // Open the file. fd = os_fopen((char *)fname, "r"); if (fd == NULL) { semsg(_(e_notopen), fname); return FAIL; } // The hashtable is only used to detect duplicated words. hash_init(&ht); vim_snprintf((char *)IObuff, IOSIZE, _("Reading dictionary file %s..."), fname); spell_message(spin, (char *)IObuff); // start with a message for the first line spin->si_msg_count = 999999; // Read and ignore the first line: word count. if (vim_fgets(line, MAXLINELEN, fd) || !ascii_isdigit(*skipwhite((char *)line))) { semsg(_("E760: No word count in %s"), fname); } // Read all the lines in the file one by one. // The words are converted to 'encoding' here, before being added to // the hashtable. while (!vim_fgets(line, MAXLINELEN, fd) && !got_int) { line_breakcheck(); lnum++; if (line[0] == '#' || line[0] == '/') { continue; // comment line } // Remove CR, LF and white space from the end. White space halfway through // the word is kept to allow multi-word terms like "et al.". l = (int)STRLEN(line); while (l > 0 && line[l - 1] <= ' ') { l--; } if (l == 0) { continue; // empty line } line[l] = NUL; // Convert from "SET" to 'encoding' when needed. if (spin->si_conv.vc_type != CONV_NONE) { pc = (char_u *)string_convert(&spin->si_conv, (char *)line, NULL); if (pc == NULL) { smsg(_("Conversion failure for word in %s line %d: %s"), fname, lnum, line); continue; } w = pc; } else { pc = NULL; w = line; } // Truncate the word at the "/", set "afflist" to what follows. // Replace "\/" by "/" and "\\" by "\". afflist = NULL; for (p = w; *p != NUL; MB_PTR_ADV(p)) { if (*p == '\\' && (p[1] == '\\' || p[1] == '/')) { STRMOVE(p, p + 1); } else if (*p == '/') { *p = NUL; afflist = p + 1; break; } } // Skip non-ASCII words when "spin->si_ascii" is true. if (spin->si_ascii && has_non_ascii(w)) { non_ascii++; xfree(pc); continue; } // This takes time, print a message every 10000 words, but not more // often than once per second. if (spin->si_verbose && spin->si_msg_count > 10000) { spin->si_msg_count = 0; if (os_time() > last_msg_time) { last_msg_time = os_time(); vim_snprintf((char *)message, sizeof(message), _("line %6d, word %6ld - %s"), lnum, spin->si_foldwcount + spin->si_keepwcount, w); msg_start(); msg_outtrans_long_attr((char *)message, 0); msg_clr_eos(); msg_didout = false; msg_col = 0; ui_flush(); } } // Store the word in the hashtable to be able to find duplicates. dw = (char_u *)getroom_save(spin, w); if (dw == NULL) { retval = FAIL; xfree(pc); break; } hash = hash_hash(dw); hi = hash_lookup(&ht, (const char *)dw, STRLEN(dw), hash); if (!HASHITEM_EMPTY(hi)) { if (p_verbose > 0) { smsg(_("Duplicate word in %s line %d: %s"), fname, lnum, dw); } else if (duplicate == 0) { smsg(_("First duplicate word in %s line %d: %s"), fname, lnum, dw); } duplicate++; } else { hash_add_item(&ht, hi, dw, hash); } flags = 0; store_afflist[0] = NUL; pfxlen = 0; need_affix = false; if (afflist != NULL) { // Extract flags from the affix list. flags |= get_affix_flags(affile, afflist); if (affile->af_needaffix != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_needaffix)) { need_affix = true; } if (affile->af_pfxpostpone) { // Need to store the list of prefix IDs with the word. pfxlen = get_pfxlist(affile, afflist, store_afflist); } if (spin->si_compflags != NULL) { // Need to store the list of compound flags with the word. // Concatenate them to the list of prefix IDs. get_compflags(affile, afflist, store_afflist + pfxlen); } } // Add the word to the word tree(s). if (store_word(spin, dw, flags, spin->si_region, store_afflist, need_affix) == FAIL) { retval = FAIL; } if (afflist != NULL) { // Find all matching suffixes and add the resulting words. // Additionally do matching prefixes that combine. if (store_aff_word(spin, dw, afflist, affile, &affile->af_suff, &affile->af_pref, CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL) { retval = FAIL; } // Find all matching prefixes and add the resulting words. if (store_aff_word(spin, dw, afflist, affile, &affile->af_pref, NULL, CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL) { retval = FAIL; } } xfree(pc); } if (duplicate > 0) { smsg(_("%d duplicate word(s) in %s"), duplicate, fname); } if (spin->si_ascii && non_ascii > 0) { smsg(_("Ignored %d word(s) with non-ASCII characters in %s"), non_ascii, fname); } hash_clear(&ht); fclose(fd); return retval; } // Check for affix flags in "afflist" that are turned into word flags. // Return WF_ flags. static int get_affix_flags(afffile_T *affile, char_u *afflist) { int flags = 0; if (affile->af_keepcase != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_keepcase)) { flags |= WF_KEEPCAP | WF_FIXCAP; } if (affile->af_rare != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_rare)) { flags |= WF_RARE; } if (affile->af_bad != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_bad)) { flags |= WF_BANNED; } if (affile->af_needcomp != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_needcomp)) { flags |= WF_NEEDCOMP; } if (affile->af_comproot != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_comproot)) { flags |= WF_COMPROOT; } if (affile->af_nosuggest != 0 && flag_in_afflist(affile->af_flagtype, afflist, affile->af_nosuggest)) { flags |= WF_NOSUGGEST; } return flags; } // Get the list of prefix IDs from the affix list "afflist". // Used for PFXPOSTPONE. // Put the resulting flags in "store_afflist[MAXWLEN]" with a terminating NUL // and return the number of affixes. static int get_pfxlist(afffile_T *affile, char_u *afflist, char_u *store_afflist) { char_u *p; char_u *prevp; int cnt = 0; int id; char_u key[AH_KEY_LEN]; hashitem_T *hi; for (p = afflist; *p != NUL;) { prevp = p; if (get_affitem(affile->af_flagtype, &p) != 0) { // A flag is a postponed prefix flag if it appears in "af_pref" // and its ID is not zero. STRLCPY(key, prevp, p - prevp + 1); hi = hash_find(&affile->af_pref, (char *)key); if (!HASHITEM_EMPTY(hi)) { id = HI2AH(hi)->ah_newID; if (id != 0) { store_afflist[cnt++] = (char_u)id; } } } if (affile->af_flagtype == AFT_NUM && *p == ',') { p++; } } store_afflist[cnt] = NUL; return cnt; } // Get the list of compound IDs from the affix list "afflist" that are used // for compound words. // Puts the flags in "store_afflist[]". static void get_compflags(afffile_T *affile, char_u *afflist, char_u *store_afflist) { char_u *p; char_u *prevp; int cnt = 0; char_u key[AH_KEY_LEN]; hashitem_T *hi; for (p = afflist; *p != NUL;) { prevp = p; if (get_affitem(affile->af_flagtype, &p) != 0) { // A flag is a compound flag if it appears in "af_comp". STRLCPY(key, prevp, p - prevp + 1); hi = hash_find(&affile->af_comp, (char *)key); if (!HASHITEM_EMPTY(hi)) { store_afflist[cnt++] = (char_u)HI2CI(hi)->ci_newID; } } if (affile->af_flagtype == AFT_NUM && *p == ',') { p++; } } store_afflist[cnt] = NUL; } /// Apply affixes to a word and store the resulting words. /// "ht" is the hashtable with affentry_T that need to be applied, either /// prefixes or suffixes. /// "xht", when not NULL, is the prefix hashtable, to be used additionally on /// the resulting words for combining affixes. /// /// @param spin spell info /// @param word basic word start /// @param afflist list of names of supported affixes /// @param condit CONDIT_SUF et al. /// @param flags flags for the word /// @param pfxlist list of prefix IDs /// @param pfxlen nr of flags in "pfxlist" for prefixes, rest is compound flags /// /// @return FAIL when out of memory. static int store_aff_word(spellinfo_T *spin, char_u *word, char_u *afflist, afffile_T *affile, hashtab_T *ht, hashtab_T *xht, int condit, int flags, char_u *pfxlist, int pfxlen) { int todo; hashitem_T *hi; affheader_T *ah; affentry_T *ae; char_u newword[MAXWLEN]; int retval = OK; int i, j; char_u *p; int use_flags; char_u *use_pfxlist; int use_pfxlen; bool need_affix; char_u store_afflist[MAXWLEN]; char_u pfx_pfxlist[MAXWLEN]; size_t wordlen = STRLEN(word); int use_condit; todo = (int)ht->ht_used; for (hi = ht->ht_array; todo > 0 && retval == OK; hi++) { if (!HASHITEM_EMPTY(hi)) { todo--; ah = HI2AH(hi); // Check that the affix combines, if required, and that the word // supports this affix. if (((condit & CONDIT_COMB) == 0 || ah->ah_combine) && flag_in_afflist(affile->af_flagtype, afflist, ah->ah_flag)) { // Loop over all affix entries with this name. for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) { // Check the condition. It's not logical to match case // here, but it is required for compatibility with // Myspell. // Another requirement from Myspell is that the chop // string is shorter than the word itself. // For prefixes, when "PFXPOSTPONE" was used, only do // prefixes with a chop string and/or flags. // When a previously added affix had CIRCUMFIX this one // must have it too, if it had not then this one must not // have one either. if ((xht != NULL || !affile->af_pfxpostpone || ae->ae_chop != NULL || ae->ae_flags != NULL) && (ae->ae_chop == NULL || STRLEN(ae->ae_chop) < wordlen) && (ae->ae_prog == NULL || vim_regexec_prog(&ae->ae_prog, false, word, (colnr_T)0)) && (((condit & CONDIT_CFIX) == 0) == ((condit & CONDIT_AFF) == 0 || ae->ae_flags == NULL || !flag_in_afflist(affile->af_flagtype, ae->ae_flags, affile->af_circumfix)))) { // Match. Remove the chop and add the affix. if (xht == NULL) { // prefix: chop/add at the start of the word if (ae->ae_add == NULL) { *newword = NUL; } else { STRLCPY(newword, ae->ae_add, MAXWLEN); } p = word; if (ae->ae_chop != NULL) { // Skip chop string. i = mb_charlen(ae->ae_chop); for (; i > 0; i--) { MB_PTR_ADV(p); } } STRCAT(newword, p); } else { // suffix: chop/add at the end of the word STRLCPY(newword, word, MAXWLEN); if (ae->ae_chop != NULL) { // Remove chop string. p = newword + STRLEN(newword); i = mb_charlen(ae->ae_chop); for (; i > 0; i--) { MB_PTR_BACK(newword, p); } *p = NUL; } if (ae->ae_add != NULL) { STRCAT(newword, ae->ae_add); } } use_flags = flags; use_pfxlist = pfxlist; use_pfxlen = pfxlen; need_affix = false; use_condit = condit | CONDIT_COMB | CONDIT_AFF; if (ae->ae_flags != NULL) { // Extract flags from the affix list. use_flags |= get_affix_flags(affile, ae->ae_flags); if (affile->af_needaffix != 0 && flag_in_afflist(affile->af_flagtype, ae->ae_flags, affile->af_needaffix)) { need_affix = true; } // When there is a CIRCUMFIX flag the other affix // must also have it and we don't add the word // with one affix. if (affile->af_circumfix != 0 && flag_in_afflist(affile->af_flagtype, ae->ae_flags, affile->af_circumfix)) { use_condit |= CONDIT_CFIX; if ((condit & CONDIT_CFIX) == 0) { need_affix = true; } } if (affile->af_pfxpostpone || spin->si_compflags != NULL) { if (affile->af_pfxpostpone) { // Get prefix IDS from the affix list. use_pfxlen = get_pfxlist(affile, ae->ae_flags, store_afflist); } else { use_pfxlen = 0; } use_pfxlist = store_afflist; // Combine the prefix IDs. Avoid adding the // same ID twice. for (i = 0; i < pfxlen; i++) { for (j = 0; j < use_pfxlen; j++) { if (pfxlist[i] == use_pfxlist[j]) { break; } } if (j == use_pfxlen) { use_pfxlist[use_pfxlen++] = pfxlist[i]; } } if (spin->si_compflags != NULL) { // Get compound IDS from the affix list. get_compflags(affile, ae->ae_flags, use_pfxlist + use_pfxlen); } else { use_pfxlist[use_pfxlen] = NUL; } // Combine the list of compound flags. // Concatenate them to the prefix IDs list. // Avoid adding the same ID twice. for (i = pfxlen; pfxlist[i] != NUL; i++) { for (j = use_pfxlen; use_pfxlist[j] != NUL; j++) { if (pfxlist[i] == use_pfxlist[j]) { break; } } if (use_pfxlist[j] == NUL) { use_pfxlist[j++] = pfxlist[i]; use_pfxlist[j] = NUL; } } } } // Obey a "COMPOUNDFORBIDFLAG" of the affix: don't // use the compound flags. if (use_pfxlist != NULL && ae->ae_compforbid) { STRLCPY(pfx_pfxlist, use_pfxlist, use_pfxlen + 1); use_pfxlist = pfx_pfxlist; } // When there are postponed prefixes... if (spin->si_prefroot != NULL && spin->si_prefroot->wn_sibling != NULL) { // ... add a flag to indicate an affix was used. use_flags |= WF_HAS_AFF; // ... don't use a prefix list if combining // affixes is not allowed. But do use the // compound flags after them. if (!ah->ah_combine && use_pfxlist != NULL) { use_pfxlist += use_pfxlen; } } // When compounding is supported and there is no // "COMPOUNDPERMITFLAG" then forbid compounding on the // side where the affix is applied. if (spin->si_compflags != NULL && !ae->ae_comppermit) { if (xht != NULL) { use_flags |= WF_NOCOMPAFT; } else { use_flags |= WF_NOCOMPBEF; } } // Store the modified word. if (store_word(spin, newword, use_flags, spin->si_region, use_pfxlist, need_affix) == FAIL) { retval = FAIL; } // When added a prefix or a first suffix and the affix // has flags may add a(nother) suffix. RECURSIVE! if ((condit & CONDIT_SUF) && ae->ae_flags != NULL) { if (store_aff_word(spin, newword, ae->ae_flags, affile, &affile->af_suff, xht, use_condit & (xht == NULL ? ~0 : ~CONDIT_SUF), use_flags, use_pfxlist, pfxlen) == FAIL) { retval = FAIL; } } // When added a suffix and combining is allowed also // try adding a prefix additionally. Both for the // word flags and for the affix flags. RECURSIVE! if (xht != NULL && ah->ah_combine) { if (store_aff_word(spin, newword, afflist, affile, xht, NULL, use_condit, use_flags, use_pfxlist, pfxlen) == FAIL || (ae->ae_flags != NULL && store_aff_word(spin, newword, ae->ae_flags, affile, xht, NULL, use_condit, use_flags, use_pfxlist, pfxlen) == FAIL)) { retval = FAIL; } } } } } } } return retval; } // Read a file with a list of words. static int spell_read_wordfile(spellinfo_T *spin, char_u *fname) { FILE *fd; long lnum = 0; char_u rline[MAXLINELEN]; char_u *line; char_u *pc = NULL; char_u *p; int l; int retval = OK; bool did_word = false; int non_ascii = 0; int flags; int regionmask; // Open the file. fd = os_fopen((char *)fname, "r"); if (fd == NULL) { semsg(_(e_notopen), fname); return FAIL; } vim_snprintf((char *)IObuff, IOSIZE, _("Reading word file %s..."), fname); spell_message(spin, (char *)IObuff); // Read all the lines in the file one by one. while (!vim_fgets(rline, MAXLINELEN, fd) && !got_int) { line_breakcheck(); lnum++; // Skip comment lines. if (*rline == '#') { continue; } // Remove CR, LF and white space from the end. l = (int)STRLEN(rline); while (l > 0 && rline[l - 1] <= ' ') { l--; } if (l == 0) { continue; // empty or blank line } rline[l] = NUL; // Convert from "/encoding={encoding}" to 'encoding' when needed. xfree(pc); if (spin->si_conv.vc_type != CONV_NONE) { pc = (char_u *)string_convert(&spin->si_conv, (char *)rline, NULL); if (pc == NULL) { smsg(_("Conversion failure for word in %s line %ld: %s"), fname, lnum, rline); continue; } line = pc; } else { pc = NULL; line = rline; } if (*line == '/') { line++; if (STRNCMP(line, "encoding=", 9) == 0) { if (spin->si_conv.vc_type != CONV_NONE) { smsg(_("Duplicate /encoding= line ignored in %s line %ld: %s"), fname, lnum, line - 1); } else if (did_word) { smsg(_("/encoding= line after word ignored in %s line %ld: %s"), fname, lnum, line - 1); } else { char *enc; // Setup for conversion to 'encoding'. line += 9; enc = enc_canonize((char *)line); if (!spin->si_ascii && convert_setup(&spin->si_conv, enc, p_enc) == FAIL) { smsg(_("Conversion in %s not supported: from %s to %s"), fname, line, p_enc); } xfree(enc); spin->si_conv.vc_fail = true; } continue; } if (STRNCMP(line, "regions=", 8) == 0) { if (spin->si_region_count > 1) { smsg(_("Duplicate /regions= line ignored in %s line %ld: %s"), fname, lnum, line); } else { line += 8; if (STRLEN(line) > MAXREGIONS * 2) { smsg(_("Too many regions in %s line %ld: %s"), fname, lnum, line); } else { spin->si_region_count = (int)STRLEN(line) / 2; STRCPY(spin->si_region_name, line); // Adjust the mask for a word valid in all regions. spin->si_region = (1 << spin->si_region_count) - 1; } } continue; } smsg(_("/ line ignored in %s line %ld: %s"), fname, lnum, line - 1); continue; } flags = 0; regionmask = spin->si_region; // Check for flags and region after a slash. p = (char_u *)vim_strchr((char *)line, '/'); if (p != NULL) { *p++ = NUL; while (*p != NUL) { if (*p == '=') { // keep-case word flags |= WF_KEEPCAP | WF_FIXCAP; } else if (*p == '!') { // Bad, bad, wicked word. flags |= WF_BANNED; } else if (*p == '?') { // Rare word. flags |= WF_RARE; } else if (ascii_isdigit(*p)) { // region number(s) if ((flags & WF_REGION) == 0) { // first one regionmask = 0; } flags |= WF_REGION; l = *p - '0'; if (l == 0 || l > spin->si_region_count) { smsg(_("Invalid region nr in %s line %ld: %s"), fname, lnum, p); break; } regionmask |= 1 << (l - 1); } else { smsg(_("Unrecognized flags in %s line %ld: %s"), fname, lnum, p); break; } p++; } } // Skip non-ASCII words when "spin->si_ascii" is true. if (spin->si_ascii && has_non_ascii(line)) { non_ascii++; continue; } // Normal word: store it. if (store_word(spin, line, flags, regionmask, NULL, false) == FAIL) { retval = FAIL; break; } did_word = true; } xfree(pc); fclose(fd); if (spin->si_ascii && non_ascii > 0) { vim_snprintf((char *)IObuff, IOSIZE, _("Ignored %d words with non-ASCII characters"), non_ascii); spell_message(spin, (char *)IObuff); } return retval; } /// Get part of an sblock_T, "len" bytes long. /// This avoids calling free() for every little struct we use (and keeping /// track of them). /// The memory is cleared to all zeros. /// /// @param len Length needed (<= SBLOCKSIZE). /// @param align Align for pointer. /// @return Pointer into block data. static void *getroom(spellinfo_T *spin, size_t len, bool align) FUNC_ATTR_NONNULL_RET { char_u *p; sblock_T *bl = spin->si_blocks; assert(len <= SBLOCKSIZE); if (align && bl != NULL) { // Round size up for alignment. On some systems structures need to be // aligned to the size of a pointer (e.g., SPARC). bl->sb_used = (int)(((size_t)bl->sb_used + sizeof(char *) - 1) & ~(sizeof(char *) - 1)); } if (bl == NULL || (size_t)bl->sb_used + len > SBLOCKSIZE) { // Allocate a block of memory. It is not freed until much later. bl = xcalloc(1, (sizeof(sblock_T) + SBLOCKSIZE)); bl->sb_next = spin->si_blocks; spin->si_blocks = bl; bl->sb_used = 0; spin->si_blocks_cnt++; } p = bl->sb_data + bl->sb_used; bl->sb_used += (int)len; return p; } /// Make a copy of a string into memory allocated with getroom(). /// /// @return NULL when out of memory. static char *getroom_save(spellinfo_T *spin, char_u *s) { const size_t s_size = STRLEN(s) + 1; return memcpy(getroom(spin, s_size, false), s, s_size); } // Free the list of allocated sblock_T. static void free_blocks(sblock_T *bl) { sblock_T *next; while (bl != NULL) { next = bl->sb_next; xfree(bl); bl = next; } } // Allocate the root of a word tree. // Returns NULL when out of memory. static wordnode_T *wordtree_alloc(spellinfo_T *spin) FUNC_ATTR_NONNULL_RET { return (wordnode_T *)getroom(spin, sizeof(wordnode_T), true); } /// Return true if "word" contains valid word characters. /// Control characters and trailing '/' are invalid. Space is OK. static bool valid_spell_word(const char *word, const char *end) { if (!utf_valid_string((char_u *)word, (char_u *)end)) { return false; } for (const char *p = word; *p != NUL && p < end; p += utfc_ptr2len(p)) { if ((uint8_t)(*p) < ' ' || (p[0] == '/' && p[1] == NUL)) { return false; } } return true; } /// Store a word in the tree(s). /// Always store it in the case-folded tree. For a keep-case word this is /// useful when the word can also be used with all caps (no WF_FIXCAP flag) and /// used to find suggestions. /// For a keep-case word also store it in the keep-case tree. /// When "pfxlist" is not NULL store the word for each postponed prefix ID and /// compound flag. /// /// @param flags extra flags, wf_banned /// @param region supported region(s) /// @param pfxlist list of prefix ids or null /// @param need_affix only store word with affix id static int store_word(spellinfo_T *spin, char_u *word, int flags, int region, const char_u *pfxlist, bool need_affix) { int len = (int)STRLEN(word); int ct = captype(word, word + len); char_u foldword[MAXWLEN]; int res = OK; // Avoid adding illegal bytes to the word tree. if (!valid_spell_word((char *)word, (char *)word + len)) { return FAIL; } (void)spell_casefold(curwin, word, len, foldword, MAXWLEN); for (const char_u *p = pfxlist; res == OK; p++) { if (!need_affix || (p != NULL && *p != NUL)) { res = tree_add_word(spin, foldword, spin->si_foldroot, ct | flags, region, p == NULL ? 0 : *p); } if (p == NULL || *p == NUL) { break; } } spin->si_foldwcount++; if (res == OK && (ct == WF_KEEPCAP || (flags & WF_KEEPCAP))) { for (const char_u *p = pfxlist; res == OK; p++) { if (!need_affix || (p != NULL && *p != NUL)) { res = tree_add_word(spin, word, spin->si_keeproot, flags, region, p == NULL ? 0 : *p); } if (p == NULL || *p == NUL) { break; } } spin->si_keepwcount++; } return res; } // Add word "word" to a word tree at "root". // When "flags" < 0 we are adding to the prefix tree where "flags" is used for // "rare" and "region" is the condition nr. // Returns FAIL when out of memory. static int tree_add_word(spellinfo_T *spin, char_u *word, wordnode_T *root, int flags, int region, int affixID) { wordnode_T *node = root; wordnode_T *np; wordnode_T *copyp, **copyprev; wordnode_T **prev = NULL; int i; // Add each byte of the word to the tree, including the NUL at the end. for (i = 0;; i++) { // When there is more than one reference to this node we need to make // a copy, so that we can modify it. Copy the whole list of siblings // (we don't optimize for a partly shared list of siblings). if (node != NULL && node->wn_refs > 1) { node->wn_refs--; copyprev = prev; for (copyp = node; copyp != NULL; copyp = copyp->wn_sibling) { // Allocate a new node and copy the info. np = get_wordnode(spin); if (np == NULL) { return FAIL; } np->wn_child = copyp->wn_child; if (np->wn_child != NULL) { np->wn_child->wn_refs++; // child gets extra ref } np->wn_byte = copyp->wn_byte; if (np->wn_byte == NUL) { np->wn_flags = copyp->wn_flags; np->wn_region = copyp->wn_region; np->wn_affixID = copyp->wn_affixID; } // Link the new node in the list, there will be one ref. np->wn_refs = 1; if (copyprev != NULL) { *copyprev = np; } copyprev = &np->wn_sibling; // Let "node" point to the head of the copied list. if (copyp == node) { node = np; } } } // Look for the sibling that has the same character. They are sorted // on byte value, thus stop searching when a sibling is found with a // higher byte value. For zero bytes (end of word) the sorting is // done on flags and then on affixID. while (node != NULL && (node->wn_byte < word[i] || (node->wn_byte == NUL && (flags < 0 ? node->wn_affixID < (unsigned)affixID : (node->wn_flags < (unsigned)(flags & WN_MASK) || (node->wn_flags == (flags & WN_MASK) && (spin->si_sugtree ? (node->wn_region & 0xffff) < region : node->wn_affixID < (unsigned)affixID))))))) { prev = &node->wn_sibling; node = *prev; } if (node == NULL || node->wn_byte != word[i] || (word[i] == NUL && (flags < 0 || spin->si_sugtree || node->wn_flags != (flags & WN_MASK) || node->wn_affixID != affixID))) { // Allocate a new node. np = get_wordnode(spin); if (np == NULL) { return FAIL; } np->wn_byte = word[i]; // If "node" is NULL this is a new child or the end of the sibling // list: ref count is one. Otherwise use ref count of sibling and // make ref count of sibling one (matters when inserting in front // of the list of siblings). if (node == NULL) { np->wn_refs = 1; } else { np->wn_refs = node->wn_refs; node->wn_refs = 1; } if (prev != NULL) { *prev = np; } np->wn_sibling = node; node = np; } if (word[i] == NUL) { node->wn_flags = (uint16_t)flags; node->wn_region |= (int16_t)region; node->wn_affixID = (char_u)affixID; break; } prev = &node->wn_child; node = *prev; } #ifdef SPELL_PRINTTREE smsg((char_u *)"Added \"%s\"", word); spell_print_tree(root->wn_sibling); #endif // count nr of words added since last message spin->si_msg_count++; if (spin->si_compress_cnt > 1) { if (--spin->si_compress_cnt == 1) { // Did enough words to lower the block count limit. spin->si_blocks_cnt += compress_inc; } } // When we have allocated lots of memory we need to compress the word tree // to free up some room. But compression is slow, and we might actually // need that room, thus only compress in the following situations: // 1. When not compressed before (si_compress_cnt == 0): when using // "compress_start" blocks. // 2. When compressed before and used "compress_inc" blocks before // adding "compress_added" words (si_compress_cnt > 1). // 3. When compressed before, added "compress_added" words // (si_compress_cnt == 1) and the number of free nodes drops below the // maximum word length. #ifndef SPELL_COMPRESS_ALLWAYS if (spin->si_compress_cnt == 1 // NOLINT(readability/braces) ? spin->si_free_count < MAXWLEN : spin->si_blocks_cnt >= compress_start) #endif { // Decrement the block counter. The effect is that we compress again // when the freed up room has been used and another "compress_inc" // blocks have been allocated. Unless "compress_added" words have // been added, then the limit is put back again. spin->si_blocks_cnt -= compress_inc; spin->si_compress_cnt = compress_added; if (spin->si_verbose) { msg_start(); msg_puts(_(msg_compressing)); msg_clr_eos(); msg_didout = false; msg_col = 0; ui_flush(); } // Compress both trees. Either they both have many nodes, which makes // compression useful, or one of them is small, which means // compression goes fast. But when filling the soundfold word tree // there is no keep-case tree. wordtree_compress(spin, spin->si_foldroot, "case-folded"); if (affixID >= 0) { wordtree_compress(spin, spin->si_keeproot, "keep-case"); } } return OK; } // Get a wordnode_T, either from the list of previously freed nodes or // allocate a new one. // Returns NULL when out of memory. static wordnode_T *get_wordnode(spellinfo_T *spin) { wordnode_T *n; if (spin->si_first_free == NULL) { n = (wordnode_T *)getroom(spin, sizeof(wordnode_T), true); } else { n = spin->si_first_free; spin->si_first_free = n->wn_child; CLEAR_POINTER(n); spin->si_free_count--; } #ifdef SPELL_PRINTTREE if (n != NULL) { n->wn_nr = ++spin->si_wordnode_nr; } #endif return n; } // Decrement the reference count on a node (which is the head of a list of // siblings). If the reference count becomes zero free the node and its // siblings. // Returns the number of nodes actually freed. static int deref_wordnode(spellinfo_T *spin, wordnode_T *node) FUNC_ATTR_NONNULL_ALL { wordnode_T *np; int cnt = 0; if (--node->wn_refs == 0) { for (np = node; np != NULL; np = np->wn_sibling) { if (np->wn_child != NULL) { cnt += deref_wordnode(spin, np->wn_child); } free_wordnode(spin, np); cnt++; } cnt++; // length field } return cnt; } // Free a wordnode_T for re-use later. // Only the "wn_child" field becomes invalid. static void free_wordnode(spellinfo_T *spin, wordnode_T *n) FUNC_ATTR_NONNULL_ALL { n->wn_child = spin->si_first_free; spin->si_first_free = n; spin->si_free_count++; } // Compress a tree: find tails that are identical and can be shared. static void wordtree_compress(spellinfo_T *spin, wordnode_T *root, const char *name) FUNC_ATTR_NONNULL_ALL { hashtab_T ht; long tot = 0; long perc; // Skip the root itself, it's not actually used. The first sibling is the // start of the tree. if (root->wn_sibling != NULL) { hash_init(&ht); const long n = node_compress(spin, root->wn_sibling, &ht, &tot); #ifndef SPELL_PRINTTREE if (spin->si_verbose || p_verbose > 2) #endif { if (tot > 1000000) { perc = (tot - n) / (tot / 100); } else if (tot == 0) { perc = 0; } else { perc = (tot - n) * 100 / tot; } vim_snprintf((char *)IObuff, IOSIZE, _("Compressed %s of %ld nodes; %ld (%ld%%) remaining"), name, tot, tot - n, perc); spell_message(spin, (char *)IObuff); } #ifdef SPELL_PRINTTREE spell_print_tree(root->wn_sibling); #endif hash_clear(&ht); } } /// Compress a node, its siblings and its children, depth first. /// Returns the number of compressed nodes. /// /// @param tot total count of nodes before compressing, incremented while going through the tree static long node_compress(spellinfo_T *spin, wordnode_T *node, hashtab_T *ht, long *tot) FUNC_ATTR_NONNULL_ALL { wordnode_T *np; wordnode_T *tp; wordnode_T *child; hash_T hash; hashitem_T *hi; long len = 0; unsigned nr, n; long compressed = 0; // Go through the list of siblings. Compress each child and then try // finding an identical child to replace it. // Note that with "child" we mean not just the node that is pointed to, // but the whole list of siblings of which the child node is the first. for (np = node; np != NULL && !got_int; np = np->wn_sibling) { len++; if ((child = np->wn_child) != NULL) { // Compress the child first. This fills hashkey. compressed += node_compress(spin, child, ht, tot); // Try to find an identical child. hash = hash_hash(child->wn_u1.hashkey); hi = hash_lookup(ht, (const char *)child->wn_u1.hashkey, STRLEN(child->wn_u1.hashkey), hash); if (!HASHITEM_EMPTY(hi)) { // There are children we encountered before with a hash value // identical to the current child. Now check if there is one // that is really identical. for (tp = HI2WN(hi); tp != NULL; tp = tp->wn_u2.next) { if (node_equal(child, tp)) { // Found one! Now use that child in place of the // current one. This means the current child and all // its siblings is unlinked from the tree. tp->wn_refs++; compressed += deref_wordnode(spin, child); np->wn_child = tp; break; } } if (tp == NULL) { // No other child with this hash value equals the child of // the node, add it to the linked list after the first // item. tp = HI2WN(hi); child->wn_u2.next = tp->wn_u2.next; tp->wn_u2.next = child; } } else { // No other child has this hash value, add it to the // hashtable. hash_add_item(ht, hi, child->wn_u1.hashkey, hash); } } } *tot += len + 1; // add one for the node that stores the length // Make a hash key for the node and its siblings, so that we can quickly // find a lookalike node. This must be done after compressing the sibling // list, otherwise the hash key would become invalid by the compression. node->wn_u1.hashkey[0] = (char_u)len; nr = 0; for (np = node; np != NULL; np = np->wn_sibling) { if (np->wn_byte == NUL) { // end node: use wn_flags, wn_region and wn_affixID n = (unsigned)(np->wn_flags + (np->wn_region << 8) + (np->wn_affixID << 16)); } else { // byte node: use the byte value and the child pointer n = (unsigned)(np->wn_byte + ((uintptr_t)np->wn_child << 8)); } nr = nr * 101 + n; } // Avoid NUL bytes, it terminates the hash key. n = nr & 0xff; node->wn_u1.hashkey[1] = n == 0 ? 1 : (char_u)n; n = (nr >> 8) & 0xff; node->wn_u1.hashkey[2] = n == 0 ? 1 : (char_u)n; n = (nr >> 16) & 0xff; node->wn_u1.hashkey[3] = n == 0 ? 1 : (char_u)n; n = (nr >> 24) & 0xff; node->wn_u1.hashkey[4] = n == 0 ? 1 : (char_u)n; node->wn_u1.hashkey[5] = NUL; // Check for CTRL-C pressed now and then. veryfast_breakcheck(); return compressed; } // Returns true when two nodes have identical siblings and children. static bool node_equal(wordnode_T *n1, wordnode_T *n2) { wordnode_T *p1; wordnode_T *p2; for (p1 = n1, p2 = n2; p1 != NULL && p2 != NULL; p1 = p1->wn_sibling, p2 = p2->wn_sibling) { if (p1->wn_byte != p2->wn_byte || (p1->wn_byte == NUL ? (p1->wn_flags != p2->wn_flags || p1->wn_region != p2->wn_region || p1->wn_affixID != p2->wn_affixID) : (p1->wn_child != p2->wn_child))) { break; } } return p1 == NULL && p2 == NULL; } /// Function given to qsort() to sort the REP items on "from" string. static int rep_compare(const void *s1, const void *s2) { fromto_T *p1 = (fromto_T *)s1; fromto_T *p2 = (fromto_T *)s2; return strcmp((char *)p1->ft_from, (char *)p2->ft_from); } /// Write the Vim .spl file "fname". /// /// @return OK/FAIL. static int write_vim_spell(spellinfo_T *spin, char *fname) { int retval = OK; int regionmask; FILE *fd = os_fopen(fname, "w"); if (fd == NULL) { semsg(_(e_notopen), fname); return FAIL; } //
: // size_t fwv = fwrite(VIMSPELLMAGIC, VIMSPELLMAGICL, 1, fd); if (fwv != (size_t)1) { // Catch first write error, don't try writing more. goto theend; } putc(VIMSPELLVERSION, fd); // // :
... // SN_INFO: if (spin->si_info != NULL) { putc(SN_INFO, fd); // putc(0, fd); // size_t i = STRLEN(spin->si_info); put_bytes(fd, i, 4); // fwv &= fwrite(spin->si_info, i, 1, fd); // } // SN_REGION: ... // Write the region names only if there is more than one. if (spin->si_region_count > 1) { putc(SN_REGION, fd); // putc(SNF_REQUIRED, fd); // size_t l = (size_t)spin->si_region_count * 2; put_bytes(fd, l, 4); // fwv &= fwrite(spin->si_region_name, l, 1, fd); // ... regionmask = (1 << spin->si_region_count) - 1; } else { regionmask = 0; } // SN_CHARFLAGS: // // The table with character flags and the table for case folding. // This makes sure the same characters are recognized as word characters // when generating and when using a spell file. // Skip this for ASCII, the table may conflict with the one used for // 'encoding'. // Also skip this for an .add.spl file, the main spell file must contain // the table (avoids that it conflicts). File is shorter too. if (!spin->si_ascii && !spin->si_add) { char folchars[128 * 8]; int flags; putc(SN_CHARFLAGS, fd); // putc(SNF_REQUIRED, fd); // // Form the string first, we need to know its length. size_t l = 0; for (size_t i = 128; i < 256; i++) { l += (size_t)utf_char2bytes(spelltab.st_fold[i], (char *)folchars + l); } put_bytes(fd, 1 + 128 + 2 + l, 4); // fputc(128, fd); // for (size_t i = 128; i < 256; i++) { flags = 0; if (spelltab.st_isw[i]) { flags |= CF_WORD; } if (spelltab.st_isu[i]) { flags |= CF_UPPER; } fputc(flags, fd); // } put_bytes(fd, l, 2); // fwv &= fwrite(folchars, l, 1, fd); // } // SN_MIDWORD: if (spin->si_midword != NULL) { putc(SN_MIDWORD, fd); // putc(SNF_REQUIRED, fd); // size_t i = STRLEN(spin->si_midword); put_bytes(fd, i, 4); // fwv &= fwrite(spin->si_midword, i, 1, fd); // } // SN_PREFCOND: ... if (!GA_EMPTY(&spin->si_prefcond)) { putc(SN_PREFCOND, fd); // putc(SNF_REQUIRED, fd); // size_t l = (size_t)write_spell_prefcond(NULL, &spin->si_prefcond, &fwv); put_bytes(fd, l, 4); // write_spell_prefcond(fd, &spin->si_prefcond, &fwv); } // SN_REP: ... // SN_SAL: ... // SN_REPSAL: ... // round 1: SN_REP section // round 2: SN_SAL section (unless SN_SOFO is used) // round 3: SN_REPSAL section for (unsigned int round = 1; round <= 3; round++) { garray_T *gap; if (round == 1) { gap = &spin->si_rep; } else if (round == 2) { // Don't write SN_SAL when using a SN_SOFO section if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) { continue; } gap = &spin->si_sal; } else { gap = &spin->si_repsal; } // Don't write the section if there are no items. if (GA_EMPTY(gap)) { continue; } // Sort the REP/REPSAL items. if (round != 2) { qsort(gap->ga_data, (size_t)gap->ga_len, sizeof(fromto_T), rep_compare); } int sect_id = round == 1 ? SN_REP : (round == 2 ? SN_SAL : SN_REPSAL); putc(sect_id, fd); // // This is for making suggestions, section is not required. putc(0, fd); // // Compute the length of what follows. size_t l = 2; // count or assert(gap->ga_len >= 0); for (size_t i = 0; i < (size_t)gap->ga_len; i++) { fromto_T *ftp = &((fromto_T *)gap->ga_data)[i]; l += 1 + STRLEN(ftp->ft_from); // count <*fromlen> and <*from> l += 1 + STRLEN(ftp->ft_to); // count <*tolen> and <*to> } if (round == 2) { l++; // count } put_bytes(fd, l, 4); // if (round == 2) { int i = 0; if (spin->si_followup) { i |= SAL_F0LLOWUP; } if (spin->si_collapse) { i |= SAL_COLLAPSE; } if (spin->si_rem_accents) { i |= SAL_REM_ACCENTS; } putc(i, fd); // } put_bytes(fd, (uintmax_t)gap->ga_len, 2); // or for (size_t i = 0; i < (size_t)gap->ga_len; i++) { // : // : fromto_T *ftp = &((fromto_T *)gap->ga_data)[i]; for (unsigned int rr = 1; rr <= 2; rr++) { char_u *p = rr == 1 ? ftp->ft_from : ftp->ft_to; l = STRLEN(p); assert(l < INT_MAX); putc((int)l, fd); if (l > 0) { fwv &= fwrite(p, l, 1, fd); } } } } // SN_SOFO: // This is for making suggestions, section is not required. if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) { putc(SN_SOFO, fd); // putc(0, fd); // size_t l = STRLEN(spin->si_sofofr); put_bytes(fd, l + STRLEN(spin->si_sofoto) + 4, 4); // put_bytes(fd, l, 2); // fwv &= fwrite(spin->si_sofofr, l, 1, fd); // l = STRLEN(spin->si_sofoto); put_bytes(fd, l, 2); // fwv &= fwrite(spin->si_sofoto, l, 1, fd); // } // SN_WORDS: ... // This is for making suggestions, section is not required. if (spin->si_commonwords.ht_used > 0) { putc(SN_WORDS, fd); // putc(0, fd); // // round 1: count the bytes // round 2: write the bytes for (unsigned int round = 1; round <= 2; round++) { size_t todo; size_t len = 0; hashitem_T *hi; todo = spin->si_commonwords.ht_used; for (hi = spin->si_commonwords.ht_array; todo > 0; hi++) { if (!HASHITEM_EMPTY(hi)) { size_t l = STRLEN(hi->hi_key) + 1; len += l; if (round == 2) { // fwv &= fwrite(hi->hi_key, l, 1, fd); } todo--; } } if (round == 1) { put_bytes(fd, len, 4); // } } } // SN_MAP: // This is for making suggestions, section is not required. if (!GA_EMPTY(&spin->si_map)) { putc(SN_MAP, fd); // putc(0, fd); // size_t l = (size_t)spin->si_map.ga_len; put_bytes(fd, l, 4); // fwv &= fwrite(spin->si_map.ga_data, l, 1, fd); // } // SN_SUGFILE: // This is used to notify that a .sug file may be available and at the // same time allows for checking that a .sug file that is found matches // with this .spl file. That's because the word numbers must be exactly // right. if (!spin->si_nosugfile && (!GA_EMPTY(&spin->si_sal) || (spin->si_sofofr != NULL && spin->si_sofoto != NULL))) { putc(SN_SUGFILE, fd); // putc(0, fd); // put_bytes(fd, 8, 4); // // Set si_sugtime and write it to the file. spin->si_sugtime = time(NULL); put_time(fd, spin->si_sugtime); // } // SN_NOSPLITSUGS: nothing // This is used to notify that no suggestions with word splits are to be // made. if (spin->si_nosplitsugs) { putc(SN_NOSPLITSUGS, fd); // putc(0, fd); // put_bytes(fd, 0, 4); // } // SN_NOCOMPUNDSUGS: nothing // This is used to notify that no suggestions with compounds are to be // made. if (spin->si_nocompoundsugs) { putc(SN_NOCOMPOUNDSUGS, fd); // putc(0, fd); // put_bytes(fd, 0, 4); // } // SN_COMPOUND: compound info. // We don't mark it required, when not supported all compound words will // be bad words. if (spin->si_compflags != NULL) { putc(SN_COMPOUND, fd); // putc(0, fd); // size_t l = STRLEN(spin->si_compflags); assert(spin->si_comppat.ga_len >= 0); for (size_t i = 0; i < (size_t)spin->si_comppat.ga_len; i++) { l += strlen(((char **)(spin->si_comppat.ga_data))[i]) + 1; } put_bytes(fd, l + 7, 4); // putc(spin->si_compmax, fd); // putc(spin->si_compminlen, fd); // putc(spin->si_compsylmax, fd); // putc(0, fd); // for Vim 7.0b compatibility putc(spin->si_compoptions, fd); // put_bytes(fd, (uintmax_t)spin->si_comppat.ga_len, 2); // for (size_t i = 0; i < (size_t)spin->si_comppat.ga_len; i++) { char *p = ((char **)(spin->si_comppat.ga_data))[i]; assert(strlen(p) < INT_MAX); putc((int)strlen(p), fd); // fwv &= fwrite(p, strlen(p), 1, fd); // } // fwv &= fwrite(spin->si_compflags, STRLEN(spin->si_compflags), 1, fd); } // SN_NOBREAK: NOBREAK flag if (spin->si_nobreak) { putc(SN_NOBREAK, fd); // putc(0, fd); // // It's empty, the presence of the section flags the feature. put_bytes(fd, 0, 4); // } // SN_SYLLABLE: syllable info. // We don't mark it required, when not supported syllables will not be // counted. if (spin->si_syllable != NULL) { putc(SN_SYLLABLE, fd); // putc(0, fd); // size_t l = STRLEN(spin->si_syllable); put_bytes(fd, l, 4); // fwv &= fwrite(spin->si_syllable, l, 1, fd); // } // end of putc(SN_END, fd); // // spin->si_memtot = 0; for (unsigned int round = 1; round <= 3; round++) { wordnode_T *tree; if (round == 1) { tree = spin->si_foldroot->wn_sibling; } else if (round == 2) { tree = spin->si_keeproot->wn_sibling; } else { tree = spin->si_prefroot->wn_sibling; } // Clear the index and wnode fields in the tree. clear_node(tree); // Count the number of nodes. Needed to be able to allocate the // memory when reading the nodes. Also fills in index for shared // nodes. size_t nodecount = (size_t)put_node(NULL, tree, 0, regionmask, round == 3); // number of nodes in 4 bytes put_bytes(fd, nodecount, 4); // assert(nodecount + nodecount * sizeof(int) < INT_MAX); spin->si_memtot += (int)(nodecount + nodecount * sizeof(int)); // Write the nodes. (void)put_node(fd, tree, 0, regionmask, round == 3); } // Write another byte to check for errors (file system full). if (putc(0, fd) == EOF) { retval = FAIL; } theend: if (fclose(fd) == EOF) { retval = FAIL; } if (fwv != (size_t)1) { retval = FAIL; } if (retval == FAIL) { emsg(_(e_write)); } return retval; } // Clear the index and wnode fields of "node", it siblings and its // children. This is needed because they are a union with other items to save // space. static void clear_node(wordnode_T *node) { wordnode_T *np; if (node != NULL) { for (np = node; np != NULL; np = np->wn_sibling) { np->wn_u1.index = 0; np->wn_u2.wnode = NULL; if (np->wn_byte != NUL) { clear_node(np->wn_child); } } } } /// Dump a word tree at node "node". /// /// This first writes the list of possible bytes (siblings). Then for each /// byte recursively write the children. /// /// NOTE: The code here must match the code in read_tree_node(), since /// assumptions are made about the indexes (so that we don't have to write them /// in the file). /// /// @param fd NULL when only counting /// @param prefixtree true for PREFIXTREE /// /// @return the number of nodes used. static int put_node(FILE *fd, wordnode_T *node, int idx, int regionmask, bool prefixtree) { // If "node" is zero the tree is empty. if (node == NULL) { return 0; } // Store the index where this node is written. node->wn_u1.index = idx; // Count the number of siblings. int siblingcount = 0; for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) { siblingcount++; } // Write the sibling count. if (fd != NULL) { putc(siblingcount, fd); // } // Write each sibling byte and optionally extra info. for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) { if (np->wn_byte == 0) { if (fd != NULL) { // For a NUL byte (end of word) write the flags etc. if (prefixtree) { // In PREFIXTREE write the required affixID and the // associated condition nr (stored in wn_region). The // byte value is misused to store the "rare" and "not // combining" flags if (np->wn_flags == (uint16_t)PFX_FLAGS) { putc(BY_NOFLAGS, fd); // } else { putc(BY_FLAGS, fd); // putc(np->wn_flags, fd); // } putc(np->wn_affixID, fd); // put_bytes(fd, (uintmax_t)np->wn_region, 2); // } else { // For word trees we write the flag/region items. int flags = np->wn_flags; if (regionmask != 0 && np->wn_region != regionmask) { flags |= WF_REGION; } if (np->wn_affixID != 0) { flags |= WF_AFX; } if (flags == 0) { // word without flags or region putc(BY_NOFLAGS, fd); // } else { if (np->wn_flags >= 0x100) { putc(BY_FLAGS2, fd); // putc(flags, fd); // putc((int)((unsigned)flags >> 8), fd); // } else { putc(BY_FLAGS, fd); // putc(flags, fd); // } if (flags & WF_REGION) { putc(np->wn_region, fd); // } if (flags & WF_AFX) { putc(np->wn_affixID, fd); // } } } } } else { if (np->wn_child->wn_u1.index != 0 && np->wn_child->wn_u2.wnode != node) { // The child is written elsewhere, write the reference. if (fd != NULL) { putc(BY_INDEX, fd); // put_bytes(fd, (uintmax_t)np->wn_child->wn_u1.index, 3); // } } else if (np->wn_child->wn_u2.wnode == NULL) { // We will write the child below and give it an index. np->wn_child->wn_u2.wnode = node; } if (fd != NULL) { if (putc(np->wn_byte, fd) == EOF) { // or emsg(_(e_write)); return 0; } } } } // Space used in the array when reading: one for each sibling and one for // the count. int newindex = idx + siblingcount + 1; // Recursively dump the children of each sibling. for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) { if (np->wn_byte != 0 && np->wn_child->wn_u2.wnode == node) { newindex = put_node(fd, np->wn_child, newindex, regionmask, prefixtree); } } return newindex; } // ":mkspell [-ascii] outfile infile ..." // ":mkspell [-ascii] addfile" void ex_mkspell(exarg_T *eap) { int fcount; char **fnames; char *arg = eap->arg; bool ascii = false; if (STRNCMP(arg, "-ascii", 6) == 0) { ascii = true; arg = skipwhite(arg + 6); } // Expand all the remaining arguments (e.g., $VIMRUNTIME). if (get_arglist_exp(arg, &fcount, &fnames, false) == OK) { mkspell(fcount, fnames, ascii, eap->forceit, false); FreeWild(fcount, fnames); } } // Create the .sug file. // Uses the soundfold info in "spin". // Writes the file with the name "wfname", with ".spl" changed to ".sug". static void spell_make_sugfile(spellinfo_T *spin, char *wfname) { char_u *fname = NULL; int len; slang_T *slang; bool free_slang = false; // Read back the .spl file that was written. This fills the required // info for soundfolding. This also uses less memory than the // pointer-linked version of the trie. And it avoids having two versions // of the code for the soundfolding stuff. // It might have been done already by spell_reload_one(). for (slang = first_lang; slang != NULL; slang = slang->sl_next) { if (path_full_compare(wfname, slang->sl_fname, false, true) == kEqualFiles) { break; } } if (slang == NULL) { spell_message(spin, _("Reading back spell file...")); slang = spell_load_file(wfname, NULL, NULL, false); if (slang == NULL) { return; } free_slang = true; } // Clear the info in "spin" that is used. spin->si_blocks = NULL; spin->si_blocks_cnt = 0; spin->si_compress_cnt = 0; // will stay at 0 all the time spin->si_free_count = 0; spin->si_first_free = NULL; spin->si_foldwcount = 0; // Go through the trie of good words, soundfold each word and add it to // the soundfold trie. spell_message(spin, _("Performing soundfolding...")); if (sug_filltree(spin, slang) == FAIL) { goto theend; } // Create the table which links each soundfold word with a list of the // good words it may come from. Creates buffer "spin->si_spellbuf". // This also removes the wordnr from the NUL byte entries to make // compression possible. if (sug_maketable(spin) == FAIL) { goto theend; } smsg(_("Number of words after soundfolding: %" PRId64), (int64_t)spin->si_spellbuf->b_ml.ml_line_count); // Compress the soundfold trie. spell_message(spin, _(msg_compressing)); wordtree_compress(spin, spin->si_foldroot, "case-folded"); // Write the .sug file. // Make the file name by changing ".spl" to ".sug". fname = xmalloc(MAXPATHL); STRLCPY(fname, wfname, MAXPATHL); len = (int)STRLEN(fname); fname[len - 2] = 'u'; fname[len - 1] = 'g'; sug_write(spin, fname); theend: xfree(fname); if (free_slang) { slang_free(slang); } free_blocks(spin->si_blocks); close_spellbuf(spin->si_spellbuf); } // Build the soundfold trie for language "slang". static int sug_filltree(spellinfo_T *spin, slang_T *slang) { char_u *byts; idx_T *idxs; int depth; idx_T arridx[MAXWLEN]; int curi[MAXWLEN]; char_u tword[MAXWLEN]; char_u tsalword[MAXWLEN]; int c; idx_T n; unsigned words_done = 0; int wordcount[MAXWLEN]; // We use si_foldroot for the soundfolded trie. spin->si_foldroot = wordtree_alloc(spin); // Let tree_add_word() know we're adding to the soundfolded tree spin->si_sugtree = true; // Go through the whole case-folded tree, soundfold each word and put it // in the trie. byts = slang->sl_fbyts; idxs = slang->sl_fidxs; arridx[0] = 0; curi[0] = 1; wordcount[0] = 0; depth = 0; while (depth >= 0 && !got_int) { if (curi[depth] > byts[arridx[depth]]) { // Done all bytes at this node, go up one level. idxs[arridx[depth]] = wordcount[depth]; if (depth > 0) { wordcount[depth - 1] += wordcount[depth]; } depth--; line_breakcheck(); } else { // Do one more byte at this node. n = arridx[depth] + curi[depth]; curi[depth]++; c = byts[n]; if (c == 0) { // Sound-fold the word. tword[depth] = NUL; spell_soundfold(slang, tword, true, tsalword); // We use the "flags" field for the MSB of the wordnr, // "region" for the LSB of the wordnr. if (tree_add_word(spin, tsalword, spin->si_foldroot, (int)(words_done >> 16), words_done & 0xffff, 0) == FAIL) { return FAIL; } words_done++; wordcount[depth]++; // Reset the block count each time to avoid compression // kicking in. spin->si_blocks_cnt = 0; // Skip over any other NUL bytes (same word with different // flags). But don't go over the end. while (n + 1 < slang->sl_fbyts_len && byts[n + 1] == 0) { n++; curi[depth]++; } } else { // Normal char, go one level deeper. tword[depth++] = (char_u)c; arridx[depth] = idxs[n]; curi[depth] = 1; wordcount[depth] = 0; } } } smsg(_("Total number of words: %d"), words_done); return OK; } // Make the table that links each word in the soundfold trie to the words it // can be produced from. // This is not unlike lines in a file, thus use a memfile to be able to access // the table efficiently. // Returns FAIL when out of memory. static int sug_maketable(spellinfo_T *spin) { garray_T ga; int res = OK; // Allocate a buffer, open a memline for it and create the swap file // (uses a temp file, not a .swp file). spin->si_spellbuf = open_spellbuf(); // Use a buffer to store the line info, avoids allocating many small // pieces of memory. ga_init(&ga, 1, 100); // recursively go through the tree if (sug_filltable(spin, spin->si_foldroot->wn_sibling, 0, &ga) == -1) { res = FAIL; } ga_clear(&ga); return res; } /// Fill the table for one node and its children. /// Returns the wordnr at the start of the node. /// Returns -1 when out of memory. /// /// @param gap place to store line of numbers static int sug_filltable(spellinfo_T *spin, wordnode_T *node, int startwordnr, garray_T *gap) { wordnode_T *p, *np; int wordnr = startwordnr; int nr; int prev_nr; for (p = node; p != NULL; p = p->wn_sibling) { if (p->wn_byte == NUL) { gap->ga_len = 0; prev_nr = 0; for (np = p; np != NULL && np->wn_byte == NUL; np = np->wn_sibling) { ga_grow(gap, 10); nr = (np->wn_flags << 16) + (np->wn_region & 0xffff); // Compute the offset from the previous nr and store the // offset in a way that it takes a minimum number of bytes. // It's a bit like utf-8, but without the need to mark // following bytes. nr -= prev_nr; prev_nr += nr; gap->ga_len += offset2bytes(nr, (char_u *)gap->ga_data + gap->ga_len); } // add the NUL byte ((char_u *)gap->ga_data)[gap->ga_len++] = NUL; if (ml_append_buf(spin->si_spellbuf, (linenr_T)wordnr, gap->ga_data, gap->ga_len, true) == FAIL) { return -1; } wordnr++; // Remove extra NUL entries, we no longer need them. We don't // bother freeing the nodes, they won't be reused anyway. while (p->wn_sibling != NULL && p->wn_sibling->wn_byte == NUL) { p->wn_sibling = p->wn_sibling->wn_sibling; } // Clear the flags on the remaining NUL node, so that compression // works a lot better. p->wn_flags = 0; p->wn_region = 0; } else { wordnr = sug_filltable(spin, p->wn_child, wordnr, gap); if (wordnr == -1) { return -1; } } } return wordnr; } // Convert an offset into a minimal number of bytes. // Similar to utf_char2byters, but use 8 bits in followup bytes and avoid NUL // bytes. static int offset2bytes(int nr, char_u *buf) { int rem; int b1, b2, b3, b4; // Split the number in parts of base 255. We need to avoid NUL bytes. b1 = nr % 255 + 1; rem = nr / 255; b2 = rem % 255 + 1; rem = rem / 255; b3 = rem % 255 + 1; b4 = rem / 255 + 1; if (b4 > 1 || b3 > 0x1f) { // 4 bytes buf[0] = (char_u)(0xe0 + b4); buf[1] = (char_u)b3; buf[2] = (char_u)b2; buf[3] = (char_u)b1; return 4; } if (b3 > 1 || b2 > 0x3f) { // 3 bytes buf[0] = (char_u)(0xc0 + b3); buf[1] = (char_u)b2; buf[2] = (char_u)b1; return 3; } if (b2 > 1 || b1 > 0x7f) { // 2 bytes buf[0] = (char_u)(0x80 + b2); buf[1] = (char_u)b1; return 2; } // 1 byte buf[0] = (char_u)b1; return 1; } // Write the .sug file in "fname". static void sug_write(spellinfo_T *spin, char_u *fname) { // Create the file. Note that an existing file is silently overwritten! FILE *fd = os_fopen((char *)fname, "w"); if (fd == NULL) { semsg(_(e_notopen), fname); return; } vim_snprintf((char *)IObuff, IOSIZE, _("Writing suggestion file %s..."), fname); spell_message(spin, (char *)IObuff); // : if (fwrite(VIMSUGMAGIC, VIMSUGMAGICL, (size_t)1, fd) != 1) { // emsg(_(e_write)); goto theend; } putc(VIMSUGVERSION, fd); // // Write si_sugtime to the file. put_time(fd, spin->si_sugtime); // // spin->si_memtot = 0; wordnode_T *tree = spin->si_foldroot->wn_sibling; // Clear the index and wnode fields in the tree. clear_node(tree); // Count the number of nodes. Needed to be able to allocate the // memory when reading the nodes. Also fills in index for shared // nodes. size_t nodecount = (size_t)put_node(NULL, tree, 0, 0, false); // number of nodes in 4 bytes put_bytes(fd, nodecount, 4); // assert(nodecount + nodecount * sizeof(int) < INT_MAX); spin->si_memtot += (int)(nodecount + nodecount * sizeof(int)); // Write the nodes. (void)put_node(fd, tree, 0, 0, false); // : ... linenr_T wcount = spin->si_spellbuf->b_ml.ml_line_count; assert(wcount >= 0); put_bytes(fd, (uintmax_t)wcount, 4); // for (linenr_T lnum = 1; lnum <= wcount; lnum++) { // : ... NUL char_u *line = (char_u *)ml_get_buf(spin->si_spellbuf, lnum, false); size_t len = STRLEN(line) + 1; if (fwrite(line, len, 1, fd) == 0) { emsg(_(e_write)); goto theend; } assert((size_t)spin->si_memtot + len <= INT_MAX); spin->si_memtot += (int)len; } // Write another byte to check for errors. if (putc(0, fd) == EOF) { emsg(_(e_write)); } vim_snprintf((char *)IObuff, IOSIZE, _("Estimated runtime memory use: %d bytes"), spin->si_memtot); spell_message(spin, (char *)IObuff); theend: // close the file fclose(fd); } /// Create a Vim spell file from one or more word lists. /// "fnames[0]" is the output file name. /// "fnames[fcount - 1]" is the last input file name. /// Exception: when "fnames[0]" ends in ".add" it's used as the input file name /// and ".spl" is appended to make the output file name. /// /// @param ascii -ascii argument given /// @param over_write overwrite existing output file /// @param added_word invoked through "zg" static void mkspell(int fcount, char **fnames, bool ascii, bool over_write, bool added_word) { char_u *fname = NULL; char **innames; int incount; afffile_T *(afile[MAXREGIONS]); int i; int len; bool error = false; spellinfo_T spin; CLEAR_FIELD(spin); spin.si_verbose = !added_word; spin.si_ascii = ascii; spin.si_followup = true; spin.si_rem_accents = true; ga_init(&spin.si_rep, (int)sizeof(fromto_T), 20); ga_init(&spin.si_repsal, (int)sizeof(fromto_T), 20); ga_init(&spin.si_sal, (int)sizeof(fromto_T), 20); ga_init(&spin.si_map, (int)sizeof(char_u), 100); ga_init(&spin.si_comppat, (int)sizeof(char_u *), 20); ga_init(&spin.si_prefcond, (int)sizeof(char_u *), 50); hash_init(&spin.si_commonwords); spin.si_newcompID = 127; // start compound ID at first maximum // default: fnames[0] is output file, following are input files // When "fcount" is 1 there is only one file. innames = &fnames[fcount == 1 ? 0 : 1]; incount = fcount - 1; char *wfname = xmalloc(MAXPATHL); if (fcount >= 1) { len = (int)STRLEN(fnames[0]); if (fcount == 1 && len > 4 && strcmp(fnames[0] + len - 4, ".add") == 0) { // For ":mkspell path/en.latin1.add" output file is // "path/en.latin1.add.spl". incount = 1; vim_snprintf(wfname, MAXPATHL, "%s.spl", fnames[0]); } else if (fcount == 1) { // For ":mkspell path/vim" output file is "path/vim.latin1.spl". incount = 1; vim_snprintf(wfname, MAXPATHL, SPL_FNAME_TMPL, fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc()); } else if (len > 4 && strcmp(fnames[0] + len - 4, ".spl") == 0) { // Name ends in ".spl", use as the file name. STRLCPY(wfname, fnames[0], MAXPATHL); } else { // Name should be language, make the file name from it. vim_snprintf(wfname, MAXPATHL, SPL_FNAME_TMPL, fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc()); } // Check for .ascii.spl. if (strstr(path_tail(wfname), SPL_FNAME_ASCII) != NULL) { spin.si_ascii = true; } // Check for .add.spl. if (strstr(path_tail(wfname), SPL_FNAME_ADD) != NULL) { spin.si_add = true; } } if (incount <= 0) { emsg(_(e_invarg)); // need at least output and input names } else if (vim_strchr(path_tail(wfname), '_') != NULL) { emsg(_("E751: Output file name must not have region name")); } else if (incount > MAXREGIONS) { semsg(_("E754: Only up to %d regions supported"), MAXREGIONS); } else { // Check for overwriting before doing things that may take a lot of // time. if (!over_write && os_path_exists(wfname)) { emsg(_(e_exists)); goto theend; } if (os_isdir(wfname)) { semsg(_(e_isadir2), wfname); goto theend; } fname = xmalloc(MAXPATHL); // Init the aff and dic pointers. // Get the region names if there are more than 2 arguments. for (i = 0; i < incount; i++) { afile[i] = NULL; if (incount > 1) { len = (int)strlen(innames[i]); if (strlen(path_tail(innames[i])) < 5 || innames[i][len - 3] != '_') { semsg(_("E755: Invalid region in %s"), innames[i]); goto theend; } spin.si_region_name[i * 2] = (char_u)TOLOWER_ASC(innames[i][len - 2]); spin.si_region_name[i * 2 + 1] = (char_u)TOLOWER_ASC(innames[i][len - 1]); } } spin.si_region_count = incount; spin.si_foldroot = wordtree_alloc(&spin); spin.si_keeproot = wordtree_alloc(&spin); spin.si_prefroot = wordtree_alloc(&spin); // When not producing a .add.spl file clear the character table when // we encounter one in the .aff file. This means we dump the current // one in the .spl file if the .aff file doesn't define one. That's // better than guessing the contents, the table will match a // previously loaded spell file. if (!spin.si_add) { spin.si_clear_chartab = true; } // Read all the .aff and .dic files. // Text is converted to 'encoding'. // Words are stored in the case-folded and keep-case trees. for (i = 0; i < incount && !error; i++) { spin.si_conv.vc_type = CONV_NONE; spin.si_region = 1 << i; vim_snprintf((char *)fname, MAXPATHL, "%s.aff", innames[i]); if (os_path_exists((char *)fname)) { // Read the .aff file. Will init "spin->si_conv" based on the // "SET" line. afile[i] = spell_read_aff(&spin, fname); if (afile[i] == NULL) { error = true; } else { // Read the .dic file and store the words in the trees. vim_snprintf((char *)fname, MAXPATHL, "%s.dic", innames[i]); if (spell_read_dic(&spin, fname, afile[i]) == FAIL) { error = true; } } } else { // No .aff file, try reading the file as a word list. Store // the words in the trees. if (spell_read_wordfile(&spin, (char_u *)innames[i]) == FAIL) { error = true; } } // Free any conversion stuff. convert_setup(&spin.si_conv, NULL, NULL); } if (spin.si_compflags != NULL && spin.si_nobreak) { msg(_("Warning: both compounding and NOBREAK specified")); } if (!error && !got_int) { // Combine tails in the tree. spell_message(&spin, _(msg_compressing)); wordtree_compress(&spin, spin.si_foldroot, "case-folded"); wordtree_compress(&spin, spin.si_keeproot, "keep-case"); wordtree_compress(&spin, spin.si_prefroot, "prefixes"); } if (!error && !got_int) { // Write the info in the spell file. vim_snprintf((char *)IObuff, IOSIZE, _("Writing spell file %s..."), wfname); spell_message(&spin, (char *)IObuff); error = write_vim_spell(&spin, wfname) == FAIL; spell_message(&spin, _("Done!")); vim_snprintf((char *)IObuff, IOSIZE, _("Estimated runtime memory use: %d bytes"), spin.si_memtot); spell_message(&spin, (char *)IObuff); // If the file is loaded need to reload it. if (!error) { spell_reload_one((char_u *)wfname, added_word); } } // Free the allocated memory. ga_clear(&spin.si_rep); ga_clear(&spin.si_repsal); ga_clear(&spin.si_sal); ga_clear(&spin.si_map); ga_clear(&spin.si_comppat); ga_clear(&spin.si_prefcond); hash_clear_all(&spin.si_commonwords, 0); // Free the .aff file structures. for (i = 0; i < incount; i++) { if (afile[i] != NULL) { spell_free_aff(afile[i]); } } // Free all the bits and pieces at once. free_blocks(spin.si_blocks); // If there is soundfolding info and no NOSUGFILE item create the // .sug file with the soundfolded word trie. if (spin.si_sugtime != 0 && !error && !got_int) { spell_make_sugfile(&spin, wfname); } } theend: xfree(fname); xfree(wfname); } // Display a message for spell file processing when 'verbose' is set or using // ":mkspell". "str" can be IObuff. static void spell_message(const spellinfo_T *spin, char *str) FUNC_ATTR_NONNULL_ALL { if (spin->si_verbose || p_verbose > 2) { if (!spin->si_verbose) { verbose_enter(); } msg(str); ui_flush(); if (!spin->si_verbose) { verbose_leave(); } } } // ":[count]spellgood {word}" // ":[count]spellwrong {word}" // ":[count]spellundo {word}" // ":[count]spellrare {word}" void ex_spell(exarg_T *eap) { spell_add_word((char_u *)eap->arg, (int)strlen(eap->arg), eap->cmdidx == CMD_spellwrong ? SPELL_ADD_BAD : eap->cmdidx == CMD_spellrare ? SPELL_ADD_RARE : SPELL_ADD_GOOD, eap->forceit ? 0 : (int)eap->line2, eap->cmdidx == CMD_spellundo); } /// Add "word[len]" to 'spellfile' as a good or bad word. /// /// @param what SPELL_ADD_ values /// @param idx "zG" and "zW": zero, otherwise index in 'spellfile' /// @param bool // true for "zug", "zuG", "zuw" and "zuW" void spell_add_word(char_u *word, int len, SpellAddType what, int idx, bool undo) { FILE *fd = NULL; buf_T *buf = NULL; bool new_spf = false; char *fname; char_u *fnamebuf = NULL; char_u line[MAXWLEN * 2]; long fpos, fpos_next = 0; int i; char_u *spf; if (!valid_spell_word((char *)word, (char *)word + len)) { emsg(_(e_illegal_character_in_word)); return; } if (idx == 0) { // use internal wordlist if (int_wordlist == NULL) { int_wordlist = (char_u *)vim_tempname(); if (int_wordlist == NULL) { return; } } fname = (char *)int_wordlist; } else { // If 'spellfile' isn't set figure out a good default value. if (*curwin->w_s->b_p_spf == NUL) { init_spellfile(); new_spf = true; } if (*curwin->w_s->b_p_spf == NUL) { semsg(_(e_notset), "spellfile"); return; } fnamebuf = xmalloc(MAXPATHL); for (spf = (char_u *)curwin->w_s->b_p_spf, i = 1; *spf != NUL; i++) { copy_option_part((char **)&spf, (char *)fnamebuf, MAXPATHL, ","); if (i == idx) { break; } if (*spf == NUL) { semsg(_("E765: 'spellfile' does not have %" PRId64 " entries"), (int64_t)idx); xfree(fnamebuf); return; } } // Check that the user isn't editing the .add file somewhere. buf = buflist_findname_exp((char *)fnamebuf); if (buf != NULL && buf->b_ml.ml_mfp == NULL) { buf = NULL; } if (buf != NULL && bufIsChanged(buf)) { emsg(_(e_bufloaded)); xfree(fnamebuf); return; } fname = (char *)fnamebuf; } if (what == SPELL_ADD_BAD || undo) { // When the word appears as good word we need to remove that one, // since its flags sort before the one with WF_BANNED. fd = os_fopen(fname, "r"); if (fd != NULL) { while (!vim_fgets(line, MAXWLEN * 2, fd)) { fpos = fpos_next; fpos_next = ftell(fd); if (fpos_next < 0) { break; // should never happen } if (STRNCMP(word, line, len) == 0 && (line[len] == '/' || line[len] < ' ')) { // Found duplicate word. Remove it by writing a '#' at // the start of the line. Mixing reading and writing // doesn't work for all systems, close the file first. fclose(fd); fd = os_fopen(fname, "r+"); if (fd == NULL) { break; } if (fseek(fd, fpos, SEEK_SET) == 0) { fputc('#', fd); if (undo) { home_replace(NULL, fname, (char *)NameBuff, MAXPATHL, true); smsg(_("Word '%.*s' removed from %s"), len, word, NameBuff); } } if (fseek(fd, fpos_next, SEEK_SET) != 0) { PERROR(_("Seek error in spellfile")); break; } } } if (fd != NULL) { fclose(fd); } } } if (!undo) { fd = os_fopen(fname, "a"); if (fd == NULL && new_spf) { char_u *p; // We just initialized the 'spellfile' option and can't open the // file. We may need to create the "spell" directory first. We // already checked the runtime directory is writable in // init_spellfile(). if (!dir_of_file_exists((char_u *)fname) && (p = (char_u *)path_tail_with_sep(fname)) != (char_u *)fname) { int c = *p; // The directory doesn't exist. Try creating it and opening // the file again. *p = NUL; os_mkdir(fname, 0755); *p = (char_u)c; fd = os_fopen(fname, "a"); } } if (fd == NULL) { semsg(_(e_notopen), fname); } else { if (what == SPELL_ADD_BAD) { fprintf(fd, "%.*s/!\n", len, word); } else if (what == SPELL_ADD_RARE) { fprintf(fd, "%.*s/?\n", len, word); } else { fprintf(fd, "%.*s\n", len, word); } fclose(fd); home_replace(NULL, fname, (char *)NameBuff, MAXPATHL, true); smsg(_("Word '%.*s' added to %s"), len, word, NameBuff); } } if (fd != NULL) { // Update the .add.spl file. mkspell(1, &fname, false, true, true); // If the .add file is edited somewhere, reload it. if (buf != NULL) { buf_reload(buf, buf->b_orig_mode, false); } redraw_all_later(UPD_SOME_VALID); } xfree(fnamebuf); } // Initialize 'spellfile' for the current buffer. static void init_spellfile(void) { char_u *buf; int l; char_u *fname; char_u *rtp; char_u *lend; bool aspath = false; char_u *lstart = (char_u *)curbuf->b_s.b_p_spl; if (*curwin->w_s->b_p_spl != NUL && !GA_EMPTY(&curwin->w_s->b_langp)) { buf = xmalloc(MAXPATHL); // Find the end of the language name. Exclude the region. If there // is a path separator remember the start of the tail. for (lend = (char_u *)curwin->w_s->b_p_spl; *lend != NUL && vim_strchr(",._", *lend) == NULL; lend++) { if (vim_ispathsep(*lend)) { aspath = true; lstart = lend + 1; } } // Loop over all entries in 'runtimepath'. Use the first one where we // are allowed to write. rtp = (char_u *)p_rtp; while (*rtp != NUL) { if (aspath) { // Use directory of an entry with path, e.g., for // "/dir/lg.utf-8.spl" use "/dir". STRLCPY(buf, curbuf->b_s.b_p_spl, lstart - (char_u *)curbuf->b_s.b_p_spl); } else { // Copy the path from 'runtimepath' to buf[]. copy_option_part((char **)&rtp, (char *)buf, MAXPATHL, ","); } if (os_file_is_writable((char *)buf) == 2) { // Use the first language name from 'spelllang' and the // encoding used in the first loaded .spl file. if (aspath) { STRLCPY(buf, curbuf->b_s.b_p_spl, lend - (char_u *)curbuf->b_s.b_p_spl + 1); } else { // Create the "spell" directory if it doesn't exist yet. l = (int)STRLEN(buf); vim_snprintf((char *)buf + l, MAXPATHL - (size_t)l, "/spell"); if (os_file_is_writable((char *)buf) != 2) { os_mkdir((char *)buf, 0755); } l = (int)STRLEN(buf); vim_snprintf((char *)buf + l, MAXPATHL - (size_t)l, "/%.*s", (int)(lend - lstart), lstart); } l = (int)STRLEN(buf); fname = (char_u *)LANGP_ENTRY(curwin->w_s->b_langp, 0) ->lp_slang->sl_fname; vim_snprintf((char *)buf + l, MAXPATHL - (size_t)l, ".%s.add", ((fname != NULL && strstr(path_tail((char *)fname), ".ascii.") != NULL) ? "ascii" : (const char *)spell_enc())); set_option_value_give_err("spellfile", 0L, (const char *)buf, OPT_LOCAL); break; } aspath = false; } xfree(buf); } } /// Set the spell character tables from strings in the .spl file. /// /// @param cnt length of "flags" static void set_spell_charflags(char_u *flags, int cnt, char_u *fol) { // We build the new tables here first, so that we can compare with the // previous one. spelltab_T new_st; int i; char_u *p = fol; int c; clear_spell_chartab(&new_st); for (i = 0; i < 128; i++) { if (i < cnt) { new_st.st_isw[i + 128] = (flags[i] & CF_WORD) != 0; new_st.st_isu[i + 128] = (flags[i] & CF_UPPER) != 0; } if (*p != NUL) { c = mb_ptr2char_adv((const char_u **)&p); new_st.st_fold[i + 128] = (char_u)c; if (i + 128 != c && new_st.st_isu[i + 128] && c < 256) { new_st.st_upper[c] = (char_u)(i + 128); } } } (void)set_spell_finish(&new_st); } static int set_spell_finish(spelltab_T *new_st) { int i; if (did_set_spelltab) { // check that it's the same table for (i = 0; i < 256; i++) { if (spelltab.st_isw[i] != new_st->st_isw[i] || spelltab.st_isu[i] != new_st->st_isu[i] || spelltab.st_fold[i] != new_st->st_fold[i] || spelltab.st_upper[i] != new_st->st_upper[i]) { emsg(_("E763: Word characters differ between spell files")); return FAIL; } } } else { // copy the new spelltab into the one being used spelltab = *new_st; did_set_spelltab = true; } return OK; } // Write the table with prefix conditions to the .spl file. // When "fd" is NULL only count the length of what is written. static int write_spell_prefcond(FILE *fd, garray_T *gap, size_t *fwv) { assert(gap->ga_len >= 0); if (fd != NULL) { put_bytes(fd, (uintmax_t)gap->ga_len, 2); // } size_t totlen = 2 + (size_t)gap->ga_len; // and bytes for (int i = 0; i < gap->ga_len; i++) { // : char *p = ((char **)gap->ga_data)[i]; if (p != NULL) { size_t len = strlen(p); if (fd != NULL) { assert(len <= INT_MAX); fputc((int)len, fd); *fwv &= fwrite(p, len, 1, fd); } totlen += len; } else if (fd != NULL) { fputc(0, fd); } } assert(totlen <= INT_MAX); return (int)totlen; } // Use map string "map" for languages "lp". static void set_map_str(slang_T *lp, char_u *map) { char_u *p; int headc = 0; int c; int i; if (*map == NUL) { lp->sl_has_map = false; return; } lp->sl_has_map = true; // Init the array and hash tables empty. for (i = 0; i < 256; i++) { lp->sl_map_array[i] = 0; } hash_init(&lp->sl_map_hash); // The similar characters are stored separated with slashes: // "aaa/bbb/ccc/". Fill sl_map_array[c] with the character before c and // before the same slash. For characters above 255 sl_map_hash is used. for (p = map; *p != NUL;) { c = mb_cptr2char_adv((const char_u **)&p); if (c == '/') { headc = 0; } else { if (headc == 0) { headc = c; } // Characters above 255 don't fit in sl_map_array[], put them in // the hash table. Each entry is the char, a NUL the headchar and // a NUL. if (c >= 256) { int cl = utf_char2len(c); int headcl = utf_char2len(headc); hash_T hash; hashitem_T *hi; char *b = xmalloc((size_t)(cl + headcl) + 2); utf_char2bytes(c, b); b[cl] = NUL; utf_char2bytes(headc, b + cl + 1); b[cl + 1 + headcl] = NUL; hash = hash_hash((char_u *)b); hi = hash_lookup(&lp->sl_map_hash, (const char *)b, strlen(b), hash); if (HASHITEM_EMPTY(hi)) { hash_add_item(&lp->sl_map_hash, hi, (char_u *)b, hash); } else { // This should have been checked when generating the .spl // file. emsg(_("E783: duplicate char in MAP entry")); xfree(b); } } else { lp->sl_map_array[c] = headc; } } } }