1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
module Graphics.Glyph.Util where
import Data.Angle
import Graphics.Rendering.OpenGL
int :: (Integral a, Num b) => a -> b
int = fromIntegral
uncurry7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> (a,b,c,d,e,f,g) -> h
uncurry7 func (a,b,c,d,e,f,g) = func a b c d e f g
uncurry6 :: (a -> b -> c -> d -> e -> f -> g) -> (a,b,c,d,e,f) -> g
uncurry6 func (a,b,c,d,e,f) = func a b c d e f
uncurry5 :: (a -> b -> c -> d -> e -> f) -> (a,b,c,d,e) -> f
uncurry5 func (a,b,c,d,e) = func a b c d e
uncurry4 :: (a -> b -> c -> d -> e) -> (a,b,c,d) -> e
uncurry4 func (a,b,c,d) = func a b c d
uncurry3 :: (a -> b -> c -> e) -> (a,b,c) -> e
uncurry3 func (a,b,c) = func a b c
gsin :: (Floating a) => a -> a
gsin = sine . Degrees
gcos :: (Floating a) => a -> a
gcos = cosine . Degrees
toEuclidian :: (Floating a) => (a, a, a) -> (a, a, a)
toEuclidian (r, th, ph) = (
-r * gsin th * gcos ph,
r * gsin ph,
r * gcos th * gcos ph
)
mapT2 :: (a -> b) -> (a,a) -> (b,b)
mapT2 f (a, b) = (f a, f b)
mapT3 :: (a -> b) -> (a,a,a) -> (b,b,b)
mapT3 f (a, b, c) = (f a, f b, f c)
mapT4 :: (a -> b) -> (a,a,a,a) -> (b,b,b,b)
mapT4 f (a, b, c, d) = (f a, f b, f c, f d)
mapT5 :: (a -> b) -> (a,a,a,a,a) -> (b,b,b,b,b)
mapT5 f (a, b, c, d, e) = (f a, f b, f c, f d, f e)
mapT6 :: (a -> b) -> (a,a,a,a,a,a) -> (b,b,b,b,b,b)
mapT6 f (a, b, c, d, e, _f) = (f a, f b, f c, f d, f e, f _f)
mapT7 :: (a -> b) -> (a,a,a,a,a,a,a) -> (b,b,b,b,b,b,b)
mapT7 f (a, b, c, d, e, _f, g) = (f a, f b, f c, f d, f e, f _f, f g)
foldT2 :: (a -> b -> a) -> a -> (b,b) -> a
foldT2 f ini (x,y) = ini `f` x `f` y
foldT3 :: (a -> b -> a) -> a -> (b,b,b) -> a
foldT3 f ini (x,y,z) = ini `f` x `f` y `f` z
foldT4 :: (a -> b -> a) -> a -> (b,b,b,b) -> a
foldT4 f ini (x,y,z,w) = ini `f` x `f` y `f` z `f` w
foldT5 :: (a -> b -> a) -> a -> (b,b,b,b,b) -> a
foldT5 f ini (x,y,z,w,v) = ini `f` x `f` y `f` z `f` w `f` v
tup2Len :: (Real a,Floating b) => (a,a) -> b
tup2Len = sqrt . foldT2 (+) 0 . mapT2 ((**2).toFloating)
tup3Len :: (Real a,Floating b) => (a,a,a) -> b
tup3Len = sqrt . foldT3 (+) 0 . mapT3 ((**2).toFloating)
tup4Len :: (Real a,Floating b) => (a,a,a,a) -> b
tup4Len = sqrt . foldT4 (+) 0 . mapT4 ((**2).toFloating)
tup5Len :: (Real a,Floating b) => (a,a,a,a,a) -> b
tup5Len = sqrt . foldT5 (+) 0 . mapT5 ((**2).toFloating)
expand3 :: a -> (a,a,a)
expand3 t = (t,t,t)
expand4 :: a -> (a,a,a,a)
expand4 t = (t,t,t,t)
expand5 :: a -> (a,a,a,a,a)
expand5 t = (t,t,t,t,t)
expand6 :: a -> (a,a,a,a,a)
expand6 t = (t,t,t,t,t)
zipWithT2 :: (a -> b -> c) -> (a,a) -> (b,b) -> (c,c)
zipWithT2 fu (a, b) (d, e) = (fu a d, fu b e)
zipWithT3 :: (a -> b -> c) -> (a,a,a) -> (b,b,b) -> (c,c,c)
zipWithT3 fu (a, b, c) (d, e, f) = (fu a d, fu b e, fu c f)
zipWithT4 :: (a -> b -> c) -> (a,a,a,a) -> (b,b,b,b) -> (c,c,c,c)
zipWithT4 fu (a, b, c, d) (e, f, g, h) = (fu a e, fu b f, fu c g, fu d h)
toFloating :: (Real a, Floating b) => a -> b
toFloating = fromRational . toRational
(!!%) :: [a] -> Int -> a
(!!%) lst idx = lst !! (idx `mod` length lst)
(++!) :: (Show a) => String -> a -> String
(++!) str = (str++) . show
clamp :: (Ord a) => a -> (a, a) -> a
clamp var (low, high) = min (max var low) high
floatVertex :: (GLfloat,GLfloat,GLfloat) -> Vertex3 GLdouble
floatVertex tup = uncurry3 Vertex3 (mapT3 toFloating tup)
floatVector :: (GLfloat,GLfloat,GLfloat) -> Vector3 GLdouble
floatVector tup = uncurry3 Vector3 (mapT3 toFloating tup)
-- Maps a function across a list, except this function
-- can also be given a state variable like how foldl
-- works
mapWith :: (s -> a -> (b,s)) -> s -> [a] -> ([b], s)
mapWith func state (x:xs) =
let (x',s') = func state x in
let (l,s) = mapWith func s' xs in (x':l, s)
mapWith _ s [] = ([],s)
(>&>) :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c
(>&>) f1 f2 a = f1 a >> f2 a
|