1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
/// @file sha256.c
///
/// FIPS-180-2 compliant SHA-256 implementation
/// GPL by Christophe Devine, applies to older version.
/// Modified for md5deep, in public domain.
/// Modified For Vim, Mohsin Ahmed, http://www.cs.albany.edu/~mosh
/// Mohsin Ahmed states this work is distributed under the VIM License or GPL,
/// at your choice.
///
/// Vim specific notes:
/// sha256_self_test() is implicitly called once.
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include "nvim/ascii_defs.h"
#include "nvim/memory.h"
#include "nvim/sha256.h"
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "sha256.c.generated.h"
#endif
#define GET_UINT32(n, b, i) { \
(n) = ((uint32_t)(b)[(i)] << 24) \
| ((uint32_t)(b)[(i) + 1] << 16) \
| ((uint32_t)(b)[(i) + 2] << 8) \
| ((uint32_t)(b)[(i) + 3]); \
}
#define PUT_UINT32(n, b, i) { \
(b)[(i)] = (uint8_t)((n) >> 24); \
(b)[(i) + 1] = (uint8_t)((n) >> 16); \
(b)[(i) + 2] = (uint8_t)((n) >> 8); \
(b)[(i) + 3] = (uint8_t)((n)); \
}
void sha256_start(context_sha256_T *ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
static void sha256_process(context_sha256_T *ctx, const uint8_t data[SHA256_BUFFER_SIZE])
{
uint32_t temp1, temp2, W[SHA256_BUFFER_SIZE];
uint32_t A, B, C, D, E, F, G, H;
GET_UINT32(W[0], data, 0);
GET_UINT32(W[1], data, 4);
GET_UINT32(W[2], data, 8);
GET_UINT32(W[3], data, 12);
GET_UINT32(W[4], data, 16);
GET_UINT32(W[5], data, 20);
GET_UINT32(W[6], data, 24);
GET_UINT32(W[7], data, 28);
GET_UINT32(W[8], data, 32);
GET_UINT32(W[9], data, 36);
GET_UINT32(W[10], data, 40);
GET_UINT32(W[11], data, 44);
GET_UINT32(W[12], data, 48);
GET_UINT32(W[13], data, 52);
GET_UINT32(W[14], data, 56);
GET_UINT32(W[15], data, 60);
#define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define R(t) \
(W[t] = S1(W[(t) - 2]) + W[(t) - 7] + S0(W[(t) - 15]) + W[(t) - 16])
#define P(a, b, c, d, e, f, g, h, x, K) { \
temp1 = (h) + S3(e) + F1(e, f, g) + (K) + (x); \
temp2 = S2(a) + F0(a, b, c); \
(d) += temp1; (h) = temp1 + temp2; \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
F = ctx->state[5];
G = ctx->state[6];
H = ctx->state[7];
P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
ctx->state[5] += F;
ctx->state[6] += G;
ctx->state[7] += H;
}
void sha256_update(context_sha256_T *ctx, const uint8_t *input, size_t length)
{
if (length == 0) {
return;
}
uint32_t left = ctx->total[0] & (SHA256_BUFFER_SIZE - 1); // left < buf size
ctx->total[0] += (uint32_t)length;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < length) {
ctx->total[1]++;
}
size_t fill = SHA256_BUFFER_SIZE - left;
if (left && (length >= fill)) {
memcpy(ctx->buffer + left, input, fill);
sha256_process(ctx, ctx->buffer);
length -= fill;
input += fill;
left = 0;
}
while (length >= SHA256_BUFFER_SIZE) {
sha256_process(ctx, input);
length -= SHA256_BUFFER_SIZE;
input += SHA256_BUFFER_SIZE;
}
if (length) {
memcpy(ctx->buffer + left, input, length);
}
}
static uint8_t sha256_padding[SHA256_BUFFER_SIZE] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void sha256_finish(context_sha256_T *ctx, uint8_t digest[SHA256_SUM_SIZE])
{
uint32_t high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
uint32_t low = (ctx->total[0] << 3);
uint8_t msglen[8];
PUT_UINT32(high, msglen, 0);
PUT_UINT32(low, msglen, 4);
uint32_t last = ctx->total[0] & 0x3F;
uint32_t padn = (last < 56) ? (56 - last) : (120 - last);
sha256_update(ctx, sha256_padding, padn);
sha256_update(ctx, msglen, 8);
PUT_UINT32(ctx->state[0], digest, 0);
PUT_UINT32(ctx->state[1], digest, 4);
PUT_UINT32(ctx->state[2], digest, 8);
PUT_UINT32(ctx->state[3], digest, 12);
PUT_UINT32(ctx->state[4], digest, 16);
PUT_UINT32(ctx->state[5], digest, 20);
PUT_UINT32(ctx->state[6], digest, 24);
PUT_UINT32(ctx->state[7], digest, 28);
}
#define SHA_STEP 2
/// Gets the hex digest of the buffer.
///
/// @param buf
/// @param buf_len
/// @param salt
/// @param salt_len
///
/// @returns hex digest of "buf[buf_len]" in a static array.
/// if "salt" is not NULL also do "salt[salt_len]".
const char *sha256_bytes(const uint8_t *restrict buf, size_t buf_len, const uint8_t *restrict salt,
size_t salt_len)
{
static char hexit[SHA256_BUFFER_SIZE + 1]; // buf size + NULL
sha256_self_test();
context_sha256_T ctx;
sha256_start(&ctx);
sha256_update(&ctx, buf, buf_len);
if (salt != NULL) {
sha256_update(&ctx, salt, salt_len);
}
uint8_t sha256sum[SHA256_SUM_SIZE];
sha256_finish(&ctx, sha256sum);
for (size_t j = 0; j < SHA256_SUM_SIZE; j++) {
snprintf(hexit + j * SHA_STEP, SHA_STEP + 1, "%02x", sha256sum[j]);
}
hexit[sizeof(hexit) - 1] = NUL;
return hexit;
}
// These are the standard FIPS-180-2 test vectors
static char *sha_self_test_msg[] = {
"abc",
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
NULL
};
static char *sha_self_test_vector[] = {
"ba7816bf8f01cfea414140de5dae2223" \
"b00361a396177a9cb410ff61f20015ad",
"248d6a61d20638b8e5c026930c3e6039" \
"a33ce45964ff2167f6ecedd419db06c1",
"cdc76e5c9914fb9281a1c7e284d73e67" \
"f1809a48a497200e046d39ccc7112cd0"
};
/// Perform a test on the SHA256 algorithm.
///
/// @returns true if not failures generated.
bool sha256_self_test(void)
{
char output[SHA256_BUFFER_SIZE + 1]; // buf size + NULL
context_sha256_T ctx;
uint8_t buf[1000];
uint8_t sha256sum[SHA256_SUM_SIZE];
const char *hexit;
static bool sha256_self_tested = false;
static bool failures = false;
if (sha256_self_tested) {
return failures == false;
}
sha256_self_tested = true;
for (size_t i = 0; i < 3; i++) {
if (i < 2) {
hexit = sha256_bytes((uint8_t *)sha_self_test_msg[i],
strlen(sha_self_test_msg[i]),
NULL, 0);
STRCPY(output, hexit);
} else {
sha256_start(&ctx);
memset(buf, 'a', 1000);
for (size_t j = 0; j < 1000; j++) {
sha256_update(&ctx, buf, 1000);
}
sha256_finish(&ctx, sha256sum);
for (size_t j = 0; j < SHA256_SUM_SIZE; j++) {
snprintf(output + j * SHA_STEP, SHA_STEP + 1, "%02x", sha256sum[j]);
}
}
if (memcmp(output, sha_self_test_vector[i], SHA256_BUFFER_SIZE) != 0) {
failures = true;
output[sizeof(output) - 1] = NUL;
// printf("sha256_self_test %d failed %s\n", i, output);
}
}
return failures == false;
}
|