aboutsummaryrefslogtreecommitdiff
path: root/src/nvim/hashtab.c
blob: 1ebac603c22f162d1036fdbc8ca7a85c8b326d93 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com

/// @file hashtab.c
///
/// Handling of a hashtable with Vim-specific properties.
///
/// Each item in a hashtable has a NUL terminated string key. A key can appear
/// only once in the table.
///
/// A hash number is computed from the key for quick lookup. When the hashes
/// of two different keys point to the same entry an algorithm is used to
/// iterate over other entries in the table until the right one is found.
/// To make the iteration work removed keys are different from entries where a
/// key was never present.
///
/// The mechanism has been partly based on how Python Dictionaries are
/// implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4.
///
/// The hashtable grows to accommodate more entries when needed. At least 1/3
/// of the entries is empty to keep the lookup efficient (at the cost of extra
/// memory).

#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>

#include "nvim/ascii.h"
#include "nvim/hashtab.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/vim.h"

// Magic value for algorithm that walks through the array.
#define PERTURB_SHIFT 5

#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "hashtab.c.generated.h"
#endif

char hash_removed;

/// Initialize an empty hash table.
void hash_init(hashtab_T *ht)
{
  // This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray".
  CLEAR_POINTER(ht);
  ht->ht_array = ht->ht_smallarray;
  ht->ht_mask = HT_INIT_SIZE - 1;
}

/// Free the array of a hash table without freeing contained values.
///
/// If "ht" is not freed (after calling this) then you should call hash_init()
/// right next!
void hash_clear(hashtab_T *ht)
{
  if (ht->ht_array != ht->ht_smallarray) {
    xfree(ht->ht_array);
  }
}

/// Free the array of a hash table and all contained values.
///
/// @param off the offset from start of value to start of key (@see hashitem_T).
void hash_clear_all(hashtab_T *ht, unsigned int off)
{
  size_t todo = ht->ht_used;
  for (hashitem_T *hi = ht->ht_array; todo > 0; hi++) {
    if (!HASHITEM_EMPTY(hi)) {
      xfree(hi->hi_key - off);
      todo--;
    }
  }
  hash_clear(ht);
}

/// Find item for given "key" in hashtable "ht".
///
/// @param key The key of the looked-for item. Must not be NULL.
///
/// @return Pointer to the hash item corresponding to the given key.
///         If not found, then return pointer to the empty item that would be
///         used for that key.
///         WARNING: Returned pointer becomes invalid as soon as the hash table
///                  is changed in any way.
hashitem_T *hash_find(const hashtab_T *const ht, const char *const key)
{
  return hash_lookup(ht, key, strlen(key), hash_hash((char_u *)key));
}

/// Like hash_find, but key is not NUL-terminated
///
/// @param[in]  ht  Hashtab to look in.
/// @param[in]  key  Key of the looked-for item. Must not be NULL.
/// @param[in]  len  Key length.
///
/// @return Pointer to the hash item corresponding to the given key.
///         If not found, then return pointer to the empty item that would be
///         used for that key.
///
///         @warning Returned pointer becomes invalid as soon as the hash table
///                  is changed in any way.
hashitem_T *hash_find_len(const hashtab_T *const ht, const char *const key, const size_t len)
{
  return hash_lookup(ht, key, len, hash_hash_len(key, len));
}

/// Like hash_find(), but caller computes "hash".
///
/// @param[in]  key  The key of the looked-for item. Must not be NULL.
/// @param[in]  key_len  Key length.
/// @param[in]  hash  The precomputed hash for the key.
///
/// @return Pointer to the hashitem corresponding to the given key.
///         If not found, then return pointer to the empty item that would be
///         used for that key.
///         WARNING: Returned pointer becomes invalid as soon as the hash table
///                  is changed in any way.
hashitem_T *hash_lookup(const hashtab_T *const ht, const char *const key, const size_t key_len,
                        const hash_T hash)
{
#ifdef HT_DEBUG
  hash_count_lookup++;
#endif  // ifdef HT_DEBUG

  // Quickly handle the most common situations:
  // - return if there is no item at all
  // - skip over a removed item
  // - return if the item matches
  hash_T idx = hash & ht->ht_mask;
  hashitem_T *hi = &ht->ht_array[idx];

  if (hi->hi_key == NULL) {
    return hi;
  }

  hashitem_T *freeitem = NULL;
  if (hi->hi_key == HI_KEY_REMOVED) {
    freeitem = hi;
  } else if ((hi->hi_hash == hash)
             && (STRNCMP(hi->hi_key, key, key_len) == 0)
             && hi->hi_key[key_len] == NUL) {
    return hi;
  }

  // Need to search through the table to find the key. The algorithm
  // to step through the table starts with large steps, gradually becoming
  // smaller down to (1/4 table size + 1). This means it goes through all
  // table entries in the end.
  // When we run into a NULL key it's clear that the key isn't there.
  // Return the first available slot found (can be a slot of a removed
  // item).
  for (hash_T perturb = hash;; perturb >>= PERTURB_SHIFT) {
#ifdef HT_DEBUG
    // count a "miss" for hashtab lookup
    hash_count_perturb++;
#endif  // ifdef HT_DEBUG
    idx = 5 * idx + perturb + 1;
    hi = &ht->ht_array[idx & ht->ht_mask];

    if (hi->hi_key == NULL) {
      return freeitem == NULL ? hi : freeitem;
    }

    if ((hi->hi_hash == hash)
        && (hi->hi_key != HI_KEY_REMOVED)
        && (STRNCMP(hi->hi_key, key, key_len) == 0)
        && hi->hi_key[key_len] == NUL) {
      return hi;
    }

    if ((hi->hi_key == HI_KEY_REMOVED) && (freeitem == NULL)) {
      freeitem = hi;
    }
  }
}

/// Print the efficiency of hashtable lookups.
///
/// Useful when trying different hash algorithms.
/// Called when exiting.
void hash_debug_results(void)
{
#ifdef HT_DEBUG
  fprintf(stderr, "\r\n\r\n\r\n\r\n");
  fprintf(stderr, "Number of hashtable lookups: %" PRId64 "\r\n",
          (int64_t)hash_count_lookup);
  fprintf(stderr, "Number of perturb loops: %" PRId64 "\r\n",
          (int64_t)hash_count_perturb);
  fprintf(stderr, "Percentage of perturb loops: %" PRId64 "%%\r\n",
          (int64_t)(hash_count_perturb * 100 / hash_count_lookup));
#endif  // ifdef HT_DEBUG
}

/// Add (empty) item for key `key` to hashtable `ht`.
///
/// @param key Pointer to the key for the new item. The key has to be contained
///            in the new item (@see hashitem_T). Must not be NULL.
///
/// @return OK   if success.
///         FAIL if key already present
int hash_add(hashtab_T *ht, char_u *key)
{
  hash_T hash = hash_hash(key);
  hashitem_T *hi = hash_lookup(ht, (const char *)key, STRLEN(key), hash);
  if (!HASHITEM_EMPTY(hi)) {
    internal_error("hash_add()");
    return FAIL;
  }
  hash_add_item(ht, hi, key, hash);
  return OK;
}

/// Add item "hi" for key "key" to hashtable "ht".
///
/// @param hi   The hash item to be used. Must have been obtained through
///             hash_lookup() and point to an empty item.
/// @param key  Pointer to the key for the new item. The key has to be contained
///             in the new item (@see hashitem_T). Must not be NULL.
/// @param hash The precomputed hash value for the key.
void hash_add_item(hashtab_T *ht, hashitem_T *hi, char_u *key, hash_T hash)
{
  ht->ht_used++;
  if (hi->hi_key == NULL) {
    ht->ht_filled++;
  }
  hi->hi_key = key;
  hi->hi_hash = hash;

  // When the space gets low may resize the array.
  hash_may_resize(ht, 0);
}

/// Remove item "hi" from hashtable "ht".
///
/// Caller must take care of freeing the item itself.
///
/// @param hi The hash item to be removed.
///           It must have been obtained with hash_lookup().
void hash_remove(hashtab_T *ht, hashitem_T *hi)
{
  ht->ht_used--;
  hi->hi_key = HI_KEY_REMOVED;
  hash_may_resize(ht, 0);
}

/// Lock hashtable (prevent changes in ht_array).
///
/// Don't use this when items are to be added!
/// Must call hash_unlock() later.
void hash_lock(hashtab_T *ht)
{
  ht->ht_locked++;
}

/// Unlock hashtable (allow changes in ht_array again).
///
/// Table will be resized (shrunk) when necessary.
/// This must balance a call to hash_lock().
void hash_unlock(hashtab_T *ht)
{
  ht->ht_locked--;
  hash_may_resize(ht, 0);
}

/// Resize hashtable (new size can be given or automatically computed).
///
/// @param minitems Minimum number of items the new table should hold.
///                 If zero, new size will depend on currently used items:
///                 - Shrink when too much empty space.
///                 - Grow when not enough empty space.
///                 If non-zero, passed minitems will be used.
static void hash_may_resize(hashtab_T *ht, size_t minitems)
{
  // Don't resize a locked table.
  if (ht->ht_locked > 0) {
    return;
  }

#ifdef HT_DEBUG
  if (ht->ht_used > ht->ht_filled) {
    emsg("hash_may_resize(): more used than filled");
  }

  if (ht->ht_filled >= ht->ht_mask + 1) {
    emsg("hash_may_resize(): table completely filled");
  }
#endif  // ifdef HT_DEBUG

  size_t minsize;
  if (minitems == 0) {
    // Return quickly for small tables with at least two NULL items.
    // items are required for the lookup to decide a key isn't there.
    if ((ht->ht_filled < HT_INIT_SIZE - 1)
        && (ht->ht_array == ht->ht_smallarray)) {
      return;
    }

    // Grow or refill the array when it's more than 2/3 full (including
    // removed items, so that they get cleaned up).
    // Shrink the array when it's less than 1/5 full. When growing it is
    // at least 1/4 full (avoids repeated grow-shrink operations)
    size_t oldsize = ht->ht_mask + 1;
    if ((ht->ht_filled * 3 < oldsize * 2) && (ht->ht_used > oldsize / 5)) {
      return;
    }

    if (ht->ht_used > 1000) {
      // it's big, don't make too much room
      minsize = ht->ht_used * 2;
    } else {
      // make plenty of room
      minsize = ht->ht_used * 4;
    }
  } else {
    // Use specified size.
    if (minitems < ht->ht_used) {
      // just in case...
      minitems = ht->ht_used;
    }
    // array is up to 2/3 full
    minsize = minitems * 3 / 2;
  }

  size_t newsize = HT_INIT_SIZE;
  while (newsize < minsize) {
    // make sure it's always a power of 2
    newsize <<= 1;
    // assert newsize didn't overflow
    assert(newsize != 0);
  }

  bool newarray_is_small = newsize == HT_INIT_SIZE;
  bool keep_smallarray = newarray_is_small
                         && ht->ht_array == ht->ht_smallarray;

  // Make sure that oldarray and newarray do not overlap,
  // so that copying is possible.
  hashitem_T temparray[HT_INIT_SIZE];
  hashitem_T *oldarray = keep_smallarray
    ? memcpy(temparray, ht->ht_smallarray, sizeof(temparray))
    : ht->ht_array;

  if (newarray_is_small) {
    CLEAR_FIELD(ht->ht_smallarray);
  }
  hashitem_T *newarray = newarray_is_small
    ? ht->ht_smallarray
    : xcalloc(newsize, sizeof(hashitem_T));

  // Move all the items from the old array to the new one, placing them in
  // the right spot. The new array won't have any removed items, thus this
  // is also a cleanup action.
  hash_T newmask = newsize - 1;
  size_t todo = ht->ht_used;

  for (hashitem_T *olditem = oldarray; todo > 0; olditem++) {
    if (HASHITEM_EMPTY(olditem)) {
      continue;
    }
    // The algorithm to find the spot to add the item is identical to
    // the algorithm to find an item in hash_lookup(). But we only
    // need to search for a NULL key, thus it's simpler.
    hash_T newi = olditem->hi_hash & newmask;
    hashitem_T *newitem = &newarray[newi];
    if (newitem->hi_key != NULL) {
      for (hash_T perturb = olditem->hi_hash;; perturb >>= PERTURB_SHIFT) {
        newi = 5 * newi + perturb + 1;
        newitem = &newarray[newi & newmask];
        if (newitem->hi_key == NULL) {
          break;
        }
      }
    }
    *newitem = *olditem;
    todo--;
  }

  if (ht->ht_array != ht->ht_smallarray) {
    xfree(ht->ht_array);
  }
  ht->ht_array = newarray;
  ht->ht_mask = newmask;
  ht->ht_filled = ht->ht_used;
}

#define HASH_CYCLE_BODY(hash, p) \
  hash = hash * 101 + *p++

/// Get the hash number for a key.
///
/// If you think you know a better hash function: Compile with HT_DEBUG set and
/// run a script that uses hashtables a lot. Vim will then print statistics
/// when exiting. Try that with the current hash algorithm and yours. The
/// lower the percentage the better.
hash_T hash_hash(const char_u *key)
{
  hash_T hash = *key;

  if (hash == 0) {
    return (hash_T)0;
  }

  // A simplistic algorithm that appears to do very well.
  // Suggested by George Reilly.
  const uint8_t *p = key + 1;
  while (*p != NUL) {
    HASH_CYCLE_BODY(hash, p);
  }

  return hash;
}

/// Get the hash number for a key that is not a NUL-terminated string
///
/// @warning Function does not check whether key contains NUL. But you will not
///          be able to get hash entry in this case.
///
/// @param[in]  key  Key.
/// @param[in]  len  Key length.
///
/// @return Key hash.
hash_T hash_hash_len(const char *key, const size_t len)
  FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
  if (len == 0) {
    return 0;
  }

  hash_T hash = *(uint8_t *)key;
  const uint8_t *end = (uint8_t *)key + len;

  const uint8_t *p = (const uint8_t *)key + 1;
  while (p < end) {
    HASH_CYCLE_BODY(hash, p);
  }

  return hash;
}

#undef HASH_CYCLE_BODY

/// Function to get HI_KEY_REMOVED value
///
/// Used for testing because luajit ffi does not allow getting addresses of
/// globals.
const char_u *_hash_key_removed(void)
  FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
  return HI_KEY_REMOVED;
}