aboutsummaryrefslogtreecommitdiff
path: root/src/nvim/viml/parser/expressions.c
blob: 7bee779c49c4eda58c0f8fff842cf8a598a907b7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com

/// VimL expression parser

#include <stdbool.h>
#include <stddef.h>
#include <assert.h>
#include <string.h>

#include "nvim/vim.h"
#include "nvim/memory.h"
#include "nvim/types.h"
#include "nvim/charset.h"
#include "nvim/ascii.h"
#include "nvim/lib/kvec.h"

#include "nvim/viml/parser/expressions.h"
#include "nvim/viml/parser/parser.h"

typedef kvec_withinit_t(ExprASTNode **, 16) ExprASTStack;

/// Which nodes may be wanted
typedef enum {
  /// Operators: function call, subscripts, binary operators, …
  ///
  /// For unrestricted expressions.
  kENodeOperator,
  /// Values: literals, variables, nested expressions, unary operators.
  ///
  /// For unrestricted expressions as well, implies that top item in AST stack
  /// points to NULL.
  kENodeValue,
  /// Argument: only allows simple argument names.
  kENodeArgument,
  /// Argument separator: only allows commas.
  kENodeArgumentSeparator,
} ExprASTWantedNode;

#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "viml/parser/expressions.c.generated.h"
#endif

/// Character used as a separator in autoload function/variable names.
#define AUTOLOAD_CHAR '#'

/// Get next token for the VimL expression input
///
/// @param  pstate  Parser state.
/// @param[in]  peek  If true, do not advance pstate cursor.
///
/// @return Next token.
LexExprToken viml_pexpr_next_token(ParserState *const pstate, const bool peek)
  FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
  LexExprToken ret = {
    .type = kExprLexInvalid,
    .start = pstate->pos,
  };
  ParserLine pline;
  if (!viml_parser_get_remaining_line(pstate, &pline)) {
    ret.type = kExprLexEOC;
    return ret;
  }
  if (pline.size <= 0) {
    ret.len = 0;
    ret.type = kExprLexEOC;
    goto viml_pexpr_next_token_adv_return;
  }
  ret.len = 1;
  const uint8_t schar = (uint8_t)pline.data[0];
#define GET_CCS(ret, pline) \
  do { \
    if (ret.len < pline.size \
        && strchr("?#", pline.data[ret.len]) != NULL) { \
      ret.data.cmp.ccs = \
          (CaseCompareStrategy)pline.data[ret.len]; \
      ret.len++; \
    } else { \
      ret.data.cmp.ccs = kCCStrategyUseOption; \
    } \
  } while (0)
  switch (schar) {
    // Paired brackets.
#define BRACKET(typ, opning, clsing) \
    case opning: \
    case clsing: { \
      ret.type = typ; \
      ret.data.brc.closing = (schar == clsing); \
      break; \
    }
    BRACKET(kExprLexParenthesis, '(', ')')
    BRACKET(kExprLexBracket, '[', ']')
    BRACKET(kExprLexFigureBrace, '{', '}')
#undef BRACKET

    // Single character tokens without data.
#define CHAR(typ, ch) \
    case ch: { \
      ret.type = typ; \
      break; \
    }
    CHAR(kExprLexQuestion, '?')
    CHAR(kExprLexColon, ':')
    CHAR(kExprLexDot, '.')
    CHAR(kExprLexPlus, '+')
    CHAR(kExprLexComma, ',')
#undef CHAR

    // Multiplication/division/modulo.
#define MUL(mul_type, ch) \
    case ch: { \
      ret.type = kExprLexMultiplication; \
      ret.data.mul.type = mul_type; \
      break; \
    }
    MUL(kExprLexMulMul, '*')
    MUL(kExprLexMulDiv, '/')
    MUL(kExprLexMulMod, '%')
#undef MUL

#define CHARREG(typ, cond) \
    do { \
      ret.type = typ; \
      for (; (ret.len < pline.size \
              && cond(pline.data[ret.len])) \
           ; ret.len++) { \
      } \
    } while (0)

    // Whitespace.
    case ' ':
    case TAB: {
      CHARREG(kExprLexSpacing, ascii_iswhite);
      break;
    }

    // Control character, except for NUL, NL and TAB.
    case Ctrl_A: case Ctrl_B: case Ctrl_C: case Ctrl_D: case Ctrl_E:
    case Ctrl_F: case Ctrl_G: case Ctrl_H:

    case Ctrl_K: case Ctrl_L: case Ctrl_M: case Ctrl_N: case Ctrl_O:
    case Ctrl_P: case Ctrl_Q: case Ctrl_R: case Ctrl_S: case Ctrl_T:
    case Ctrl_U: case Ctrl_V: case Ctrl_W: case Ctrl_X: case Ctrl_Y:
    case Ctrl_Z: {
#define ISCTRL(schar) (schar < ' ')
      CHARREG(kExprLexInvalid, ISCTRL);
      ret.data.err.type = kExprLexSpacing;
      ret.data.err.msg =
          _("E15: Invalid control character present in input: %.*s");
      break;
#undef ISCTRL
    }

    // Number.
    // Note: determining whether dot is (not) a part of a float needs more
    // context, so lexer does not do this.
    // FIXME: Resolve ambiguity by additional argument.
    case '0': case '1': case '2': case '3': case '4': case '5': case '6':
    case '7': case '8': case '9': {
      CHARREG(kExprLexNumber, ascii_isdigit);
      break;
    }

    // Environment variable.
    case '$': {
      // FIXME: Parser function can’t be thread-safe with vim_isIDc.
      CHARREG(kExprLexEnv, vim_isIDc);
      break;
    }

    // Normal variable/function name.
    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
    case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
    case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
    case 'v': case 'w': case 'x': case 'y': case 'z':
    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
    case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N':
    case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U':
    case 'V': case 'W': case 'X': case 'Y': case 'Z':
    case '_': {
#define ISWORD_OR_AUTOLOAD(x) \
      (ASCII_ISALNUM(x) || (x) == AUTOLOAD_CHAR || (x) == '_')
#define ISWORD(x) \
      (ASCII_ISALNUM(x) || (x) == '_')
      ret.data.var.scope = 0;
      ret.data.var.autoload = false;
      CHARREG(kExprLexPlainIdentifier, ISWORD);
      // "is" and "isnot" operators.
      if ((ret.len == 2 && memcmp(pline.data, "is", 2) == 0)
          || (ret.len == 5 && memcmp(pline.data, "isnot", 5) == 0)) {
        ret.type = kExprLexComparison;
        ret.data.cmp.type = kExprLexCmpIdentical;
        ret.data.cmp.inv = (ret.len == 5);
        GET_CCS(ret, pline);
      // Scope: `s:`, etc.
      } else if (ret.len == 1
                 && pline.size > 1
                 && strchr("sgvbwtla", schar) != NULL
                 && pline.data[ret.len] == ':') {
        ret.len++;
        ret.data.var.scope = schar;
        CHARREG(kExprLexPlainIdentifier, ISWORD_OR_AUTOLOAD);
        ret.data.var.autoload = (
            memchr(pline.data + 2, AUTOLOAD_CHAR, ret.len - 2)
            != NULL);
      // FIXME: Resolve ambiguity with an argument to the lexer function.
      // Previous CHARREG stopped at autoload character in order to make it
      // possible to detect `is#`. Continue now with autoload characters
      // included.
      //
      // Warning: there is ambiguity for the lexer: `is#Foo(1)` is a call of
      // function `is#Foo()`, `1is#Foo(1)` is a comparison `1 is# Foo(1)`. This
      // needs to be resolved on the higher level where context is available.
      } else if (pline.size > ret.len
                 && pline.data[ret.len] == AUTOLOAD_CHAR) {
        ret.data.var.autoload = true;
        CHARREG(kExprLexPlainIdentifier, ISWORD_OR_AUTOLOAD);
      }
      break;
#undef ISWORD_OR_AUTOLOAD
#undef ISWORD
    }
#undef CHARREG

    // Option.
    case '&': {
#define OPTNAMEMISS(ret) \
        do { \
          ret.type = kExprLexInvalid; \
          ret.data.err.type = kExprLexOption; \
          ret.data.err.msg = _("E112: Option name missing: %.*s"); \
        } while (0)
      if (pline.size > 1 && pline.data[1] == '&') {
        ret.type = kExprLexAnd;
        ret.len++;
        break;
      }
      if (pline.size == 1 || !ASCII_ISALPHA(pline.data[1])) {
        OPTNAMEMISS(ret);
        break;
      }
      ret.type = kExprLexOption;
      if (pline.size > 2
          && pline.data[2] == ':'
          && strchr("gl", pline.data[1]) != NULL) {
        ret.len += 2;
        ret.data.opt.scope = (pline.data[1] == 'g'
                              ? kExprLexOptGlobal
                              : kExprLexOptLocal);
        ret.data.opt.name = pline.data + 3;
      } else {
        ret.data.opt.scope = kExprLexOptUnspecified;
        ret.data.opt.name = pline.data + 1;
      }
      const char *p = ret.data.opt.name;
      const char *const e = pline.data + pline.size;
      if (e - p >= 4 && p[0] == 't' && p[1] == '_') {
        ret.data.opt.len = 4;
        ret.len += 4;
      } else {
        for (; p < e && ASCII_ISALPHA(*p); p++) {
        }
        ret.data.opt.len = (size_t)(p - ret.data.opt.name);
        if (ret.data.opt.len == 0) {
          OPTNAMEMISS(ret);
        } else {
          ret.len += ret.data.opt.len;
        }
      }
      break;
#undef OPTNAMEMISS
    }

    // Register.
    case '@': {
      ret.type = kExprLexRegister;
      if (pline.size > 1) {
        ret.len++;
        ret.data.reg.name = (uint8_t)pline.data[1];
      } else {
        ret.data.reg.name = -1;
      }
      break;
    }

    // Single quoted string.
    case '\'': {
      ret.type = kExprLexSingleQuotedString;
      ret.data.str.closed = false;
      for (; ret.len < pline.size && !ret.data.str.closed; ret.len++) {
        if (pline.data[ret.len] == '\'') {
          if (ret.len + 1 < pline.size && pline.data[ret.len + 1] == '\'') {
            ret.len++;
          } else {
            ret.data.str.closed = true;
          }
        }
      }
      break;
    }

    // Double quoted string.
    case '"': {
      ret.type = kExprLexDoubleQuotedString;
      ret.data.str.closed = false;
      for (; ret.len < pline.size && !ret.data.str.closed; ret.len++) {
        if (pline.data[ret.len] == '\\') {
          if (ret.len + 1 < pline.size) {
            ret.len++;
          }
        } else if (pline.data[ret.len] == '"') {
          ret.data.str.closed = true;
        }
      }
      break;
    }

    // Unary not, (un)equality and regex (not) match comparison operators.
    case '!':
    case '=': {
      if (pline.size == 1) {
viml_pexpr_next_token_invalid_comparison:
        ret.type = (schar == '!' ? kExprLexNot : kExprLexInvalid);
        if (ret.type == kExprLexInvalid) {
          ret.data.err.msg = _("E15: Expected == or =~: %.*s");
          ret.data.err.type = kExprLexComparison;
        }
        break;
      }
      ret.type = kExprLexComparison;
      ret.data.cmp.inv = (schar == '!');
      if (pline.data[1] == '=') {
        ret.data.cmp.type = kExprLexCmpEqual;
        ret.len++;
      } else if (pline.data[1] == '~') {
        ret.data.cmp.type = kExprLexCmpMatches;
        ret.len++;
      } else {
        goto viml_pexpr_next_token_invalid_comparison;
      }
      GET_CCS(ret, pline);
      break;
    }

    // Less/greater [or equal to] comparison operators.
    case '>':
    case '<': {
      ret.type = kExprLexComparison;
      const bool haseqsign = (pline.size > 1 && pline.data[1] == '=');
      if (haseqsign) {
        ret.len++;
      }
      GET_CCS(ret, pline);
      ret.data.cmp.inv = (schar == '<');
      ret.data.cmp.type = ((ret.data.cmp.inv ^ haseqsign)
                           ? kExprLexCmpGreaterOrEqual
                           : kExprLexCmpGreater);
      break;
    }

    // Minus sign or arrow from lambdas.
    case '-': {
      if (pline.size > 1 && pline.data[1] == '>') {
        ret.len++;
        ret.type = kExprLexArrow;
      } else {
        ret.type = kExprLexMinus;
      }
      break;
    }

    // Expression end because Ex command ended.
    case NUL:
    case NL: {
      ret.type = kExprLexEOC;
      break;
    }

    // Everything else is not valid.
    default: {
      ret.len = (size_t)utfc_ptr2len_len((const char_u *)pline.data,
                                         (int)pline.size);
      ret.type = kExprLexInvalid;
      ret.data.err.type = kExprLexPlainIdentifier;
      ret.data.err.msg = _("E15: Unidentified character: %.*s");
      break;
    }
  }
#undef GET_CCS
viml_pexpr_next_token_adv_return:
  if (!peek) {
    viml_parser_advance(pstate, ret.len);
  }
  return ret;
}

#ifdef UNIT_TESTING
#include <stdio.h>
REAL_FATTR_UNUSED
static inline void viml_pexpr_debug_print_ast_node(
    const ExprASTNode *const *const eastnode_p,
    const char *const prefix)
{
  if (*eastnode_p == NULL) {
    fprintf(stderr, "%s %p : NULL\n", prefix, (void *)eastnode_p);
  } else {
    fprintf(stderr, "%s %p : %p : %c : %zu:%zu:%zu\n",
            prefix, (void *)eastnode_p, (void *)(*eastnode_p),
            (*eastnode_p)->type, (*eastnode_p)->start.line,
            (*eastnode_p)->start.col, (*eastnode_p)->len);
  }
}
REAL_FATTR_UNUSED
static inline void viml_pexpr_debug_print_ast_stack(
    const ExprASTStack *const ast_stack,
    const char *const msg)
  FUNC_ATTR_NONNULL_ALL FUNC_ATTR_ALWAYS_INLINE
{
  fprintf(stderr, "\n%sstack: %zu:\n", msg, kv_size(*ast_stack));
  for (size_t i = 0; i < kv_size(*ast_stack); i++) {
    viml_pexpr_debug_print_ast_node(
        (const ExprASTNode *const *)kv_A(*ast_stack, i),
        "-");
  }
}
#define PSTACK(msg) \
    viml_pexpr_debug_print_ast_stack(&ast_stack, #msg)
#define PSTACK_P(msg) \
    viml_pexpr_debug_print_ast_stack(ast_stack, #msg)
#define PNODE_P(eastnode_p, msg) \
    viml_pexpr_debug_print_ast_node((const ExprASTNode *const *)ast_stack, #msg)
#endif

// start = s ternary_expr s EOC
// ternary_expr = binop_expr
//                ( s Question s ternary_expr s Colon s ternary_expr s )?
// binop_expr = unaryop_expr ( binop unaryop_expr )?
// unaryop_expr = ( unaryop )? subscript_expr
// subscript_expr = subscript_expr subscript
//                | value_expr
// subscript = Bracket('[') s ternary_expr s Bracket(']')
//           | s Parenthesis('(') call_args Parenthesis(')')
//           | Dot ( PlainIdentifier | Number )+
// # Note: `s` before Parenthesis('(') is only valid if preceding subscript_expr
// #       is PlainIdentifier
// value_expr = ( float | Number
//              | DoubleQuotedString | SingleQuotedString
//              | paren_expr
//              | list_literal
//              | lambda_literal
//              | dict_literal
//              | Environment
//              | Option
//              | Register
//              | var )
// float = Number Dot Number ( PlainIdentifier('e') ( Plus | Minus )? Number )?
// # Note: `1.2.3` is concat and not float. `"abc".2.3` is also concat without
// #       floats.
// paren_expr = Parenthesis('(') s ternary_expr s Parenthesis(')')
// list_literal = Bracket('[') s
//                  ( ternary_expr s Comma s )*
//                  ternary_expr? s
//                Bracket(']')
// dict_literal = FigureBrace('{') s
//                  ( ternary_expr s Colon s ternary_expr s Comma s )*
//                  ( ternary_expr s Colon s ternary_expr s )?
//                FigureBrace('}')
// lambda_literal = FigureBrace('{') s
//                    ( PlainIdentifier s Comma s )*
//                    PlainIdentifier s
//                  Arrow s
//                    ternary_expr s
//                  FigureBrace('}')
// var = varchunk+
// varchunk = PlainIdentifier
//          | Comparison("is" | "is#" | "isnot" | "isnot#")
//          | FigureBrace('{') s ternary_expr s FigureBrace('}')
// call_args = ( s ternary_expr s Comma s )* s ternary_expr? s
// binop = s ( Plus | Minus | Dot
//           | Comparison
//           | Multiplication
//           | Or
//           | And ) s
// unaryop = s ( Not | Plus | Minus ) s
// s = Spacing?
//
// Binary operator precedence and associativity:
//
// Operator | Precedence | Associativity
// ---------+------------+-----------------
// ||       | 2          | left
// &&       | 3          | left
// cmp*     | 4          | not associative
// + - .    | 5          | left
// * / %    | 6          | left
//
// * comparison operators:
//
// == ==# ==?  != !=# !=?
// =~ =~# =~?  !~ !~# !~?
//  >  >#  >?  <= <=# <=?
//  <  <#  <?  >= >=# >=?
// is is# is?  isnot isnot# isnot?
//
// Used highlighting groups and assumed linkage:
//
// NVimInternalError -> highlight as fg:red/bg:red
//
// NVimInvalid -> Error
// NVimInvalidValue -> NVimInvalid
// NVimInvalidOperator -> NVimInvalid
// NVimInvalidDelimiter -> NVimInvalid
//
// NVimOperator -> Operator
// NVimUnaryOperator -> NVimOperator
// NVimBinaryOperator -> NVimOperator
// NVimComparisonOperator -> NVimOperator
// NVimTernaryOperator -> NVimOperator
//
// NVimParenthesis -> Delimiter
//
// NVimComma -> Delimiter
// NVimArrow -> Delimiter
//
// NVimLambda -> Delimiter
// NVimDict -> Delimiter
// NVimCurly -> Delimiter
//
// NVimIdentifier -> Identifier
// NVimIdentifierScope -> NVimIdentifier
// NVimIdentifierScopeDelimiter -> NVimIdentifier
//
// NVimFigureBrace -> NVimInternalError
//
// NVimInvalidComma -> NVimInvalidDelimiter
// NVimInvalidSpacing -> NVimInvalid
// NVimInvalidTernaryOperator -> NVimInvalidOperator
// NVimInvalidRegister -> NVimInvalidValue
// NVimInvalidClosingBracket -> NVimInvalidDelimiter
// NVimInvalidSpacing -> NVimInvalid
// NVimInvalidArrow -> NVimInvalidDelimiter
// NVimInvalidLambda -> NVimInvalidDelimiter
// NVimInvalidDict -> NVimInvalidDelimiter
// NVimInvalidCurly -> NVimInvalidDelimiter
// NVimInvalidFigureBrace -> NVimInvalidDelimiter
// NVimInvalidIdentifier -> NVimInvalidValue
// NVimInvalidIdentifierScope -> NVimInvalidValue
// NVimInvalidIdentifierScopeDelimiter -> NVimInvalidValue
//
// NVimUnaryPlus -> NVimUnaryOperator
// NVimBinaryPlus -> NVimBinaryOperator
// NVimRegister -> SpecialChar
// NVimNestingParenthesis -> NVimParenthesis
// NVimCallingParenthesis -> NVimParenthesis

/// Allocate a new node and set some of the values
///
/// @param[in]  type  Node type to allocate.
/// @param[in]  level  Node level to allocate
static inline ExprASTNode *viml_pexpr_new_node(const ExprASTNodeType type)
  FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_MALLOC
{
  ExprASTNode *ret = xmalloc(sizeof(*ret));
  ret->type = type;
  ret->children = NULL;
  ret->next = NULL;
  return ret;
}

typedef enum {
  kEOpLvlInvalid = 0,
  kEOpLvlParens,
  kEOpLvlArrow,
  kEOpLvlComma,
  kEOpLvlColon,
  kEOpLvlTernary,
  kEOpLvlOr,
  kEOpLvlAnd,
  kEOpLvlComparison,
  kEOpLvlAddition,  ///< Addition, subtraction and concatenation.
  kEOpLvlMultiplication,  ///< Multiplication, division and modulo.
  kEOpLvlUnary,  ///< Unary operations: not, minus, plus.
  kEOpLvlSubscript,  ///< Subscripts.
  kEOpLvlComplexIdentifier,  ///< Plain identifier, curly braces name.
  kEOpLvlValue,  ///< Values: literals, variables, nested expressions, …
} ExprOpLvl;

typedef enum {
  kEOpAssNo= 'n',  ///< Not associative / not applicable.
  kEOpAssLeft = 'l',  ///< Left associativity.
  kEOpAssRight = 'r',  ///< Right associativity.
} ExprOpAssociativity;

static const ExprOpLvl node_type_to_op_lvl[] = {
  [kExprNodeMissing] = kEOpLvlInvalid,
  [kExprNodeOpMissing] = kEOpLvlMultiplication,

  [kExprNodeNested] = kEOpLvlParens,
  // Note: it is kEOpLvlSubscript for “binary operator” itself, but
  //       kEOpLvlParens when it comes to inside the parenthesis.
  [kExprNodeCall] = kEOpLvlParens,

  [kExprNodeUnknownFigure] = kEOpLvlParens,
  [kExprNodeLambda] = kEOpLvlParens,
  [kExprNodeDictLiteral] = kEOpLvlParens,

  [kExprNodeArrow] = kEOpLvlArrow,

  [kExprNodeComma] = kEOpLvlComma,

  [kExprNodeColon] = kEOpLvlColon,

  [kExprNodeTernary] = kEOpLvlTernary,

  [kExprNodeBinaryPlus] = kEOpLvlAddition,

  [kExprNodeUnaryPlus] = kEOpLvlUnary,

  [kExprNodeSubscript] = kEOpLvlSubscript,

  [kExprNodeComplexIdentifier] = kEOpLvlComplexIdentifier,
  [kExprNodePlainIdentifier] = kEOpLvlComplexIdentifier,
  [kExprNodeCurlyBracesIdentifier] = kEOpLvlComplexIdentifier,

  [kExprNodeRegister] = kEOpLvlValue,
  [kExprNodeListLiteral] = kEOpLvlValue,
};

static const ExprOpAssociativity node_type_to_op_ass[] = {
  [kExprNodeMissing] = kEOpAssNo,
  [kExprNodeOpMissing] = kEOpAssNo,

  [kExprNodeNested] = kEOpAssNo,
  [kExprNodeCall] = kEOpAssNo,

  [kExprNodeUnknownFigure] = kEOpAssLeft,
  [kExprNodeLambda] = kEOpAssNo,
  [kExprNodeDictLiteral] = kEOpAssNo,

  // Does not really matter.
  [kExprNodeArrow] = kEOpAssNo,

  [kExprNodeColon] = kEOpAssNo,

  // Right associativity for comma because this means easier access to arguments
  // list, etc: for "[a, b, c, d]" you can access "a" in one step if it is
  // represented as "list(comma(a, comma(b, comma(c, d))))" then if it is
  // "list(comma(comma(comma(a, b), c), d))" in which case you will need to
  // traverse all three comma() structures. And with comma operator (including
  // actual comma operator from C which is not present in VimL) nobody cares
  // about associativity, only about order of execution.
  [kExprNodeComma] = kEOpAssRight,

  [kExprNodeTernary] = kEOpAssNo,

  [kExprNodeBinaryPlus] = kEOpAssLeft,

  [kExprNodeUnaryPlus] = kEOpAssNo,

  [kExprNodeSubscript] = kEOpAssLeft,

  [kExprNodePlainIdentifier] = kEOpAssLeft,
  [kExprNodeComplexIdentifier] = kEOpAssLeft,
  [kExprNodeCurlyBracesIdentifier] = kEOpAssLeft,

  [kExprNodeRegister] = kEOpAssNo,
  [kExprNodeListLiteral] = kEOpAssNo,
};

/// Handle binary operator
///
/// This function is responsible for handling priority levels as well.
static void viml_pexpr_handle_bop(ExprASTStack *const ast_stack,
                                  ExprASTNode *const bop_node,
                                  ExprASTWantedNode *const want_node_p)
  FUNC_ATTR_NONNULL_ALL
{
  ExprASTNode **top_node_p = NULL;
  ExprASTNode *top_node;
  ExprOpLvl top_node_lvl;
  ExprOpAssociativity top_node_ass;
  assert(kv_size(*ast_stack));
  const ExprOpLvl bop_node_lvl = (bop_node->type == kExprNodeCall
                                  ? kEOpLvlSubscript
                                  : node_type_to_op_lvl[bop_node->type]);
#ifndef NDEBUG
  const ExprOpAssociativity bop_node_ass = (
      bop_node->type == kExprNodeCall
      ? kEOpAssLeft
      : node_type_to_op_ass[bop_node->type]);
#endif
  do {
    ExprASTNode **new_top_node_p = kv_last(*ast_stack);
    ExprASTNode *new_top_node = *new_top_node_p;
    assert(new_top_node != NULL);
    const ExprOpLvl new_top_node_lvl = node_type_to_op_lvl[new_top_node->type];
    const ExprOpAssociativity new_top_node_ass = (
        node_type_to_op_ass[new_top_node->type]);
    assert(bop_node_lvl != new_top_node_lvl
           || bop_node_ass == new_top_node_ass);
    if (top_node_p != NULL
        && ((bop_node_lvl > new_top_node_lvl
             || (bop_node_lvl == new_top_node_lvl
                 && new_top_node_ass == kEOpAssNo)))) {
      break;
    }
    kv_drop(*ast_stack, 1);
    top_node_p = new_top_node_p;
    top_node = new_top_node;
    top_node_lvl = new_top_node_lvl;
    top_node_ass = new_top_node_ass;
    if (bop_node_lvl == top_node_lvl && top_node_ass == kEOpAssRight) {
      break;
    }
  } while (kv_size(*ast_stack));
  // FIXME: Handle no associativity
  if (top_node_ass == kEOpAssLeft || top_node_lvl != bop_node_lvl) {
    // outer(op(x,y)) -> outer(new_op(op(x,y),*))
    //
    // Before: top_node_p = outer(*), points to op(x,y)
    //         Other stack elements unknown
    //
    // After: top_node_p = outer(*), points to new_op(op(x,y))
    //        &bop_node->children->next = new_op(op(x,y),*), points to NULL
    *top_node_p = bop_node;
    bop_node->children = top_node;
    assert(bop_node->children->next == NULL);
    kvi_push(*ast_stack, top_node_p);
    kvi_push(*ast_stack, &bop_node->children->next);
  } else {
    assert(top_node_lvl == bop_node_lvl && top_node_ass == kEOpAssRight);
    assert(top_node->children != NULL && top_node->children->next != NULL);
    // outer(op(x,y)) -> outer(op(x,new_op(y,*)))
    //
    // Before: top_node_p = outer(*), points to op(x,y)
    //         Other stack elements unknown
    //
    // After: top_node_p = outer(*), points to op(x,new_op(y))
    //        &top_node->children->next = op(x,*), points to new_op(y)
    //        &bop_node->children->next = new_op(y,*), points to NULL
    bop_node->children = top_node->children->next;
    top_node->children->next = bop_node;
    assert(bop_node->children->next == NULL);
    kvi_push(*ast_stack, top_node_p);
    kvi_push(*ast_stack, &top_node->children->next);
    kvi_push(*ast_stack, &bop_node->children->next);
  }
  *want_node_p = (*want_node_p == kENodeArgumentSeparator
                  ? kENodeArgument
                  : kENodeValue);
}

/// ParserPosition literal based on ParserPosition pos with columns shifted
///
/// Function does not check whether remaining position is valid.
///
/// @param[in]  pos  Position to shift.
/// @param[in]  shift  Number of bytes to shift.
///
/// @return Shifted position.
static inline ParserPosition shifted_pos(const ParserPosition pos,
                                         const size_t shift)
  FUNC_ATTR_CONST FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
{
  return (ParserPosition) { .line = pos.line, .col = pos.col + shift };
}

/// Get highlight group name
#define HL(g) (is_invalid ? "NVimInvalid" #g : "NVim" #g)

/// Highlight current token with the given group
#define HL_CUR_TOKEN(g) \
        viml_parser_highlight(pstate, cur_token.start, cur_token.len, \
                              HL(g))

/// Allocate new node, saving some values
#define NEW_NODE(type) \
    viml_pexpr_new_node(type)

/// Set position of the given node to position from the given token
///
/// @param  cur_node  Node to modify.
/// @param  cur_token  Token to set position from.
#define POS_FROM_TOKEN(cur_node, cur_token) \
    do { \
      cur_node->start = cur_token.start; \
      cur_node->len = cur_token.len; \
    } while (0)

/// Allocate new node and set its position from the current token
///
/// If previous token happened to contain spacing then it will be included.
///
/// @param  cur_node  Variable to save allocated node to.
/// @param  typ  Node type.
#define NEW_NODE_WITH_CUR_POS(cur_node, typ) \
    do { \
      cur_node = NEW_NODE(typ); \
      POS_FROM_TOKEN(cur_node, cur_token); \
      if (prev_token.type == kExprLexSpacing) { \
        cur_node->start = prev_token.start; \
        cur_node->len += prev_token.len; \
      } \
    } while (0)

// TODO(ZyX-I): actual condition
/// Check whether it is possible to have next expression after current
///
/// For :echo: `:echo @a @a` is a valid expression. `:echo (@a @a)` is not.
#define MAY_HAVE_NEXT_EXPR \
    (kv_size(ast_stack) == 1)

/// Record missing operator: for things like
///
///     :echo @a @a
///
/// (allowed) or
///
///     :echo (@a @a)
///
/// (parsed as OpMissing(@a, @a)).
#define OP_MISSING \
    do { \
      if (flags & kExprFlagsMulti && MAY_HAVE_NEXT_EXPR) { \
        /* Multiple expressions allowed, return without calling */ \
        /* viml_parser_advance(). */ \
        goto viml_pexpr_parse_end; \
      } else { \
        assert(*top_node_p != NULL); \
        ERROR_FROM_TOKEN_AND_MSG(cur_token, _("E15: Missing operator: %.*s")); \
        NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeOpMissing); \
        cur_node->len = 0; \
        viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node); \
        goto viml_pexpr_parse_process_token; \
      } \
    } while (0)

/// Record missing value: for things like "* 5"
///
/// @param[in]  msg  Error message.
#define ADD_VALUE_IF_MISSING(msg) \
        do { \
          if (want_node == kENodeValue) { \
            ERROR_FROM_TOKEN_AND_MSG(cur_token, (msg)); \
            NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeMissing); \
            cur_node->len = 0; \
            *top_node_p = cur_node; \
            want_node = kENodeOperator; \
          } \
        } while (0)

/// Set AST error, unless AST already is not correct
///
/// @param[out]  ret_ast  AST to set error in.
/// @param[in]  pstate  Parser state, used to get error message argument.
/// @param[in]  msg  Error message, assumed to be already translated and
///                  containing a single %token "%.*s".
/// @param[in]  start  Position at which error occurred.
static inline void east_set_error(ExprAST *const ret_ast,
                                  const ParserState *const pstate,
                                  const char *const msg,
                                  const ParserPosition start)
  FUNC_ATTR_NONNULL_ALL FUNC_ATTR_ALWAYS_INLINE
{
  if (!ret_ast->correct) {
    return;
  }
  const ParserLine pline = pstate->reader.lines.items[start.line];
  ret_ast->correct = false;
  ret_ast->err.msg = msg;
  ret_ast->err.arg_len = (int)(pline.size - start.col);
  ret_ast->err.arg = pline.data + start.col;
}

/// Set error from the given token and given message
#define ERROR_FROM_TOKEN_AND_MSG(cur_token, msg) \
    do { \
      is_invalid = true; \
      east_set_error(&ast, pstate, msg, cur_token.start); \
    } while (0)

/// Like #ERROR_FROM_TOKEN_AND_MSG, but gets position from a node
#define ERROR_FROM_NODE_AND_MSG(node, msg) \
    do { \
      is_invalid = true; \
      east_set_error(&ast, pstate, msg, node->start); \
    } while (0)

/// Set error from the given kExprLexInvalid token
#define ERROR_FROM_TOKEN(cur_token) \
    ERROR_FROM_TOKEN_AND_MSG(cur_token, cur_token.data.err.msg)

/// Select figure brace type, altering highlighting as well if needed
///
/// @param[out]  node  Node to modify type.
/// @param[in]  new_type  New type, one of ExprASTNodeType values without
///                       kExprNode prefix.
/// @param[in]  hl  Corresponding highlighting, passed as an argument to #HL.
#define SELECT_FIGURE_BRACE_TYPE(node, new_type, hl) \
    do { \
      ExprASTNode *const node_ = (node); \
      assert(node_->type == kExprNodeUnknownFigure \
             || node_->type == kExprNode##new_type); \
      node_->type = kExprNode##new_type; \
      if (pstate->colors) { \
        kv_A(*pstate->colors, node_->data.fig.opening_hl_idx).group = \
             HL(hl); \
      } \
    } while (0)

/// Parse one VimL expression
///
/// @param  pstate  Parser state.
/// @param[in]  flags  Additional flags, see ExprParserFlags
///
/// @return Parsed AST.
ExprAST viml_pexpr_parse(ParserState *const pstate, const int flags)
  FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
  ExprAST ast = {
    .correct = true,
    .err = {
      .msg = NULL,
      .arg_len = 0,
      .arg = NULL,
    },
    .root = NULL,
  };
  ExprASTStack ast_stack;
  kvi_init(ast_stack);
  kvi_push(ast_stack, &ast.root);
  // Expressions stack:
  // 1. *last is NULL if want_node is kExprLexValue. Indicates where expression
  //    is to be put.
  // 2. *last is not NULL otherwise, indicates current expression to be used as
  //    an operator argument.
  ExprASTWantedNode want_node = kENodeValue;
  LexExprToken prev_token = { .type = kExprLexMissing };
  bool highlighted_prev_spacing = false;
  // Lambda node, valid when parsing lambda arguments only.
  ExprASTNode *lambda_node = NULL;
  do {
    LexExprToken cur_token = viml_pexpr_next_token(pstate, true);
    if (cur_token.type == kExprLexEOC) {
      if (flags & kExprFlagsDisallowEOC) {
        if (cur_token.len == 0) {
          // It is end of string, break.
          break;
        } else {
          // It is NL, NUL or bar.
          //
          // Note: `<C-r>=1 | 2<CR>` actually yields 1 in Vim without any
          //       errors. This will be changed here.
          cur_token.type = kExprLexInvalid;
          cur_token.data.err.msg = _("E15: Unexpected EOC character: %.*s");
          const ParserLine pline = (
              pstate->reader.lines.items[cur_token.start.line]);
          const char eoc_char = pline.data[cur_token.start.col];
          cur_token.data.err.type = ((eoc_char == NUL || eoc_char == NL)
                                     ? kExprLexSpacing
                                     : kExprLexOr);
        }
      } else {
        break;
      }
    }
    LexExprTokenType tok_type = cur_token.type;
    const bool token_invalid = (tok_type == kExprLexInvalid);
    bool is_invalid = token_invalid;
viml_pexpr_parse_process_token:
    if (tok_type == kExprLexSpacing) {
      if (is_invalid) {
        HL_CUR_TOKEN(Spacing);
      } else {
        // Do not do anything: let regular spacing be highlighted as normal.
        // This also allows later to highlight spacing as invalid.
      }
      goto viml_pexpr_parse_cycle_end;
    } else if (is_invalid && prev_token.type == kExprLexSpacing
               && !highlighted_prev_spacing) {
      viml_parser_highlight(pstate, prev_token.start, prev_token.len,
                            HL(Spacing));
      is_invalid = false;
      highlighted_prev_spacing = true;
    }
    const ParserLine pline = pstate->reader.lines.items[cur_token.start.line];
    ExprASTNode **const top_node_p = kv_last(ast_stack);
    ExprASTNode *cur_node = NULL;
    assert((want_node == kENodeValue || want_node == kENodeArgument)
           == (*top_node_p == NULL));
    if ((want_node == kENodeArgumentSeparator
         && tok_type != kExprLexComma
         && tok_type != kExprLexArrow)
        || (want_node == kENodeArgument
            && !(tok_type == kExprLexPlainIdentifier
                 && cur_token.data.var.scope == 0
                 && !cur_token.data.var.autoload)
            && tok_type != kExprLexArrow)) {
      lambda_node->data.fig.type_guesses.allow_lambda = false;
      if (lambda_node->children != NULL
          && lambda_node->children->type == kExprNodeComma) {
        // If lambda has comma child this means that parser has already seen at
        // least "{arg1,", so node cannot possibly be anything, but lambda.

        // Vim may give E121 or E720 in this case, but it does not look right to
        // have either because both are results of reevaluation possibly-lambda
        // node as a dictionary and here this is not going to happen.
        ERROR_FROM_TOKEN_AND_MSG(
            cur_token, _("E15: Expected lambda arguments list or arrow: %.*s"));
      } else {
        // Else it may appear that possibly-lambda node is actually a dictionary
        // or curly-braces-name identifier.
        lambda_node = NULL;
        if (want_node == kENodeArgumentSeparator) {
          want_node = kENodeOperator;
        } else {
          want_node = kENodeValue;
        }
      }
    }
    assert(lambda_node == NULL
           || want_node == kENodeArgumentSeparator
           || want_node == kENodeArgument);
    switch (tok_type) {
      case kExprLexEOC: {
        assert(false);
      }
      case kExprLexInvalid: {
        ERROR_FROM_TOKEN(cur_token);
        tok_type = cur_token.data.err.type;
        goto viml_pexpr_parse_process_token;
      }
      case kExprLexRegister: {
        if (want_node == kENodeValue) {
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeRegister);
          cur_node->data.reg.name = cur_token.data.reg.name;
          *top_node_p = cur_node;
          want_node = kENodeOperator;
          HL_CUR_TOKEN(Register);
        } else {
          // Register in operator position: e.g. @a @a
          OP_MISSING;
        }
        break;
      }
      case kExprLexPlus: {
        if (want_node == kENodeValue) {
          // Value level: assume unary plus
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeUnaryPlus);
          *top_node_p = cur_node;
          kvi_push(ast_stack, &cur_node->children);
          HL_CUR_TOKEN(UnaryPlus);
        } else {
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeBinaryPlus);
          viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node);
          HL_CUR_TOKEN(BinaryPlus);
        }
        want_node = kENodeValue;
        break;
      }
      case kExprLexComma: {
        assert(want_node != kENodeArgument);
        if (want_node == kENodeValue) {
          // Value level: comma appearing here is not valid.
          // Note: in Vim string(,x) will give E116, this is not the case here.
          ERROR_FROM_TOKEN_AND_MSG(
              cur_token, _("E15: Expected value, got comma: %.*s"));
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeMissing);
          cur_node->len = 0;
          *top_node_p = cur_node;
          want_node = (want_node == kENodeArgument
                       ? kENodeArgumentSeparator
                       : kENodeOperator);
        }
        if (want_node == kENodeArgumentSeparator) {
          assert(lambda_node->data.fig.type_guesses.allow_lambda);
          assert(lambda_node != NULL);
          SELECT_FIGURE_BRACE_TYPE(lambda_node, Lambda, Lambda);
        }
        if (kv_size(ast_stack) < 2) {
          goto viml_pexpr_parse_invalid_comma;
        }
        for (size_t i = 1; i < kv_size(ast_stack); i++) {
          const ExprASTNode *const *const eastnode_p =
              (const ExprASTNode *const *)kv_Z(ast_stack, i);
          if (!((*eastnode_p)->type == kExprNodeComma
                || ((*eastnode_p)->type == kExprNodeColon
                    && i == 1))
              || i == kv_size(ast_stack) - 1) {
            switch ((*eastnode_p)->type) {
              case kExprNodeLambda: {
                assert(want_node == kENodeArgumentSeparator);
                break;
              }
              case kExprNodeDictLiteral:
              case kExprNodeListLiteral:
              case kExprNodeCall: {
                break;
              }
              default: {
viml_pexpr_parse_invalid_comma:
                ERROR_FROM_TOKEN_AND_MSG(
                    cur_token,
                    _("E15: Comma outside of call, lambda or literal: %.*s"));
                break;
              }
            }
            break;
          }
        }
        NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeComma);
        viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node);
        HL_CUR_TOKEN(Comma);
        break;
      }
      case kExprLexColon: {
        ADD_VALUE_IF_MISSING(_("E15: Expected value, got colon: %.*s"));
        if (kv_size(ast_stack) < 2) {
          goto viml_pexpr_parse_invalid_colon;
        }
        for (size_t i = 1; i < kv_size(ast_stack); i++) {
          ExprASTNode *const *const eastnode_p =
              (ExprASTNode *const *)kv_Z(ast_stack, i);
          if ((*eastnode_p)->type != kExprNodeColon
              || i == kv_size(ast_stack) - 1) {
            switch ((*eastnode_p)->type) {
              case kExprNodeUnknownFigure: {
                SELECT_FIGURE_BRACE_TYPE((*eastnode_p), DictLiteral, Dict);
                break;
              }
              case kExprNodeComma:
              case kExprNodeDictLiteral:
              case kExprNodeTernary: {
                break;
              }
              default: {
viml_pexpr_parse_invalid_colon:
                ERROR_FROM_TOKEN_AND_MSG(
                    cur_token,
                    _("E15: Colon outside of dictionary or ternary operator: "
                      "%.*s"));
                break;
              }
            }
            break;
          }
        }
        NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeColon);
        viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node);
        // FIXME: Handle ternary operator.
        HL_CUR_TOKEN(Colon);
        want_node = kENodeValue;
        break;
      }
      case kExprLexFigureBrace: {
        if (cur_token.data.brc.closing) {
          ExprASTNode **new_top_node_p = NULL;
          // Always drop the topmost value:
          //
          // 1. When want_node != kENodeValue topmost item on stack is
          //    a *finished* left operand, which may as well be "{@a}" which
          //    needs not be finished again.
          // 2. Otherwise it is pointing to NULL what nobody wants.
          kv_drop(ast_stack, 1);
          if (!kv_size(ast_stack)) {
            NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeUnknownFigure);
            cur_node->data.fig.type_guesses.allow_lambda = false;
            cur_node->data.fig.type_guesses.allow_dict = false;
            cur_node->data.fig.type_guesses.allow_ident = false;
            cur_node->len = 0;
            if (want_node != kENodeValue) {
              cur_node->children = *top_node_p;
            }
            *top_node_p = cur_node;
            goto viml_pexpr_parse_figure_brace_closing_error;
          }
          if (want_node == kENodeValue) {
            if ((*kv_last(ast_stack))->type != kExprNodeUnknownFigure
                && (*kv_last(ast_stack))->type != kExprNodeComma) {
              // kv_last being UnknownFigure may occur for empty dictionary
              // literal, while Comma is expected in case of non-empty one.
              ERROR_FROM_TOKEN_AND_MSG(
                  cur_token,
                  _("E15: Expected value, got closing figure brace: %.*s"));
            }
          } else {
            if (!kv_size(ast_stack)) {
              new_top_node_p = top_node_p;
              goto viml_pexpr_parse_figure_brace_closing_error;
            }
          }
          do {
            new_top_node_p = kv_pop(ast_stack);
          } while (kv_size(ast_stack)
                   && (new_top_node_p == NULL
                       || ((*new_top_node_p)->type != kExprNodeUnknownFigure
                           && (*new_top_node_p)->type != kExprNodeDictLiteral
                           && ((*new_top_node_p)->type
                               != kExprNodeCurlyBracesIdentifier)
                           && (*new_top_node_p)->type != kExprNodeLambda)));
          ExprASTNode *new_top_node = *new_top_node_p;
          switch (new_top_node->type) {
            case kExprNodeUnknownFigure: {
              if (new_top_node->children == NULL) {
                // No children of curly braces node indicates empty dictionary.

                // Should actually be kENodeArgument, but that was changed
                // earlier.
                assert(want_node == kENodeValue);
                assert(new_top_node->data.fig.type_guesses.allow_dict);
                SELECT_FIGURE_BRACE_TYPE(new_top_node, DictLiteral, Dict);
                HL_CUR_TOKEN(Dict);
              } else if (new_top_node->data.fig.type_guesses.allow_ident) {
                SELECT_FIGURE_BRACE_TYPE(new_top_node, CurlyBracesIdentifier,
                                         Curly);
                HL_CUR_TOKEN(Curly);
              } else {
                // If by this time type of the node has not already been
                // guessed, but it definitely is not a curly braces name then
                // it is invalid for sure.
                ERROR_FROM_NODE_AND_MSG(
                    new_top_node,
                    _("E15: Don't know what figure brace means: %.*s"));
                if (pstate->colors) {
                  // Will reset to NVimInvalidFigureBrace.
                  kv_A(*pstate->colors,
                       new_top_node->data.fig.opening_hl_idx).group = (
                           HL(FigureBrace));
                }
                HL_CUR_TOKEN(FigureBrace);
              }
              break;
            }
            case kExprNodeDictLiteral: {
              HL_CUR_TOKEN(Dict);
              break;
            }
            case kExprNodeCurlyBracesIdentifier: {
              HL_CUR_TOKEN(Curly);
              break;
            }
            case kExprNodeLambda: {
              HL_CUR_TOKEN(Lambda);
              break;
            }
            default: {
viml_pexpr_parse_figure_brace_closing_error:
              assert(!kv_size(ast_stack));
              ERROR_FROM_TOKEN_AND_MSG(
                  cur_token, _("E15: Unexpected closing figure brace: %.*s"));
              HL_CUR_TOKEN(FigureBrace);
              break;
            }
          }
          kvi_push(ast_stack, new_top_node_p);
          want_node = kENodeOperator;
        } else {
          if (want_node == kENodeValue) {
            HL_CUR_TOKEN(FigureBrace);
            // Value: may be any of lambda, dictionary literal and curly braces
            // name.
            NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeUnknownFigure);
            cur_node->data.fig.type_guesses.allow_lambda = true;
            cur_node->data.fig.type_guesses.allow_dict = true;
            cur_node->data.fig.type_guesses.allow_ident = true;
            if (pstate->colors) {
              cur_node->data.fig.opening_hl_idx = kv_size(*pstate->colors) - 1;
            }
            *top_node_p = cur_node;
            kvi_push(ast_stack, &cur_node->children);
            want_node = kENodeArgument;
            lambda_node = cur_node;
          } else {
            // Operator: may only be curly braces name, but only under certain
            // conditions.

            // First condition is that there is no space before {.
            if (prev_token.type == kExprLexSpacing) {
              OP_MISSING;
            }
            switch ((*top_node_p)->type) {
              // Second is that previous node is one of the identifiers:
              // complex, plain, curly braces.

              // TODO(ZyX-I): Extend syntax to allow ${expr}. This is needed to
              // handle environment variables like those bash uses for
              // `export -f`: their names consist not only of alphanumeric
              // characetrs.
              case kExprNodeComplexIdentifier:
              case kExprNodePlainIdentifier:
              case kExprNodeCurlyBracesIdentifier: {
                NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeComplexIdentifier);
                cur_node->len = 0;
                viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node);
                ExprASTNode *const new_top_node = *kv_last(ast_stack);
                assert(new_top_node->next == NULL);
                NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeCurlyBracesIdentifier);
                new_top_node->next = cur_node;
                kvi_push(ast_stack, &cur_node->children);
                HL_CUR_TOKEN(Curly);
                break;
              }
              default: {
                OP_MISSING;
                break;
              }
            }
          }
        }
        break;
      }
      case kExprLexArrow: {
        if (want_node == kENodeArgumentSeparator
            || want_node == kENodeArgument) {
          if (want_node == kENodeArgument) {
            kv_drop(ast_stack, 1);
          }
          assert(kv_size(ast_stack) >= 1);
          while ((*kv_last(ast_stack))->type != kExprNodeLambda
                 && (*kv_last(ast_stack))->type != kExprNodeUnknownFigure) {
            kv_drop(ast_stack, 1);
          }
          assert((*kv_last(ast_stack)) == lambda_node);
          SELECT_FIGURE_BRACE_TYPE(lambda_node, Lambda, Lambda);
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeArrow);
          if (lambda_node->children == NULL) {
            assert(want_node == kENodeArgument);
            lambda_node->children = cur_node;
            kvi_push(ast_stack, &lambda_node->children);
          } else {
            assert(lambda_node->children->next == NULL);
            lambda_node->children->next = cur_node;
            kvi_push(ast_stack, &lambda_node->children->next);
          }
          kvi_push(ast_stack, &cur_node->children);
          lambda_node = NULL;
        } else {
          // Only first branch is valid.
          is_invalid = true;
          ADD_VALUE_IF_MISSING(_("E15: Unexpected arrow: %.*s"));
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeArrow);
          viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node);
        }
        want_node = kENodeValue;
        HL_CUR_TOKEN(Arrow);
        break;
      }
      case kExprLexPlainIdentifier: {
        if (want_node == kENodeValue || want_node == kENodeArgument) {
          want_node = (want_node == kENodeArgument
                       ? kENodeArgumentSeparator
                       : kENodeOperator);
          // FIXME: It is not valid to have scope inside complex identifier,
          //        check that.
          NEW_NODE_WITH_CUR_POS(cur_node, kExprNodePlainIdentifier);
          cur_node->data.var.scope = cur_token.data.var.scope;
          const size_t scope_shift = (cur_token.data.var.scope == 0
                                      ? 0
                                      : 2);
          cur_node->data.var.ident = (pline.data + cur_token.start.col
                                      + scope_shift);
          cur_node->data.var.ident_len = cur_token.len - scope_shift;
          *top_node_p = cur_node;
          if (scope_shift) {
            viml_parser_highlight(pstate, cur_token.start, 1,
                                  HL(IdentifierScope));
            viml_parser_highlight(pstate, shifted_pos(cur_token.start, 1), 1,
                                  HL(IdentifierScopeDelimiter));
          }
          if (scope_shift < cur_token.len) {
            viml_parser_highlight(pstate, shifted_pos(cur_token.start,
                                                      scope_shift),
                                  cur_token.len - scope_shift,
                                  HL(Identifier));
          }
        } else {
          OP_MISSING;
        }
        break;
      }
      case kExprLexParenthesis: {
        if (cur_token.data.brc.closing) {
          if (want_node == kENodeValue) {
            if (kv_size(ast_stack) > 1) {
              const ExprASTNode *const prev_top_node = *kv_Z(ast_stack, 1);
              if (prev_top_node->type == kExprNodeCall) {
                // Function call without arguments, this is not an error.
                // But further code does not expect NULL nodes.
                kv_drop(ast_stack, 1);
                goto viml_pexpr_parse_no_paren_closing_error;
              }
            }
            ERROR_FROM_TOKEN_AND_MSG(
                cur_token, _("E15: Expected value, got parenthesis: %.*s"));
            NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeMissing);
            cur_node->len = 0;
            *top_node_p = cur_node;
          } else {
            // Always drop the topmost value: when want_node != kENodeValue
            // topmost item on stack is a *finished* left operand, which may as
            // well be "(@a)" which needs not be finished again.
            kv_drop(ast_stack, 1);
          }
viml_pexpr_parse_no_paren_closing_error: {}
          ExprASTNode **new_top_node_p = NULL;
          while (kv_size(ast_stack)
                 && (new_top_node_p == NULL
                     || ((*new_top_node_p)->type != kExprNodeNested
                         && (*new_top_node_p)->type != kExprNodeCall))) {
            new_top_node_p = kv_pop(ast_stack);
          }
          if (new_top_node_p != NULL
              && ((*new_top_node_p)->type == kExprNodeNested
                  || (*new_top_node_p)->type == kExprNodeCall)) {
            if ((*new_top_node_p)->type == kExprNodeNested) {
              HL_CUR_TOKEN(NestingParenthesis);
            } else {
              HL_CUR_TOKEN(CallingParenthesis);
            }
          } else {
            // “Always drop the topmost value” branch has got rid of the single
            // value stack had, so there is nothing known to enclose. Correct
            // this.
            if (new_top_node_p == NULL) {
              new_top_node_p = top_node_p;
            }
            ERROR_FROM_TOKEN_AND_MSG(
                cur_token, _("E15: Unexpected closing parenthesis: %.*s"));
            HL_CUR_TOKEN(NestingParenthesis);
            cur_node = NEW_NODE(kExprNodeNested);
            cur_node->start = cur_token.start;
            cur_node->len = 0;
            // Unexpected closing parenthesis, assume that it was wanted to
            // enclose everything in ().
            cur_node->children = *new_top_node_p;
            *new_top_node_p = cur_node;
            assert(cur_node->next == NULL);
          }
          kvi_push(ast_stack, new_top_node_p);
          want_node = kENodeOperator;
        } else {
          if (want_node == kENodeValue) {
            NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeNested);
            *top_node_p = cur_node;
            kvi_push(ast_stack, &cur_node->children);
            HL_CUR_TOKEN(NestingParenthesis);
          } else if (want_node == kENodeOperator) {
            if (prev_token.type == kExprLexSpacing) {
              // For some reason "function (args)" is a function call, but
              // "(funcref) (args)" is not. AFAIR this somehow involves
              // compatibility and Bram was commenting that this is
              // intentionally inconsistent and he is not very happy with the
              // situation himself.
              if ((*top_node_p)->type != kExprNodePlainIdentifier
                  && (*top_node_p)->type != kExprNodeComplexIdentifier) {
                OP_MISSING;
              }
            }
            NEW_NODE_WITH_CUR_POS(cur_node, kExprNodeCall);
            viml_pexpr_handle_bop(&ast_stack, cur_node, &want_node);
            HL_CUR_TOKEN(CallingParenthesis);
          } else {
            // Currently it is impossible to reach this.
            assert(false);
          }
          want_node = kENodeValue;
        }
        break;
      }
    }
viml_pexpr_parse_cycle_end:
    prev_token = cur_token;
    highlighted_prev_spacing = false;
    viml_parser_advance(pstate, cur_token.len);
  } while (true);
viml_pexpr_parse_end:
  if (want_node == kENodeValue) {
    east_set_error(&ast, pstate, _("E15: Expected value, got EOC: %.*s"),
                   pstate->pos);
  } else if (kv_size(ast_stack) != 1) {
    // Something may be wrong, check whether it really is.

    // Pointer to ast.root must never be dropped, so “!= 1” is expected to be
    // the same as “> 1”.
    assert(kv_size(ast_stack));
    // Topmost stack item must be a *finished* value, so it must not be
    // analyzed. E.g. it may contain an already finished nested expression.
    kv_drop(ast_stack, 1);
    while (ast.correct && kv_size(ast_stack)) {
      const ExprASTNode *const cur_node = (*kv_pop(ast_stack));
      // This should only happen when want_node == kENodeValue.
      assert(cur_node != NULL);
      switch (cur_node->type) {
        case kExprNodeOpMissing:
        case kExprNodeMissing: {
          // Error should’ve been already reported.
          break;
        }
        case kExprNodeCall: {
          // TODO(ZyX-I): Rehighlight as invalid?
          east_set_error(
              &ast, pstate,
              _("E116: Missing closing parenthesis for function call: %.*s"),
              cur_node->start);
          break;
        }
        case kExprNodeNested: {
          // TODO(ZyX-I): Rehighlight as invalid?
          east_set_error(
              &ast, pstate,
              _("E110: Missing closing parenthesis for nested expression"
                ": %.*s"),
              cur_node->start);
          break;
        }
        case kExprNodeBinaryPlus:
        case kExprNodeUnaryPlus:
        case kExprNodeRegister: {
          // It is OK to see these in the stack.
          break;
        }
        // TODO(ZyX-I): handle other values
      }
    }
  }
  kvi_destroy(ast_stack);
  return ast;
}

#undef NEW_NODE
#undef HL