diff options
author | Josh Rahm <joshuarahm@gmail.com> | 2023-01-25 18:31:31 +0000 |
---|---|---|
committer | Josh Rahm <joshuarahm@gmail.com> | 2023-01-25 18:31:31 +0000 |
commit | 9243becbedbb6a1592208051f8fa2b090dcc5e7d (patch) | |
tree | 607c2a862ec3f4399b8766383f6f8e04c4aa43b4 /src/nvim/linematch.c | |
parent | 9e40b6e9e1bc67f2d856adb837ee64dd0e25b717 (diff) | |
parent | 3c48d3c83fc21dbc0841f9210f04bdb073d73cd1 (diff) | |
download | rneovim-usermarks.tar.gz rneovim-usermarks.tar.bz2 rneovim-usermarks.zip |
Merge remote-tracking branch 'upstream/master' into usermarksusermarks
Diffstat (limited to 'src/nvim/linematch.c')
-rw-r--r-- | src/nvim/linematch.c | 384 |
1 files changed, 384 insertions, 0 deletions
diff --git a/src/nvim/linematch.c b/src/nvim/linematch.c new file mode 100644 index 0000000000..a9dac40731 --- /dev/null +++ b/src/nvim/linematch.c @@ -0,0 +1,384 @@ +// This is an open source non-commercial project. Dear PVS-Studio, please check +// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com + +#include <assert.h> +#include <stdbool.h> +#include <stddef.h> +#include <string.h> + +#include "nvim/linematch.h" +#include "nvim/macros.h" +#include "nvim/memory.h" + +// struct for running the diff linematch algorithm +typedef struct { + int *df_decision; // to keep track of this path traveled + int df_lev_score; // to keep track of the total score of this path + size_t df_path_idx; // current index of this path +} diffcmppath_T; + +#define LN_MAX_BUFS 8 + +#ifdef INCLUDE_GENERATED_DECLARATIONS +# include "linematch.c.generated.h" +#endif + +static size_t line_len(const char *s) +{ + char *end = strchr(s, '\n'); + if (end) { + return (size_t)(end - s); + } + return strlen(s); +} + +/// Same as matching_chars but ignore whitespace +/// +/// @param s1 +/// @param s2 +static int matching_chars_iwhite(const char *s1, const char *s2) +{ + // the newly processed strings that will be compared + // delete the white space characters, and/or replace all upper case with lower + char *strsproc[2]; + const char *strsorig[2] = { s1, s2 }; + for (int k = 0; k < 2; k++) { + size_t d = 0; + size_t i = 0; + size_t slen = line_len(strsorig[k]); + strsproc[k] = xmalloc((slen + 1) * sizeof(char)); + while (d + i < slen) { + char e = strsorig[k][i + d]; + if (e != ' ' && e != '\t') { + strsproc[k][i] = e; + i++; + } else { + d++; + } + } + strsproc[k][i] = '\0'; + } + int matching = matching_chars(strsproc[0], strsproc[1]); + xfree(strsproc[0]); + xfree(strsproc[1]); + return matching; +} + +/// update the path of a point in the diff linematch algorithm +/// @param diffcmppath +/// @param score +/// @param to +/// @param from +/// @param choice +static void update_path_flat(diffcmppath_T *diffcmppath, int score, size_t to, size_t from, + const int choice) +{ + size_t path_idx = diffcmppath[from].df_path_idx; + + for (size_t k = 0; k < path_idx; k++) { + diffcmppath[to].df_decision[k] = diffcmppath[from].df_decision[k]; + } + + diffcmppath[to].df_decision[path_idx] = choice; + diffcmppath[to].df_lev_score = score; + diffcmppath[to].df_path_idx = path_idx + 1; +} + +#define MATCH_CHAR_MAX_LEN 800 + +/// Return matching characters between "s1" and "s2" whilst respecting sequence order. +/// Consider the case of two strings 'AAACCC' and 'CCCAAA', the +/// return value from this function will be 3, either to match +/// the 3 C's, or the 3 A's. +/// +/// Examples: +/// matching_chars("aabc", "acba") -> 2 // 'a' and 'b' in common +/// matching_chars("123hello567", "he123ll567o") -> 8 // '123', 'll' and '567' in common +/// matching_chars("abcdefg", "gfedcba") -> 1 // all characters in common, +/// // but only at most 1 in sequence +/// +/// @param s1 +/// @param s2 +static int matching_chars(const char *s1, const char *s2) +{ + size_t s1len = MIN(MATCH_CHAR_MAX_LEN - 1, line_len(s1)); + size_t s2len = MIN(MATCH_CHAR_MAX_LEN - 1, line_len(s2)); + int matrix[2][MATCH_CHAR_MAX_LEN] = { 0 }; + bool icur = 1; // save space by storing only two rows for i axis + for (size_t i = 0; i < s1len; i++) { + icur = !icur; + int *e1 = matrix[icur]; + int *e2 = matrix[!icur]; + for (size_t j = 0; j < s2len; j++) { + // skip char in s1 + if (e2[j + 1] > e1[j + 1]) { + e1[j + 1] = e2[j + 1]; + } + // skip char in s2 + if (e1[j] > e1[j + 1]) { + e1[j + 1] = e1[j]; + } + // compare char in s1 and s2 + if ((s1[i] == s2[j]) && (e2[j] + 1) > e1[j + 1]) { + e1[j + 1] = e2[j] + 1; + } + } + } + return matrix[icur][s2len]; +} + +/// count the matching characters between a variable number of strings "sp" +/// mark the strings that have already been compared to extract them later +/// without re-running the character match counting. +/// @param sp +/// @param fomvals +/// @param n +static int count_n_matched_chars(const char **sp, const size_t n, bool iwhite) +{ + int matched_chars = 0; + int matched = 0; + for (size_t i = 0; i < n; i++) { + for (size_t j = i + 1; j < n; j++) { + if (sp[i] != NULL && sp[j] != NULL) { + matched++; + // TODO(lewis6991): handle whitespace ignoring higher up in the stack + matched_chars += iwhite ? matching_chars_iwhite(sp[i], sp[j]) + : matching_chars(sp[i], sp[j]); + } + } + } + + // prioritize a match of 3 (or more lines) equally to a match of 2 lines + if (matched >= 2) { + matched_chars *= 2; + matched_chars /= matched; + } + + return matched_chars; +} + +void fastforward_buf_to_lnum(const char **s, long lnum) +{ + for (long i = 0; i < lnum - 1; i++) { + *s = strchr(*s, '\n'); + (*s)++; + } +} + +/// try all the different ways to compare these lines and use the one that +/// results in the most matching characters +/// @param df_iters +/// @param paths +/// @param npaths +/// @param path_idx +/// @param choice +/// @param diffcmppath +/// @param diff_len +/// @param ndiffs +/// @param diff_blk +static void try_possible_paths(const int *df_iters, const size_t *paths, const int npaths, + const int path_idx, int *choice, diffcmppath_T *diffcmppath, + const int *diff_len, const size_t ndiffs, const char **diff_blk, + bool iwhite) +{ + if (path_idx == npaths) { + if ((*choice) > 0) { + int from_vals[LN_MAX_BUFS]; + const int *to_vals = df_iters; + const char *current_lines[LN_MAX_BUFS]; + for (size_t k = 0; k < ndiffs; k++) { + from_vals[k] = df_iters[k]; + // get the index at all of the places + if ((*choice) & (1 << k)) { + from_vals[k]--; + const char *p = diff_blk[k]; + fastforward_buf_to_lnum(&p, df_iters[k]); + current_lines[k] = p; + } else { + current_lines[k] = NULL; + } + } + size_t unwrapped_idx_from = unwrap_indexes(from_vals, diff_len, ndiffs); + size_t unwrapped_idx_to = unwrap_indexes(to_vals, diff_len, ndiffs); + int matched_chars = count_n_matched_chars(current_lines, ndiffs, iwhite); + int score = diffcmppath[unwrapped_idx_from].df_lev_score + matched_chars; + if (score > diffcmppath[unwrapped_idx_to].df_lev_score) { + update_path_flat(diffcmppath, score, unwrapped_idx_to, unwrapped_idx_from, *choice); + } + } else { + // initialize the 0, 0, 0 ... choice + size_t i = 0; + while (i < ndiffs && df_iters[i] == 0) { + i++; + if (i == ndiffs) { + diffcmppath[0].df_lev_score = 0; + diffcmppath[0].df_path_idx = 0; + } + } + } + return; + } + size_t bit_place = paths[path_idx]; + *(choice) |= (1 << bit_place); // set it to 1 + try_possible_paths(df_iters, paths, npaths, path_idx + 1, choice, + diffcmppath, diff_len, ndiffs, diff_blk, iwhite); + *(choice) &= ~(1 << bit_place); // set it to 0 + try_possible_paths(df_iters, paths, npaths, path_idx + 1, choice, + diffcmppath, diff_len, ndiffs, diff_blk, iwhite); +} + +/// unwrap indexes to access n dimensional tensor +/// @param values +/// @param diff_len +/// @param ndiffs +static size_t unwrap_indexes(const int *values, const int *diff_len, const size_t ndiffs) +{ + size_t num_unwrap_scalar = 1; + for (size_t k = 0; k < ndiffs; k++) { + num_unwrap_scalar *= (size_t)diff_len[k] + 1; + } + + size_t path_idx = 0; + for (size_t k = 0; k < ndiffs; k++) { + num_unwrap_scalar /= (size_t)diff_len[k] + 1; + + // (k == 0) space optimization + int n = k == 0 ? values[k] % 2 : values[k]; + path_idx += num_unwrap_scalar * (size_t)n; + } + return path_idx; +} + +/// populate the values of the linematch algorithm tensor, and find the best +/// decision for how to compare the relevant lines from each of the buffers at +/// each point in the tensor +/// @param df_iters +/// @param ch_dim +/// @param diffcmppath +/// @param diff_len +/// @param ndiffs +/// @param diff_blk +static void populate_tensor(int *df_iters, const size_t ch_dim, diffcmppath_T *diffcmppath, + const int *diff_len, const size_t ndiffs, const char **diff_blk, + bool iwhite) +{ + if (ch_dim == ndiffs) { + int npaths = 0; + size_t paths[LN_MAX_BUFS]; + + for (size_t j = 0; j < ndiffs; j++) { + if (df_iters[j] > 0) { + paths[npaths] = j; + npaths++; + } + } + int choice = 0; + size_t unwrapper_idx_to = unwrap_indexes(df_iters, diff_len, ndiffs); + diffcmppath[unwrapper_idx_to].df_lev_score = -1; + try_possible_paths(df_iters, paths, npaths, 0, &choice, diffcmppath, + diff_len, ndiffs, diff_blk, iwhite); + return; + } + + for (int i = 0; i <= diff_len[ch_dim]; i++) { + df_iters[ch_dim] = i; + populate_tensor(df_iters, ch_dim + 1, diffcmppath, diff_len, + ndiffs, diff_blk, iwhite); + } +} + +/// algorithm to find an optimal alignment of lines of a diff block with 2 or +/// more files. The algorithm is generalized to work for any number of files +/// which corresponds to another dimension added to the tensor used in the +/// algorithm +/// +/// for questions and information about the linematch algorithm please contact +/// Jonathon White (jonathonwhite@protonmail.com) +/// +/// for explanation, a summary of the algorithm in 3 dimensions (3 files +/// compared) follows +/// +/// The 3d case (for 3 buffers) of the algorithm implemented when diffopt +/// 'linematch' is enabled. The algorithm constructs a 3d tensor to +/// compare a diff between 3 buffers. The dimensions of the tensor are +/// the length of the diff in each buffer plus 1 A path is constructed by +/// moving from one edge of the cube/3d tensor to the opposite edge. +/// Motions from one cell of the cube to the next represent decisions. In +/// a 3d cube, there are a total of 7 decisions that can be made, +/// represented by the enum df_path3_choice which is defined in +/// buffer_defs.h a comparison of buffer 0 and 1 represents a motion +/// toward the opposite edge of the cube with components along the 0 and +/// 1 axes. a comparison of buffer 0, 1, and 2 represents a motion +/// toward the opposite edge of the cube with components along the 0, 1, +/// and 2 axes. A skip of buffer 0 represents a motion along only the 0 +/// axis. For each action, a point value is awarded, and the path is +/// saved for reference later, if it is found to have been the optimal +/// path. The optimal path has the highest score. The score is +/// calculated as the summation of the total characters matching between +/// all of the lines which were compared. The structure of the algorithm +/// is that of a dynamic programming problem. We can calculate a point +/// i,j,k in the cube as a function of i-1, j-1, and k-1. To find the +/// score and path at point i,j,k, we must determine which path we want +/// to use, this is done by looking at the possibilities and choosing +/// the one which results in the local highest score. The total highest +/// scored path is, then in the end represented by the cell in the +/// opposite corner from the start location. The entire algorithm +/// consists of populating the 3d cube with the optimal paths from which +/// it may have came. +/// +/// Optimizations: +/// As the function to calculate the cell of a tensor at point i,j,k is a +/// function of the cells at i-1, j-1, k-1, the whole tensor doesn't need +/// to be stored in memory at once. In the case of the 3d cube, only two +/// slices (along k and j axis) are stored in memory. For the 2d matrix +/// (for 2 files), only two rows are stored at a time. The next/previous +/// slice (or row) is always calculated from the other, and they alternate +/// at each iteration. +/// In the 3d case, 3 arrays are populated to memorize the score (matched +/// characters) of the 3 buffers, so a redundant calculation of the +/// scores does not occur +/// @param diff_blk +/// @param diff_len +/// @param ndiffs +/// @param [out] [allocated] decisions +/// @return the length of decisions +size_t linematch_nbuffers(const char **diff_blk, const int *diff_len, const size_t ndiffs, + int **decisions, bool iwhite) +{ + assert(ndiffs <= LN_MAX_BUFS); + + size_t memsize = 1; + size_t memsize_decisions = 0; + for (size_t i = 0; i < ndiffs; i++) { + assert(diff_len[i] >= 0); + memsize *= i == 0 ? 2 : (size_t)(diff_len[i] + 1); + memsize_decisions += (size_t)diff_len[i]; + } + + // create the flattened path matrix + diffcmppath_T *diffcmppath = xmalloc(sizeof(diffcmppath_T) * memsize); + // allocate memory here + for (size_t i = 0; i < memsize; i++) { + diffcmppath[i].df_decision = xmalloc(memsize_decisions * sizeof(int)); + } + + // memory for avoiding repetitive calculations of score + int df_iters[LN_MAX_BUFS]; + populate_tensor(df_iters, 0, diffcmppath, diff_len, ndiffs, diff_blk, iwhite); + + const size_t u = unwrap_indexes(diff_len, diff_len, ndiffs); + const size_t best_path_idx = diffcmppath[u].df_path_idx; + const int *best_path_decisions = diffcmppath[u].df_decision; + + *decisions = xmalloc(sizeof(int) * best_path_idx); + for (size_t i = 0; i < best_path_idx; i++) { + (*decisions)[i] = best_path_decisions[i]; + } + + for (size_t i = 0; i < memsize; i++) { + xfree(diffcmppath[i].df_decision); + } + xfree(diffcmppath); + + return best_path_idx; +} |