// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com #include "nvim/tui/input.h" #include "nvim/vim.h" #include "nvim/api/vim.h" #include "nvim/api/private/helpers.h" #include "nvim/ascii.h" #include "nvim/charset.h" #include "nvim/main.h" #include "nvim/aucmd.h" #include "nvim/ex_docmd.h" #include "nvim/option.h" #include "nvim/os/os.h" #include "nvim/os/input.h" #include "nvim/event/rstream.h" #define KEY_BUFFER_SIZE 0xfff #ifdef INCLUDE_GENERATED_DECLARATIONS # include "tui/input.c.generated.h" #endif void tinput_init(TermInput *input, Loop *loop) { input->loop = loop; input->paste = 0; input->in_fd = 0; input->key_buffer = rbuffer_new(KEY_BUFFER_SIZE); uv_mutex_init(&input->key_buffer_mutex); uv_cond_init(&input->key_buffer_cond); // If stdin is not a pty, switch to stderr. For cases like: // echo q | nvim -es // ls *.md | xargs nvim #ifdef WIN32 if (!os_isatty(0)) { const HANDLE conin_handle = CreateFile("CONIN$", GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, (LPSECURITY_ATTRIBUTES)NULL, OPEN_EXISTING, 0, (HANDLE)NULL); input->in_fd = _open_osfhandle(conin_handle, _O_RDONLY); assert(input->in_fd != -1); } #else if (!os_isatty(0) && os_isatty(2)) { input->in_fd = 2; } #endif input_global_fd_init(input->in_fd); const char *term = os_getenv("TERM"); if (!term) { term = ""; // termkey_new_abstract assumes non-null (#2745) } #if TERMKEY_VERSION_MAJOR > 0 || TERMKEY_VERSION_MINOR > 18 input->tk = termkey_new_abstract(term, TERMKEY_FLAG_UTF8 | TERMKEY_FLAG_NOSTART); termkey_hook_terminfo_getstr(input->tk, input->tk_ti_hook_fn, NULL); termkey_start(input->tk); #else input->tk = termkey_new_abstract(term, TERMKEY_FLAG_UTF8); #endif int curflags = termkey_get_canonflags(input->tk); termkey_set_canonflags(input->tk, curflags | TERMKEY_CANON_DELBS); // setup input handle rstream_init_fd(loop, &input->read_stream, input->in_fd, 0xfff); // initialize a timer handle for handling ESC with libtermkey time_watcher_init(loop, &input->timer_handle, input); } void tinput_destroy(TermInput *input) { rbuffer_free(input->key_buffer); uv_mutex_destroy(&input->key_buffer_mutex); uv_cond_destroy(&input->key_buffer_cond); time_watcher_close(&input->timer_handle, NULL); stream_close(&input->read_stream, NULL, NULL); termkey_destroy(input->tk); } void tinput_start(TermInput *input) { rstream_start(&input->read_stream, tinput_read_cb, input); } void tinput_stop(TermInput *input) { rstream_stop(&input->read_stream); time_watcher_stop(&input->timer_handle); } static void tinput_done_event(void **argv) { input_done(); } static void tinput_wait_enqueue(void **argv) { TermInput *input = argv[0]; RBUFFER_UNTIL_EMPTY(input->key_buffer, buf, len) { const String keys = { .data = buf, .size = len }; if (input->paste) { String copy = copy_string(keys); multiqueue_put(main_loop.events, tinput_paste_event, 3, copy.data, copy.size, (intptr_t)input->paste); if (input->paste == 1) { // Paste phase: "continue" input->paste = 2; } rbuffer_consumed(input->key_buffer, len); rbuffer_reset(input->key_buffer); } else { const size_t consumed = input_enqueue(keys); if (consumed) { rbuffer_consumed(input->key_buffer, consumed); } rbuffer_reset(input->key_buffer); if (consumed < len) { break; } } } uv_mutex_lock(&input->key_buffer_mutex); input->waiting = false; uv_cond_signal(&input->key_buffer_cond); uv_mutex_unlock(&input->key_buffer_mutex); } static void tinput_paste_event(void **argv) { String keys = { .data = argv[0], .size = (size_t)argv[1] }; intptr_t phase = (intptr_t)argv[2]; Error err = ERROR_INIT; nvim_paste(keys, true, phase, &err); if (ERROR_SET(&err)) { emsgf("paste: %s", err.msg); api_clear_error(&err); } api_free_string(keys); } static void tinput_flush(TermInput *input, bool wait_until_empty) { size_t drain_boundary = wait_until_empty ? 0 : 0xff; do { uv_mutex_lock(&input->key_buffer_mutex); loop_schedule_fast(&main_loop, event_create(tinput_wait_enqueue, 1, input)); input->waiting = true; while (input->waiting) { uv_cond_wait(&input->key_buffer_cond, &input->key_buffer_mutex); } uv_mutex_unlock(&input->key_buffer_mutex); } while (rbuffer_size(input->key_buffer) > drain_boundary); } static void tinput_enqueue(TermInput *input, char *buf, size_t size) { if (rbuffer_size(input->key_buffer) > rbuffer_capacity(input->key_buffer) - 0xff) { // don't ever let the buffer get too full or we risk putting incomplete keys // into it tinput_flush(input, false); } rbuffer_write(input->key_buffer, buf, size); } static void forward_simple_utf8(TermInput *input, TermKeyKey *key) { size_t len = 0; char buf[64]; char *ptr = key->utf8; while (*ptr) { if (*ptr == '<') { len += (size_t)snprintf(buf + len, sizeof(buf) - len, ""); } else { buf[len++] = *ptr; } ptr++; } tinput_enqueue(input, buf, len); } static void forward_modified_utf8(TermInput *input, TermKeyKey *key) { size_t len; char buf[64]; if (key->type == TERMKEY_TYPE_KEYSYM && key->code.sym == TERMKEY_SYM_ESCAPE) { len = (size_t)snprintf(buf, sizeof(buf), ""); } else if (key->type == TERMKEY_TYPE_KEYSYM && key->code.sym == TERMKEY_SYM_SUSPEND) { len = (size_t)snprintf(buf, sizeof(buf), ""); } else { len = termkey_strfkey(input->tk, buf, sizeof(buf), key, TERMKEY_FORMAT_VIM); } tinput_enqueue(input, buf, len); } static void forward_mouse_event(TermInput *input, TermKeyKey *key) { char buf[64]; size_t len = 0; int button, row, col; static int last_pressed_button = 0; TermKeyMouseEvent ev; termkey_interpret_mouse(input->tk, key, &ev, &button, &row, &col); if ((ev == TERMKEY_MOUSE_RELEASE || ev == TERMKEY_MOUSE_DRAG) && button == 0) { // Some terminals (like urxvt) don't report which button was released. // libtermkey reports button 0 in this case. // For drag and release, we can reasonably infer the button to be the last // pressed one. button = last_pressed_button; } if (button == 0 || (ev != TERMKEY_MOUSE_PRESS && ev != TERMKEY_MOUSE_DRAG && ev != TERMKEY_MOUSE_RELEASE)) { return; } row--; col--; // Termkey uses 1-based coordinates buf[len++] = '<'; if (key->modifiers & TERMKEY_KEYMOD_SHIFT) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "S-"); } if (key->modifiers & TERMKEY_KEYMOD_CTRL) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "C-"); } if (key->modifiers & TERMKEY_KEYMOD_ALT) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "A-"); } if (button == 1) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "Left"); } else if (button == 2) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "Middle"); } else if (button == 3) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "Right"); } switch (ev) { case TERMKEY_MOUSE_PRESS: if (button == 4) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "ScrollWheelUp"); } else if (button == 5) { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "ScrollWheelDown"); } else { len += (size_t)snprintf(buf + len, sizeof(buf) - len, "Mouse"); last_pressed_button = button; } break; case TERMKEY_MOUSE_DRAG: len += (size_t)snprintf(buf + len, sizeof(buf) - len, "Drag"); break; case TERMKEY_MOUSE_RELEASE: len += (size_t)snprintf(buf + len, sizeof(buf) - len, "Release"); break; case TERMKEY_MOUSE_UNKNOWN: assert(false); } len += (size_t)snprintf(buf + len, sizeof(buf) - len, "><%d,%d>", col, row); tinput_enqueue(input, buf, len); } static TermKeyResult tk_getkey(TermKey *tk, TermKeyKey *key, bool force) { return force ? termkey_getkey_force(tk, key) : termkey_getkey(tk, key); } static void tinput_timer_cb(TimeWatcher *watcher, void *data); static int get_key_code_timeout(void) { Integer ms = -1; // Check 'ttimeout' to determine if we should send ESC after 'ttimeoutlen'. Error err = ERROR_INIT; if (nvim_get_option(cstr_as_string("ttimeout"), &err).data.boolean) { Object rv = nvim_get_option(cstr_as_string("ttimeoutlen"), &err); if (!ERROR_SET(&err)) { ms = rv.data.integer; } } api_clear_error(&err); return (int)ms; } static void tk_getkeys(TermInput *input, bool force) { TermKeyKey key; TermKeyResult result; while ((result = tk_getkey(input->tk, &key, force)) == TERMKEY_RES_KEY) { if (key.type == TERMKEY_TYPE_UNICODE && !key.modifiers) { forward_simple_utf8(input, &key); } else if (key.type == TERMKEY_TYPE_UNICODE || key.type == TERMKEY_TYPE_FUNCTION || key.type == TERMKEY_TYPE_KEYSYM) { forward_modified_utf8(input, &key); } else if (key.type == TERMKEY_TYPE_MOUSE) { forward_mouse_event(input, &key); } } if (result != TERMKEY_RES_AGAIN) { return; } // else: Partial keypress event was found in the buffer, but it does not // yet contain all the bytes required. `key` structure indicates what // termkey_getkey_force() would return. int ms = get_key_code_timeout(); if (ms > 0) { // Stop the current timer if already running time_watcher_stop(&input->timer_handle); time_watcher_start(&input->timer_handle, tinput_timer_cb, (uint32_t)ms, 0); } else { tk_getkeys(input, true); } } static void tinput_timer_cb(TimeWatcher *watcher, void *data) { tk_getkeys(data, true); tinput_flush(data, true); } /// Handle focus events. /// /// If the upcoming sequence of bytes in the input stream matches the termcode /// for "focus gained" or "focus lost", consume that sequence and schedule an /// event on the main loop. /// /// @param input the input stream /// @return true iff handle_focus_event consumed some input static bool handle_focus_event(TermInput *input) { if (rbuffer_size(input->read_stream.buffer) > 2 && (!rbuffer_cmp(input->read_stream.buffer, "\x1b[I", 3) || !rbuffer_cmp(input->read_stream.buffer, "\x1b[O", 3))) { bool focus_gained = *rbuffer_get(input->read_stream.buffer, 2) == 'I'; // Advance past the sequence rbuffer_consumed(input->read_stream.buffer, 3); aucmd_schedule_focusgained(focus_gained); return true; } return false; } static bool handle_bracketed_paste(TermInput *input) { if (rbuffer_size(input->read_stream.buffer) > 5 && (!rbuffer_cmp(input->read_stream.buffer, "\x1b[200~", 6) || !rbuffer_cmp(input->read_stream.buffer, "\x1b[201~", 6))) { bool enable = *rbuffer_get(input->read_stream.buffer, 4) == '0'; if (input->paste && enable) { return false; // Pasting "start paste" code literally. } // Advance past the sequence rbuffer_consumed(input->read_stream.buffer, 6); if (!!input->paste == enable) { return true; // Spurious "disable paste" code. } if (enable) { // Flush before starting paste. tinput_flush(input, true); // Paste phase: "first-chunk". input->paste = 1; } else if (input->paste) { // Paste phase: "last-chunk". input->paste = input->paste == 2 ? 3 : -1; tinput_flush(input, true); // Paste phase: "disabled". input->paste = 0; } return true; } return false; } // ESC NUL => static bool handle_forced_escape(TermInput *input) { if (rbuffer_size(input->read_stream.buffer) > 1 && !rbuffer_cmp(input->read_stream.buffer, "\x1b\x00", 2)) { // skip the ESC and NUL and push one to the input buffer size_t rcnt; termkey_push_bytes(input->tk, rbuffer_read_ptr(input->read_stream.buffer, &rcnt), 1); rbuffer_consumed(input->read_stream.buffer, 2); tk_getkeys(input, true); return true; } return false; } static void set_bg_deferred(void **argv) { char *bgvalue = argv[0]; if (!option_was_set("bg") && !strequal((char *)p_bg, bgvalue)) { // Value differs, apply it. if (starting) { // Wait until after startup, so OptionSet is triggered. do_cmdline_cmd((bgvalue[0] == 'l') ? "autocmd VimEnter * ++once ++nested set bg=light" : "autocmd VimEnter * ++once ++nested set bg=dark"); } else { set_option_value("bg", 0L, bgvalue, 0); reset_option_was_set("bg"); } } } // During startup, tui.c requests the background color (see `ext.get_bg`). // // Here in input.c, we watch for the terminal response `\e]11;COLOR\a`. If // COLOR matches `rgb:RRRR/GGGG/BBBB/AAAA` where R, G, B, and A are hex digits, // then compute the luminance[1] of the RGB color and classify it as light/dark // accordingly. Note that the color components may have anywhere from one to // four hex digits, and require scaling accordingly as values out of 4, 8, 12, // or 16 bits. Also note the A(lpha) component is optional, and is parsed but // ignored in the calculations. // // [1] https://en.wikipedia.org/wiki/Luma_%28video%29 static bool handle_background_color(TermInput *input) { size_t count = 0; size_t component = 0; size_t header_size = 0; size_t num_components = 0; uint16_t rgb[] = { 0, 0, 0 }; uint16_t rgb_max[] = { 0, 0, 0 }; bool eat_backslash = false; bool done = false; bool bad = false; if (rbuffer_size(input->read_stream.buffer) >= 9 && !rbuffer_cmp(input->read_stream.buffer, "\x1b]11;rgb:", 9)) { header_size = 9; num_components = 3; } else if (rbuffer_size(input->read_stream.buffer) >= 10 && !rbuffer_cmp(input->read_stream.buffer, "\x1b]11;rgba:", 10)) { header_size = 10; num_components = 4; } else { return false; } rbuffer_consumed(input->read_stream.buffer, header_size); RBUFFER_EACH(input->read_stream.buffer, c, i) { count = i + 1; if (eat_backslash) { done = true; break; } else if (c == '\x07') { done = true; break; } else if (c == '\x1b') { eat_backslash = true; } else if (bad) { // ignore } else if ((c == '/') && (++component < num_components)) { // work done in condition } else if (ascii_isxdigit(c)) { if (component < 3 && rgb_max[component] != 0xffff) { rgb_max[component] = (uint16_t)((rgb_max[component] << 4) | 0xf); rgb[component] = (uint16_t)((rgb[component] << 4) | hex2nr(c)); } } else { bad = true; } } rbuffer_consumed(input->read_stream.buffer, count); if (done && !bad && rgb_max[0] && rgb_max[1] && rgb_max[2]) { double r = (double)rgb[0] / (double)rgb_max[0]; double g = (double)rgb[1] / (double)rgb_max[1]; double b = (double)rgb[2] / (double)rgb_max[2]; double luminance = (0.299 * r) + (0.587 * g) + (0.114 * b); // CCIR 601 char *bgvalue = luminance < 0.5 ? "dark" : "light"; DLOG("bg response: %s", bgvalue); loop_schedule_deferred(&main_loop, event_create(set_bg_deferred, 1, bgvalue)); } else { DLOG("failed to parse bg response"); return false; } return true; } static void tinput_read_cb(Stream *stream, RBuffer *buf, size_t count_, void *data, bool eof) { TermInput *input = data; if (eof) { loop_schedule_fast(&main_loop, event_create(tinput_done_event, 0)); return; } do { if (handle_focus_event(input) || handle_bracketed_paste(input) || handle_forced_escape(input) || handle_background_color(input)) { continue; } // // Find the next ESC and push everything up to it (excluding), so it will // be the first thing encountered on the next iteration. The `handle_*` // calls (above) depend on this. // size_t count = 0; RBUFFER_EACH(input->read_stream.buffer, c, i) { count = i + 1; if (c == '\x1b' && count > 1) { count--; break; } } // Push bytes directly (paste). if (input->paste) { RBUFFER_UNTIL_EMPTY(input->read_stream.buffer, ptr, len) { size_t consumed = MIN(count, len); assert(consumed <= input->read_stream.buffer->size); tinput_enqueue(input, ptr, consumed); rbuffer_consumed(input->read_stream.buffer, consumed); if (!(count -= consumed)) { break; } } continue; } // Push through libtermkey (translates to "" strings, etc.). RBUFFER_UNTIL_EMPTY(input->read_stream.buffer, ptr, len) { size_t consumed = termkey_push_bytes(input->tk, ptr, MIN(count, len)); // termkey_push_bytes can return (size_t)-1, so it is possible that // `consumed > input->read_stream.buffer->size`, but since tk_getkeys is // called soon, it shouldn't happen. assert(consumed <= input->read_stream.buffer->size); rbuffer_consumed(input->read_stream.buffer, consumed); // Process the keys now: there is no guarantee `count` will // fit into libtermkey's input buffer. tk_getkeys(input, false); if (!(count -= consumed)) { break; } } } while (rbuffer_size(input->read_stream.buffer)); tinput_flush(input, true); // Make sure the next input escape sequence fits into the ring buffer without // wraparound, else it could be misinterpreted (because rbuffer_read_ptr() // exposes the underlying buffer to callers unaware of the wraparound). rbuffer_reset(input->read_stream.buffer); }