diff options
Diffstat (limited to 'Graphics/Glyph/Util.hs')
-rw-r--r-- | Graphics/Glyph/Util.hs | 125 |
1 files changed, 125 insertions, 0 deletions
diff --git a/Graphics/Glyph/Util.hs b/Graphics/Glyph/Util.hs new file mode 100644 index 0000000..550dd30 --- /dev/null +++ b/Graphics/Glyph/Util.hs @@ -0,0 +1,125 @@ +module Graphics.Glyph.Util where + +import Data.Angle +import Graphics.Rendering.OpenGL + +uncurry7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> (a,b,c,d,e,f,g) -> h +uncurry7 func (a,b,c,d,e,f,g) = func a b c d e f g + +uncurry6 :: (a -> b -> c -> d -> e -> f -> g) -> (a,b,c,d,e,f) -> g +uncurry6 func (a,b,c,d,e,f) = func a b c d e f + +uncurry5 :: (a -> b -> c -> d -> e -> f) -> (a,b,c,d,e) -> f +uncurry5 func (a,b,c,d,e) = func a b c d e + +uncurry4 :: (a -> b -> c -> d -> e) -> (a,b,c,d) -> e +uncurry4 func (a,b,c,d) = func a b c d + +uncurry3 :: (a -> b -> c -> e) -> (a,b,c) -> e +uncurry3 func (a,b,c) = func a b c + +gsin :: (Floating a) => a -> a +gsin = sine . Degrees + +gcos :: (Floating a) => a -> a +gcos = cosine . Degrees + +toEuclidian :: (Floating a) => (a, a, a) -> (a, a, a) +toEuclidian (r, th, ph) = ( + -r * gsin th * gcos ph, + r * gsin ph, + r * gcos th * gcos ph + ) + +mapT2 :: (a -> b) -> (a,a) -> (b,b) +mapT2 f (a, b) = (f a, f b) + +mapT3 :: (a -> b) -> (a,a,a) -> (b,b,b) +mapT3 f (a, b, c) = (f a, f b, f c) + +mapT4 :: (a -> b) -> (a,a,a,a) -> (b,b,b,b) +mapT4 f (a, b, c, d) = (f a, f b, f c, f d) + +mapT5 :: (a -> b) -> (a,a,a,a,a) -> (b,b,b,b,b) +mapT5 f (a, b, c, d, e) = (f a, f b, f c, f d, f e) + +mapT6 :: (a -> b) -> (a,a,a,a,a,a) -> (b,b,b,b,b,b) +mapT6 f (a, b, c, d, e, _f) = (f a, f b, f c, f d, f e, f _f) + +mapT7 :: (a -> b) -> (a,a,a,a,a,a,a) -> (b,b,b,b,b,b,b) +mapT7 f (a, b, c, d, e, _f, g) = (f a, f b, f c, f d, f e, f _f, f g) + +foldT2 :: (a -> b -> a) -> a -> (b,b) -> a +foldT2 f ini (x,y) = ini `f` x `f` y + +foldT3 :: (a -> b -> a) -> a -> (b,b,b) -> a +foldT3 f ini (x,y,z) = ini `f` x `f` y `f` z + +foldT4 :: (a -> b -> a) -> a -> (b,b,b,b) -> a +foldT4 f ini (x,y,z,w) = ini `f` x `f` y `f` z `f` w + +foldT5 :: (a -> b -> a) -> a -> (b,b,b,b,b) -> a +foldT5 f ini (x,y,z,w,v) = ini `f` x `f` y `f` z `f` w `f` v + +tup2Len :: (Real a,Floating b) => (a,a) -> b +tup2Len = sqrt . foldT2 (+) 0 . mapT2 ((**2).toFloating) + +tup3Len :: (Real a,Floating b) => (a,a,a) -> b +tup3Len = sqrt . foldT3 (+) 0 . mapT3 ((**2).toFloating) + +tup4Len :: (Real a,Floating b) => (a,a,a,a) -> b +tup4Len = sqrt . foldT4 (+) 0 . mapT4 ((**2).toFloating) + +tup5Len :: (Real a,Floating b) => (a,a,a,a,a) -> b +tup5Len = sqrt . foldT5 (+) 0 . mapT5 ((**2).toFloating) + +expand3 :: a -> (a,a,a) +expand3 t = (t,t,t) + +expand4 :: a -> (a,a,a,a) +expand4 t = (t,t,t,t) + +expand5 :: a -> (a,a,a,a,a) +expand5 t = (t,t,t,t,t) + +expand6 :: a -> (a,a,a,a,a) +expand6 t = (t,t,t,t,t) + +zipWithT2 :: (a -> b -> c) -> (a,a) -> (b,b) -> (c,c) +zipWithT2 fu (a, b) (d, e) = (fu a d, fu b e) + +zipWithT3 :: (a -> b -> c) -> (a,a,a) -> (b,b,b) -> (c,c,c) +zipWithT3 fu (a, b, c) (d, e, f) = (fu a d, fu b e, fu c f) + +zipWithT4 :: (a -> b -> c) -> (a,a,a,a) -> (b,b,b,b) -> (c,c,c,c) +zipWithT4 fu (a, b, c, d) (e, f, g, h) = (fu a e, fu b f, fu c g, fu d h) + +toFloating :: (Real a, Floating b) => a -> b +toFloating = fromRational . toRational + +(!!%) :: [a] -> Int -> a +(!!%) lst idx = lst !! (idx `mod` length lst) + +(++!) :: (Show a) => String -> a -> String +(++!) str = (str++) . show + +clamp :: (Ord a) => a -> (a, a) -> a +clamp var (low, high) = min (max var low) high + +floatVertex :: (GLfloat,GLfloat,GLfloat) -> Vertex3 GLdouble +floatVertex tup = uncurry3 Vertex3 (mapT3 toFloating tup) + +floatVector :: (GLfloat,GLfloat,GLfloat) -> Vector3 GLdouble +floatVector tup = uncurry3 Vector3 (mapT3 toFloating tup) + +-- Maps a function across a list, except this function +-- can also be given a state variable like how foldl +-- works +mapWith :: (s -> a -> (b,s)) -> s -> [a] -> ([b], s) +mapWith func state (x:xs) = + let (x',s') = func state x in + let (l,s) = mapWith func s' xs in (x':l, s) + +mapWith _ s [] = ([],s) +(>&>) :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c +(>&>) f1 f2 a = f1 a >> f2 a |