1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
-- | Qualification compilation phase.
--
-- The qualification phase is responsible for resolving all type references in
-- the AST to their fully-qualified counterparts. This process involves
-- replacing unqualified references with their fully-qualified names and
-- attaching the necessary metadata to each reference. This enriched information
-- is then available for use in later stages of the compilation pipeline.
--
-- In this phase, symbol resolution statements (such as 'using' statements) are
-- removed, as they become unnecessary once references are fully qualified.
module Language.Fiddle.Compiler.Qualification (qualificationPhase) where
import Control.Monad.RWS (MonadWriter (tell))
import Control.Monad.State
import Data.Foldable (foldlM)
import Data.List (intercalate)
import Data.List.NonEmpty (NonEmpty (..), toList)
import qualified Data.List.NonEmpty as NonEmpty
import Data.Maybe (mapMaybe)
import Data.Word
import Language.Fiddle.Ast
import Language.Fiddle.Compiler
import Language.Fiddle.Compiler.ConsistencyCheck ()
import Language.Fiddle.Internal.Scopes
import Language.Fiddle.Internal.UnitInterface as UnitInterface
import Language.Fiddle.Types
import Text.Printf (printf)
type S = Expanded
newtype GlobalState = GlobalState
{ unitInterface :: UnitInterface
}
data LocalState = LocalState
{ currentScopePath :: ScopePath String,
ephemeralScope :: Scope String (Metadata, ExportedDecl)
}
type F = Either [Diagnostic]
type A = Commented SourceSpan
type M = Compile GlobalState
instance CompilationStage Expanded where
type StageAfter Expanded = Qualified
type StageMonad Expanded = M
type StageState Expanded = LocalState
type StageFunctor Expanded = F
type StageAnnotation Expanded = A
qualificationPhase :: CompilationPhase Expanded Qualified
qualificationPhase =
pureCompilationPhase $ \t -> do
raw <-
fmap snd $
subCompile (GlobalState mempty) $
advanceStage
(LocalState mempty mempty)
(soakA t)
squeezeDiagnostics raw
deriving instance AdvanceStage S ObjTypeBody
deriving instance AdvanceStage S DeferredRegisterBody
deriving instance AdvanceStage S RegisterBody
deriving instance AdvanceStage S AnonymousBitsType
deriving instance AdvanceStage S ImportStatement
deriving instance AdvanceStage S BitType
deriving instance AdvanceStage S EnumBody
deriving instance AdvanceStage S EnumConstantDecl
deriving instance AdvanceStage S RegisterBitsDecl
deriving instance AdvanceStage S ObjTypeDecl
deriving instance AdvanceStage S Expression
instance AdvanceStage S RegisterBitsTypeRef where
advanceStage localState = \case
RegisterBitsArray a b c ->
RegisterBitsArray
<$> advanceStage localState a
<*> advanceStage localState b
<*> pure c
RegisterBitsJustBits a b ->
RegisterBitsJustBits
<$> advanceStage localState a
<*> pure b
RegisterBitsReference _ name a -> do
v <- fmap snd <$> resolveName name localState
return $ RegisterBitsReference v name a
instance AdvanceStage S ObjType where
advanceStage localState = \case
ArrayObjType a b c ->
ArrayObjType
<$> advanceStage localState a
<*> advanceStage localState b
<*> pure c
ReferencedObjType _ name a -> do
v <- fmap snd <$> resolveName name localState
return $ ReferencedObjType v name a
deriving instance (AdvanceStage S t) => AdvanceStage S (Directed t)
instance AdvanceStage S PackageBody where
advanceStage localState (PackageBody decls a) =
PackageBody <$> advanceFiddleDecls localState decls <*> pure a
instance AdvanceStage S FiddleUnit where
advanceStage localState (FiddleUnit () decls a) =
FiddleUnit () <$> advanceFiddleDecls localState decls <*> pure a
modifyEphemeralScope ::
( Scope String (Metadata, ExportedDecl) -> Scope String (Metadata, ExportedDecl)
) ->
LocalState ->
LocalState
modifyEphemeralScope fn ls@LocalState {ephemeralScope = es} =
ls {ephemeralScope = fn es}
modifyCurrentScopePath ::
(ScopePath String -> ScopePath String) ->
LocalState ->
LocalState
modifyCurrentScopePath fn ls@LocalState {currentScopePath = cs} =
ls {currentScopePath = fn cs}
resolveIdent :: (ExportableDecl d, Functor f) => Identifier f A -> LocalState -> M (F ([String], d))
resolveIdent i = resolveSymbol (annot i) [identToString i]
resolveName :: (ExportableDecl d, Functor f) => Name f A -> LocalState -> M (F ([String], d))
resolveName n = resolveSymbol (annot n) (toList $ nameToList n)
resolveSymbol :: (ExportableDecl d) => A -> [String] -> LocalState -> M (F ([String], d))
resolveSymbol a (p : ps) (LocalState {ephemeralScope = ephemeralScope, currentScopePath = currentPath}) = do
GlobalState {unitInterface = UnitInterface {rootScope = rootScope}} <- get
let matches =
concatMap
( mapMaybe (\(p, (m, e)) -> (p,) . (m,) <$> fromExportedDecl e)
. lookupScopeWithPath currentPath (p :| ps)
)
[rootScope, ephemeralScope]
return $
case matches of
[(p, (_, e))] -> Right (toList p, e)
[] ->
Left
[ Diagnostic
Error
( printf "Could not resolve symbol %s" (intercalate "." (p : ps))
)
(unCommented a)
]
(_ : _ : _) -> do
Left
[ Diagnostic
Error
( printf
"Ambiguous occurance of %s"
(intercalate "." (p : ps))
)
(unCommented a)
]
resolveSymbol a _ _ =
return $ Left [Diagnostic Error "Empty path provided (this is a bug)" (unCommented a)]
advanceFiddleDecls ::
LocalState ->
[Directed FiddleDecl S F A] ->
M [Directed FiddleDecl Qualified F A]
advanceFiddleDecls localState decls = fmap (reverse . fst) $ do
foldlM
( \(declsRet, localState' :: LocalState) unsqeezedd -> do
d <- case squeeze unsqeezedd of
Left diags -> tell diags >> compilationFailure
Right x -> return x
case unsqeezedd of
(Directed directives t dann) ->
let doReturn ::
FiddleDecl Qualified F A ->
M ([Directed FiddleDecl Qualified F A], LocalState)
doReturn v = return (Directed directives v dann : declsRet, localState')
doReturnWith s v = return (Directed directives v dann : declsRet, s)
qualify = qualifyPath (currentScopePath localState')
metadata = directiveToMetadata d
in case t of
UsingDecl {usingName = name} ->
return (declsRet, modifyCurrentScopePath (addUsingPath (nameToList name)) localState')
OptionDecl key value ann -> doReturn $ OptionDecl key value ann
ImportDecl st@(ImportStatement {importInterface = interface}) a ->
let localState'' = modifyEphemeralScope (<> rootScope interface) localState'
in doReturnWith localState''
=<< ImportDecl
<$> advanceStage localState'' st
<*> pure a
PackageDecl _ name body ann ->
let qualifiedName = qualify (nameToList name)
localState'' = modifyCurrentScopePath (pushScope (nameToList name)) localState'
decl = ExportedPackageDecl (metadata qualifiedName)
in do
insertDecl decl
doReturn
=<< PackageDecl
(pure decl)
name
<$> mapM (advanceStage localState'') body
<*> pure ann
LocationDecl _ ident expr ann ->
let qualifiedName = qualify (NonEmpty.singleton (identToString ident))
in do
exprValue <- expressionToIntM expr
let decl =
ExportedLocationDecl
(metadata qualifiedName)
exprValue
insertDecl decl
doReturn
=<< LocationDecl
(pure decl)
ident
<$> advanceStage localState' expr
<*> pure ann
BitsDecl _ ident typ ann ->
let qualifiedName = qualify (NonEmpty.singleton (identToString ident))
in do
sizeBits <- getBitTypeDeclaredSize typ
let decl =
ExportedBitsDecl
(metadata qualifiedName)
sizeBits
insertDecl decl
doReturn
=<< BitsDecl
(pure decl)
ident
<$> advanceStage localState' typ
<*> pure ann
ObjTypeDecl _ ident body ann ->
let qualifiedName = qualify (NonEmpty.singleton (identToString ident))
in do
typeSize <- calculateTypeSize =<< resolveOrFail body
let decl =
ExportedTypeDecl
(metadata qualifiedName)
typeSize
insertDecl decl
doReturn
=<< ObjTypeDecl
(pure decl)
ident
<$> mapM (advanceStage localState') body
<*> pure ann
ObjectDecl _ ident loc typ ann ->
let qualifiedName = qualify (NonEmpty.singleton (identToString ident))
in do
location <- resolveLocationExpression localState' loc
exportedType <- objTypeToExport localState' typ
let decl =
ExportedObjectDecl
(metadata qualifiedName)
location
exportedType
insertDecl decl
doReturn
=<< ObjectDecl
(pure decl)
ident
<$> advanceStage localState' loc
<*> advanceStage localState' typ
<*> pure ann
)
([], localState)
decls
insertDecl :: (ExportableDecl d) => d -> M ()
insertDecl decl =
modify $ \(GlobalState ui) -> GlobalState (UnitInterface.insert decl ui)
objTypeToExport :: LocalState -> ObjType Expanded F A -> M ReferencedObjectType
objTypeToExport ls = \case
ArrayObjType {arraySize = size, arrayObjType = objType} ->
ArrayObjectType
<$> objTypeToExport ls objType
<*> expressionToIntM size
ReferencedObjType {refName = n} -> do
(full, _ :: ExportedTypeDecl) <- resolveOrFail =<< resolveName n ls
return $ ReferencedObjectType (intercalate "." full)
calculateTypeSize :: ObjTypeBody Expanded F A -> M Word32
calculateTypeSize (ObjTypeBody bodyType decls _) =
( case bodyType of
Union {} -> maximum
Struct {} -> sum
)
<$> mapM calculateDeclSize decls
where
calculateDeclSize :: Directed ObjTypeDecl Expanded F A -> M Word32
calculateDeclSize (undirected -> decl) =
case decl of
AssertPosStatement {} -> return 0
RegisterDecl {regSize = size} -> expressionToIntM size
ReservedDecl {reservedExpr = size} -> expressionToIntM size
TypeSubStructure {subStructureBody = b} -> calculateTypeSize =<< resolveOrFail b
getBitTypeDeclaredSize :: BitType Expanded F A -> M Word32
getBitTypeDeclaredSize = \case
(EnumBitType declaredSize _ _) -> expressionToIntM declaredSize
(RawBits declaredSize _) -> expressionToIntM declaredSize
resolveLocationExpression ::
(Integral i, Integral (NumberType stage)) =>
LocalState ->
Expression stage F A ->
M i
resolveLocationExpression ls (Var var _) = do
(_, ExportedLocationDecl _ v) <- resolveOrFail =<< resolveName var ls
return (fromIntegral v)
resolveLocationExpression _ e = expressionToIntM e
expressionToIntM ::
(Integral i, Integral (NumberType stage)) =>
Expression stage f A ->
M i
expressionToIntM expr =
resolveOrFail $
either
( \reason -> Left [Diagnostic Error reason (unCommented $ annot expr)]
)
return
(expressionToInt expr)
|