aboutsummaryrefslogtreecommitdiff
path: root/src/nvim/linematch.c
diff options
context:
space:
mode:
authorJosh Rahm <joshuarahm@gmail.com>2023-01-25 18:31:31 +0000
committerJosh Rahm <joshuarahm@gmail.com>2023-01-25 18:31:31 +0000
commit9243becbedbb6a1592208051f8fa2b090dcc5e7d (patch)
tree607c2a862ec3f4399b8766383f6f8e04c4aa43b4 /src/nvim/linematch.c
parent9e40b6e9e1bc67f2d856adb837ee64dd0e25b717 (diff)
parent3c48d3c83fc21dbc0841f9210f04bdb073d73cd1 (diff)
downloadrneovim-usermarks.tar.gz
rneovim-usermarks.tar.bz2
rneovim-usermarks.zip
Merge remote-tracking branch 'upstream/master' into usermarksusermarks
Diffstat (limited to 'src/nvim/linematch.c')
-rw-r--r--src/nvim/linematch.c384
1 files changed, 384 insertions, 0 deletions
diff --git a/src/nvim/linematch.c b/src/nvim/linematch.c
new file mode 100644
index 0000000000..a9dac40731
--- /dev/null
+++ b/src/nvim/linematch.c
@@ -0,0 +1,384 @@
+// This is an open source non-commercial project. Dear PVS-Studio, please check
+// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stddef.h>
+#include <string.h>
+
+#include "nvim/linematch.h"
+#include "nvim/macros.h"
+#include "nvim/memory.h"
+
+// struct for running the diff linematch algorithm
+typedef struct {
+ int *df_decision; // to keep track of this path traveled
+ int df_lev_score; // to keep track of the total score of this path
+ size_t df_path_idx; // current index of this path
+} diffcmppath_T;
+
+#define LN_MAX_BUFS 8
+
+#ifdef INCLUDE_GENERATED_DECLARATIONS
+# include "linematch.c.generated.h"
+#endif
+
+static size_t line_len(const char *s)
+{
+ char *end = strchr(s, '\n');
+ if (end) {
+ return (size_t)(end - s);
+ }
+ return strlen(s);
+}
+
+/// Same as matching_chars but ignore whitespace
+///
+/// @param s1
+/// @param s2
+static int matching_chars_iwhite(const char *s1, const char *s2)
+{
+ // the newly processed strings that will be compared
+ // delete the white space characters, and/or replace all upper case with lower
+ char *strsproc[2];
+ const char *strsorig[2] = { s1, s2 };
+ for (int k = 0; k < 2; k++) {
+ size_t d = 0;
+ size_t i = 0;
+ size_t slen = line_len(strsorig[k]);
+ strsproc[k] = xmalloc((slen + 1) * sizeof(char));
+ while (d + i < slen) {
+ char e = strsorig[k][i + d];
+ if (e != ' ' && e != '\t') {
+ strsproc[k][i] = e;
+ i++;
+ } else {
+ d++;
+ }
+ }
+ strsproc[k][i] = '\0';
+ }
+ int matching = matching_chars(strsproc[0], strsproc[1]);
+ xfree(strsproc[0]);
+ xfree(strsproc[1]);
+ return matching;
+}
+
+/// update the path of a point in the diff linematch algorithm
+/// @param diffcmppath
+/// @param score
+/// @param to
+/// @param from
+/// @param choice
+static void update_path_flat(diffcmppath_T *diffcmppath, int score, size_t to, size_t from,
+ const int choice)
+{
+ size_t path_idx = diffcmppath[from].df_path_idx;
+
+ for (size_t k = 0; k < path_idx; k++) {
+ diffcmppath[to].df_decision[k] = diffcmppath[from].df_decision[k];
+ }
+
+ diffcmppath[to].df_decision[path_idx] = choice;
+ diffcmppath[to].df_lev_score = score;
+ diffcmppath[to].df_path_idx = path_idx + 1;
+}
+
+#define MATCH_CHAR_MAX_LEN 800
+
+/// Return matching characters between "s1" and "s2" whilst respecting sequence order.
+/// Consider the case of two strings 'AAACCC' and 'CCCAAA', the
+/// return value from this function will be 3, either to match
+/// the 3 C's, or the 3 A's.
+///
+/// Examples:
+/// matching_chars("aabc", "acba") -> 2 // 'a' and 'b' in common
+/// matching_chars("123hello567", "he123ll567o") -> 8 // '123', 'll' and '567' in common
+/// matching_chars("abcdefg", "gfedcba") -> 1 // all characters in common,
+/// // but only at most 1 in sequence
+///
+/// @param s1
+/// @param s2
+static int matching_chars(const char *s1, const char *s2)
+{
+ size_t s1len = MIN(MATCH_CHAR_MAX_LEN - 1, line_len(s1));
+ size_t s2len = MIN(MATCH_CHAR_MAX_LEN - 1, line_len(s2));
+ int matrix[2][MATCH_CHAR_MAX_LEN] = { 0 };
+ bool icur = 1; // save space by storing only two rows for i axis
+ for (size_t i = 0; i < s1len; i++) {
+ icur = !icur;
+ int *e1 = matrix[icur];
+ int *e2 = matrix[!icur];
+ for (size_t j = 0; j < s2len; j++) {
+ // skip char in s1
+ if (e2[j + 1] > e1[j + 1]) {
+ e1[j + 1] = e2[j + 1];
+ }
+ // skip char in s2
+ if (e1[j] > e1[j + 1]) {
+ e1[j + 1] = e1[j];
+ }
+ // compare char in s1 and s2
+ if ((s1[i] == s2[j]) && (e2[j] + 1) > e1[j + 1]) {
+ e1[j + 1] = e2[j] + 1;
+ }
+ }
+ }
+ return matrix[icur][s2len];
+}
+
+/// count the matching characters between a variable number of strings "sp"
+/// mark the strings that have already been compared to extract them later
+/// without re-running the character match counting.
+/// @param sp
+/// @param fomvals
+/// @param n
+static int count_n_matched_chars(const char **sp, const size_t n, bool iwhite)
+{
+ int matched_chars = 0;
+ int matched = 0;
+ for (size_t i = 0; i < n; i++) {
+ for (size_t j = i + 1; j < n; j++) {
+ if (sp[i] != NULL && sp[j] != NULL) {
+ matched++;
+ // TODO(lewis6991): handle whitespace ignoring higher up in the stack
+ matched_chars += iwhite ? matching_chars_iwhite(sp[i], sp[j])
+ : matching_chars(sp[i], sp[j]);
+ }
+ }
+ }
+
+ // prioritize a match of 3 (or more lines) equally to a match of 2 lines
+ if (matched >= 2) {
+ matched_chars *= 2;
+ matched_chars /= matched;
+ }
+
+ return matched_chars;
+}
+
+void fastforward_buf_to_lnum(const char **s, long lnum)
+{
+ for (long i = 0; i < lnum - 1; i++) {
+ *s = strchr(*s, '\n');
+ (*s)++;
+ }
+}
+
+/// try all the different ways to compare these lines and use the one that
+/// results in the most matching characters
+/// @param df_iters
+/// @param paths
+/// @param npaths
+/// @param path_idx
+/// @param choice
+/// @param diffcmppath
+/// @param diff_len
+/// @param ndiffs
+/// @param diff_blk
+static void try_possible_paths(const int *df_iters, const size_t *paths, const int npaths,
+ const int path_idx, int *choice, diffcmppath_T *diffcmppath,
+ const int *diff_len, const size_t ndiffs, const char **diff_blk,
+ bool iwhite)
+{
+ if (path_idx == npaths) {
+ if ((*choice) > 0) {
+ int from_vals[LN_MAX_BUFS];
+ const int *to_vals = df_iters;
+ const char *current_lines[LN_MAX_BUFS];
+ for (size_t k = 0; k < ndiffs; k++) {
+ from_vals[k] = df_iters[k];
+ // get the index at all of the places
+ if ((*choice) & (1 << k)) {
+ from_vals[k]--;
+ const char *p = diff_blk[k];
+ fastforward_buf_to_lnum(&p, df_iters[k]);
+ current_lines[k] = p;
+ } else {
+ current_lines[k] = NULL;
+ }
+ }
+ size_t unwrapped_idx_from = unwrap_indexes(from_vals, diff_len, ndiffs);
+ size_t unwrapped_idx_to = unwrap_indexes(to_vals, diff_len, ndiffs);
+ int matched_chars = count_n_matched_chars(current_lines, ndiffs, iwhite);
+ int score = diffcmppath[unwrapped_idx_from].df_lev_score + matched_chars;
+ if (score > diffcmppath[unwrapped_idx_to].df_lev_score) {
+ update_path_flat(diffcmppath, score, unwrapped_idx_to, unwrapped_idx_from, *choice);
+ }
+ } else {
+ // initialize the 0, 0, 0 ... choice
+ size_t i = 0;
+ while (i < ndiffs && df_iters[i] == 0) {
+ i++;
+ if (i == ndiffs) {
+ diffcmppath[0].df_lev_score = 0;
+ diffcmppath[0].df_path_idx = 0;
+ }
+ }
+ }
+ return;
+ }
+ size_t bit_place = paths[path_idx];
+ *(choice) |= (1 << bit_place); // set it to 1
+ try_possible_paths(df_iters, paths, npaths, path_idx + 1, choice,
+ diffcmppath, diff_len, ndiffs, diff_blk, iwhite);
+ *(choice) &= ~(1 << bit_place); // set it to 0
+ try_possible_paths(df_iters, paths, npaths, path_idx + 1, choice,
+ diffcmppath, diff_len, ndiffs, diff_blk, iwhite);
+}
+
+/// unwrap indexes to access n dimensional tensor
+/// @param values
+/// @param diff_len
+/// @param ndiffs
+static size_t unwrap_indexes(const int *values, const int *diff_len, const size_t ndiffs)
+{
+ size_t num_unwrap_scalar = 1;
+ for (size_t k = 0; k < ndiffs; k++) {
+ num_unwrap_scalar *= (size_t)diff_len[k] + 1;
+ }
+
+ size_t path_idx = 0;
+ for (size_t k = 0; k < ndiffs; k++) {
+ num_unwrap_scalar /= (size_t)diff_len[k] + 1;
+
+ // (k == 0) space optimization
+ int n = k == 0 ? values[k] % 2 : values[k];
+ path_idx += num_unwrap_scalar * (size_t)n;
+ }
+ return path_idx;
+}
+
+/// populate the values of the linematch algorithm tensor, and find the best
+/// decision for how to compare the relevant lines from each of the buffers at
+/// each point in the tensor
+/// @param df_iters
+/// @param ch_dim
+/// @param diffcmppath
+/// @param diff_len
+/// @param ndiffs
+/// @param diff_blk
+static void populate_tensor(int *df_iters, const size_t ch_dim, diffcmppath_T *diffcmppath,
+ const int *diff_len, const size_t ndiffs, const char **diff_blk,
+ bool iwhite)
+{
+ if (ch_dim == ndiffs) {
+ int npaths = 0;
+ size_t paths[LN_MAX_BUFS];
+
+ for (size_t j = 0; j < ndiffs; j++) {
+ if (df_iters[j] > 0) {
+ paths[npaths] = j;
+ npaths++;
+ }
+ }
+ int choice = 0;
+ size_t unwrapper_idx_to = unwrap_indexes(df_iters, diff_len, ndiffs);
+ diffcmppath[unwrapper_idx_to].df_lev_score = -1;
+ try_possible_paths(df_iters, paths, npaths, 0, &choice, diffcmppath,
+ diff_len, ndiffs, diff_blk, iwhite);
+ return;
+ }
+
+ for (int i = 0; i <= diff_len[ch_dim]; i++) {
+ df_iters[ch_dim] = i;
+ populate_tensor(df_iters, ch_dim + 1, diffcmppath, diff_len,
+ ndiffs, diff_blk, iwhite);
+ }
+}
+
+/// algorithm to find an optimal alignment of lines of a diff block with 2 or
+/// more files. The algorithm is generalized to work for any number of files
+/// which corresponds to another dimension added to the tensor used in the
+/// algorithm
+///
+/// for questions and information about the linematch algorithm please contact
+/// Jonathon White (jonathonwhite@protonmail.com)
+///
+/// for explanation, a summary of the algorithm in 3 dimensions (3 files
+/// compared) follows
+///
+/// The 3d case (for 3 buffers) of the algorithm implemented when diffopt
+/// 'linematch' is enabled. The algorithm constructs a 3d tensor to
+/// compare a diff between 3 buffers. The dimensions of the tensor are
+/// the length of the diff in each buffer plus 1 A path is constructed by
+/// moving from one edge of the cube/3d tensor to the opposite edge.
+/// Motions from one cell of the cube to the next represent decisions. In
+/// a 3d cube, there are a total of 7 decisions that can be made,
+/// represented by the enum df_path3_choice which is defined in
+/// buffer_defs.h a comparison of buffer 0 and 1 represents a motion
+/// toward the opposite edge of the cube with components along the 0 and
+/// 1 axes. a comparison of buffer 0, 1, and 2 represents a motion
+/// toward the opposite edge of the cube with components along the 0, 1,
+/// and 2 axes. A skip of buffer 0 represents a motion along only the 0
+/// axis. For each action, a point value is awarded, and the path is
+/// saved for reference later, if it is found to have been the optimal
+/// path. The optimal path has the highest score. The score is
+/// calculated as the summation of the total characters matching between
+/// all of the lines which were compared. The structure of the algorithm
+/// is that of a dynamic programming problem. We can calculate a point
+/// i,j,k in the cube as a function of i-1, j-1, and k-1. To find the
+/// score and path at point i,j,k, we must determine which path we want
+/// to use, this is done by looking at the possibilities and choosing
+/// the one which results in the local highest score. The total highest
+/// scored path is, then in the end represented by the cell in the
+/// opposite corner from the start location. The entire algorithm
+/// consists of populating the 3d cube with the optimal paths from which
+/// it may have came.
+///
+/// Optimizations:
+/// As the function to calculate the cell of a tensor at point i,j,k is a
+/// function of the cells at i-1, j-1, k-1, the whole tensor doesn't need
+/// to be stored in memory at once. In the case of the 3d cube, only two
+/// slices (along k and j axis) are stored in memory. For the 2d matrix
+/// (for 2 files), only two rows are stored at a time. The next/previous
+/// slice (or row) is always calculated from the other, and they alternate
+/// at each iteration.
+/// In the 3d case, 3 arrays are populated to memorize the score (matched
+/// characters) of the 3 buffers, so a redundant calculation of the
+/// scores does not occur
+/// @param diff_blk
+/// @param diff_len
+/// @param ndiffs
+/// @param [out] [allocated] decisions
+/// @return the length of decisions
+size_t linematch_nbuffers(const char **diff_blk, const int *diff_len, const size_t ndiffs,
+ int **decisions, bool iwhite)
+{
+ assert(ndiffs <= LN_MAX_BUFS);
+
+ size_t memsize = 1;
+ size_t memsize_decisions = 0;
+ for (size_t i = 0; i < ndiffs; i++) {
+ assert(diff_len[i] >= 0);
+ memsize *= i == 0 ? 2 : (size_t)(diff_len[i] + 1);
+ memsize_decisions += (size_t)diff_len[i];
+ }
+
+ // create the flattened path matrix
+ diffcmppath_T *diffcmppath = xmalloc(sizeof(diffcmppath_T) * memsize);
+ // allocate memory here
+ for (size_t i = 0; i < memsize; i++) {
+ diffcmppath[i].df_decision = xmalloc(memsize_decisions * sizeof(int));
+ }
+
+ // memory for avoiding repetitive calculations of score
+ int df_iters[LN_MAX_BUFS];
+ populate_tensor(df_iters, 0, diffcmppath, diff_len, ndiffs, diff_blk, iwhite);
+
+ const size_t u = unwrap_indexes(diff_len, diff_len, ndiffs);
+ const size_t best_path_idx = diffcmppath[u].df_path_idx;
+ const int *best_path_decisions = diffcmppath[u].df_decision;
+
+ *decisions = xmalloc(sizeof(int) * best_path_idx);
+ for (size_t i = 0; i < best_path_idx; i++) {
+ (*decisions)[i] = best_path_decisions[i];
+ }
+
+ for (size_t i = 0; i < memsize; i++) {
+ xfree(diffcmppath[i].df_decision);
+ }
+ xfree(diffcmppath);
+
+ return best_path_idx;
+}