{-# LANGUAGE BangPatterns #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} module Graphics.Glyph.BufferBuilder where import Data.Array.Storable import qualified Data.Foldable as Fold import Data.Map as Map import Data.Sequence as Seq import Foreign.Marshal.Array import Foreign.Ptr import Foreign.Storable import Graphics.Glyph.GLMath import Graphics.Glyph.Util import Graphics.Rendering.OpenGL import System.IO.Unsafe import Unsafe.Coerce data BufferBuilder3D = Plot BufferBuilder3D (GLfloat, GLfloat, GLfloat) Int Int | End bufferSize :: BufferBuilder3D -> Int bufferSize End = 0 bufferSize (Plot _ _ l _) = l nelem :: BufferBuilder3D -> Int nelem End = 0 nelem (Plot _ _ _ l) = l sizeofGLfloat :: Int sizeofGLfloat = 4 simpleCube :: Num a => [(a, a, a)] simpleCube = trianglesFromQuads [ (-1, 1, -1), (1, 1, -1), (1, -1, -1), (-1, -1, -1), (-1, 1, 1), (1, 1, 1), (1, -1, 1), (-1, -1, 1), (-1, 1, 1), (1, 1, 1), (1, 1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, 1), (1, -1, -1), (-1, -1, -1), (-1, -1, 1), (-1, 1, 1), (-1, 1, -1), (-1, -1, -1), (1, -1, 1), (1, 1, 1), (1, 1, -1), (1, -1, -1) ] class Monad a => IsModelBuilder b a where plotVertex3 :: b -> b -> b -> a () plotNormal :: b -> b -> b -> a () plotTexture :: b -> b -> a () {- A state monad that keeps track of operations - and will compile them into a buffer -} data BuilderM b a = BuilderM (Builder (BuildDatum b)) a data Builder b = Builder !(Builder b) -- before !(Builder b) -- after | LeafBuilder !(Seq b) deriving (Show) instance IsModelBuilder GLfloat (BuilderM GLfloat) where plotVertex3 x y z = bVertex3 (x, y, z) plotNormal x y z = bNormal3 (x, y, z) plotTexture x y = bTexture2 (x, y) data BuildDatum b = VertexLink (b, b, b) | NormalLink (b, b, b) | ColorLink (b, b, b, b) | TextureLink (b, b) deriving (Show) data CompiledBuild b = CompiledBuild { bStride :: Int, bEnabled :: (Bool, Bool, Bool), nElems :: Int, array :: Ptr b, arrayBytes :: Int } bufferLength :: (Integral a) => CompiledBuild b -> a bufferLength = fromIntegral . nElems instance Show (CompiledBuild x) where show (CompiledBuild stride enabled n ptr nbytes) = "[CompiledBuild stride=" ++! stride ++ " enabled" ++! enabled ++ " n=" ++! n ++ " ptr=" ++! ptr ++ " nbytes=" ++! nbytes ++ "]" instance Functor (BuilderM t) where fmap f b = b >>= (return . f) instance Applicative (BuilderM t) where pure = return (<*>) afn aa = do fn <- afn a <- aa return (fn a) instance Monad (BuilderM t) where (BuilderM !builder1 _) >> (BuilderM !builder2 ret) = BuilderM (builder1 ><> builder2) ret where b1@(LeafBuilder !seq1) ><> b2@(LeafBuilder !seq2) | Seq.length seq1 + Seq.length seq2 < 128 = LeafBuilder (seq1 >< seq2) | otherwise = Builder b1 b2 (Builder !b1 !b2) ><> leaf@(LeafBuilder !_) = (Builder b1 (b2 ><> leaf)) builder1' ><> builder2' = (Builder builder1' builder2') b1@(BuilderM _ ret) >>= func = b1 >> func ret return = BuilderM (LeafBuilder Seq.empty) instance Functor Builder where fmap f (Builder b1 b2) = (Builder (fmap f b1) (fmap f b2)) fmap f (LeafBuilder seq') = (LeafBuilder (fmap f seq')) instance Fold.Foldable Builder where foldl f ini (Builder b1 b2) = Fold.foldl f (Fold.foldl f ini b1) b2 foldl f ini (LeafBuilder seq') = Fold.foldl f ini seq' foldr f ini (Builder b1 b2) = Fold.foldr f (Fold.foldr f ini b2) b1 foldr f ini (LeafBuilder seq') = Fold.foldr f ini seq' expandBuilder :: Builder a -> b -> (b -> a -> (b, [a])) -> Builder a expandBuilder builder ini f = snd $ expandBuilder' builder ini f where expandBuilder' :: Builder a -> b -> (b -> a -> (b, [a])) -> (b, Builder a) expandBuilder' (Builder builder1 builder2) ini' f' = let (snowball1, newBuilder1) = expandBuilder' builder1 ini' f' (snowball2, newBuilder2) = expandBuilder' builder2 snowball1 f' in (snowball2, Builder newBuilder1 newBuilder2) expandBuilder' (LeafBuilder seq1) initial func = let (sequ, snow) = Fold.foldl' ( \(seq', snowball) datum -> let (snow', lst) = func snowball datum in (seq' >< Seq.fromList lst, snow') ) (Seq.empty, initial) seq1 in (snow, LeafBuilder sequ) {- Add a vertex to the current builder -} bVertex3 :: (a, a, a) -> BuilderM a () bVertex3 vert = BuilderM (LeafBuilder (Seq.singleton $ VertexLink vert)) () bTexture2 :: (a, a) -> BuilderM a () bTexture2 tex = BuilderM (LeafBuilder (Seq.singleton $ TextureLink tex)) () bNormal3 :: (a, a, a) -> BuilderM a () bNormal3 norm = BuilderM (LeafBuilder (Seq.singleton $ NormalLink norm)) () bColor4 :: (a, a, a, a) -> BuilderM a () bColor4 col = BuilderM (LeafBuilder (Seq.singleton $ ColorLink col)) () writeAndAvance :: (Storable a) => [a] -> Ptr a -> IO (Ptr a) writeAndAvance (a : as) ptr = poke ptr a >> writeAndAvance as (advancePtr ptr 1) writeAndAvance [] ptr = return ptr compilingBuilder :: (Storable b, Num b, Show b) => BuilderM b x -> IO (CompiledBuild b) compilingBuilder (BuilderM builder _) = do putStrLn "COMPILING" -- Size of the elements TODO unhardcode this let sizeof = sizeOf $ builderElem builder where builderElem :: Builder (BuildDatum a) -> a builderElem _ = unsafeCoerce (0 :: Int) {- Simply figure out what types of elementse - exist in this buffer -} let (bn, bc, bt, nVerts) = Fold.foldl' ( \(bn, bc, bt, len) ele -> case ele of NormalLink _ -> (True, bc, bt, len) ColorLink _ -> (bn, True, bt, len) TextureLink _ -> (bn, bc, True, len) VertexLink _ -> (bn, bc, bt, len + 1) ) (False, False, False, 0) builder {- Calculate the stride; number of floats per element -} let stride = (3 + (?) bn * 3 + (?) bc * 4 + (?) bt * 2) * sizeof where (?) True = 1 (?) False = 0 let nbytes = stride * nVerts putStrLn $ "Mallocing array of size: " ++! nbytes array <- mallocArray nbytes -- Tuple -- Pointer to current element, current normal/color/texture putStrLn "Writing array buffer" !_ <- Fold.foldlM ( \(ptr, cn, cc, ct) ele -> -- trace ("foldl " ++! ele) $ case ele of NormalLink nn -> return (ptr, nn, cc, ct) ColorLink nc -> return (ptr, cn, nc, ct) TextureLink nt -> return (ptr, cn, cc, nt) VertexLink vert -> do ptr' <- writeAndAvance (tp3 True vert) ptr >>= writeAndAvance (tp3 bn cn) >>= writeAndAvance (tp4 bc cc) >>= writeAndAvance (tp2 bt ct) return (ptr', cn, cc, ct) ) (array, (0, 0, 0), (0, 0, 0, 0), (0, 0)) builder putStrLn "Buffer written" let !compiledRet = CompiledBuild stride (bn, bc, bt) nVerts array nbytes putStrLn $ "COMPILE COMPLETE" ++! compiledRet return compiledRet where tp2 True (a, b) = [a, b] tp2 False _ = [] tp3 True (a, b, c) = [a, b, c] tp3 False _ = [] tp4 True (a, b, c, d) = [a, b, c, d] tp4 False _ = [] storableArrayToBuffer :: (Storable el) => BufferTarget -> StorableArray Int el -> IO BufferObject storableArrayToBuffer target arr = do let sizeof = sizeOf $ unsafePerformIO (readArray arr 0) [buffer] <- genObjectNames 1 bindBuffer target $= Just buffer len <- getBounds arr >>= (\(a, b) -> return $ (b - a) * sizeof) withStorableArray arr $ \ptr -> bufferData target $= (fromIntegral len, ptr, StaticDraw) return buffer ptrToBuffer :: (Storable b) => BufferTarget -> Int -> Ptr b -> IO BufferObject ptrToBuffer target len ptr = do -- len is length in bytes [buffer] <- genObjectNames 1 bindBuffer target $= Just buffer bufferData target $= (fromIntegral len, ptr, StaticDraw) return buffer vertexArrayDescriptor :: CompiledBuild GLfloat -> VertexArrayDescriptor GLfloat vertexArrayDescriptor (CompiledBuild stride _ _ _ _) = VertexArrayDescriptor 3 Float (fromIntegral stride) (wordPtrToPtr 0) normalArrayDescriptor :: CompiledBuild GLfloat -> Maybe (VertexArrayDescriptor GLfloat) normalArrayDescriptor (CompiledBuild stride (True, _, _) _ _ _) = Just $ VertexArrayDescriptor 3 Float (fromIntegral stride) (wordPtrToPtr (3 * 4)) normalArrayDescriptor _ = Nothing colorArrayDescriptor :: CompiledBuild GLfloat -> Maybe (VertexArrayDescriptor GLfloat) colorArrayDescriptor (CompiledBuild stride tup@(_, True, _) _ _ _) = Just $ VertexArrayDescriptor 4 Float (fromIntegral stride) (wordPtrToPtr (offset tup)) where offset (b1, _, _) = if b1 then (6 * 4) else (3 * 4) colorArrayDescriptor _ = Nothing textureArrayDescriptor :: CompiledBuild GLfloat -> Maybe (VertexArrayDescriptor GLfloat) textureArrayDescriptor (CompiledBuild stride tup@(_, _, True) _ _ _) = Just $ VertexArrayDescriptor 2 Float (fromIntegral stride) (wordPtrToPtr (offset tup)) where offset (b1, b2, _) = (3 + (ifp b1 3) + (ifp b2 4)) * 4 ifp b x = if b then x else 0 textureArrayDescriptor _ = Nothing createBufferObject :: BufferTarget -> CompiledBuild GLfloat -> IO BufferObject createBufferObject target (CompiledBuild _ _ _ arr len) = ptrToBuffer target len arr mapListInsert :: (Ord k) => k -> a -> Map.Map k [a] -> Map.Map k [a] mapListInsert key val map = flip (Map.insert key) map $ case Map.lookup key map of Nothing -> [val] Just x -> (val : x) inferingNormals :: (RealFloat a, Ord a, Show a) => BuilderM a b -> BuilderM a b inferingNormals (BuilderM builder ret) = let (normalMap, _, _) = Fold.foldl' ( \(newMap, v1, v2) datum -> case datum of VertexLink w -> case (v1, v2) of (Just u, Just v) -> let (Vec3 normal) = (Vec3 u <-> Vec3 v) × (Vec3 u <-> Vec3 w) in (insertWith (zipWithT3 (+)) w normal newMap, Nothing, Nothing) (Just u, Nothing) -> (newMap, v1, Just w) (Nothing, Nothing) -> (newMap, Just w, Nothing) _ -> (newMap, v1, v2) ) (Map.empty, Nothing, Nothing) builder in let newBuilder = expandBuilder builder () $ \() datum -> case datum of VertexLink tup -> let normalLink = NormalLink $ maybe (0, 0, 0) id $ Map.lookup tup normalMap in ((), [normalLink, datum]) _ -> ((), [datum]) in (BuilderM newBuilder ret) trianglesFromQuads :: [a] -> [a] trianglesFromQuads (a : b : c : d : xs) = [a, b, c, a, c, d] ++ trianglesFromQuads xs trianglesFromQuads l = l translating :: (Num a) => (a, a, a) -> BuilderM a b -> BuilderM a b translating trans (BuilderM builder ret) = do BuilderM ( flip fmap builder $ \datum -> case datum of VertexLink tup -> VertexLink $ zipWithT3 (+) tup trans _ -> datum ) ret