1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
module Graphics.Glyph.BufferBuilder where
import Control.Monad
import Graphics.Rendering.OpenGL
import Foreign.Storable
import Foreign.Ptr
import Foreign.Marshal.Array
import Data.Array.Storable
import Data.Setters
import Debug.Trace
import qualified Data.Foldable as Fold
import Data.Sequence as Seq
import Data.Map as Map
import Graphics.Glyph.Mat4
import Graphics.Glyph.Util
import Graphics.Glyph.GLMath
import System.IO.Unsafe
import Unsafe.Coerce
data BufferBuilder3D = Plot BufferBuilder3D (GLfloat,GLfloat,GLfloat) Int Int | End
bufferSize :: BufferBuilder3D -> Int
bufferSize End = 0
bufferSize (Plot _ _ l _) = l
nelem :: BufferBuilder3D -> Int
nelem End = 0
nelem (Plot _ _ _ l) = l
sizeofGLfloat :: Int
sizeofGLfloat = 4
class Monad a => IsModelBuilder b a where
plotVertex3 :: b -> b -> b -> a ()
plotNormal :: b -> b -> b -> a ()
plotTexture :: b -> b ->a ()
{- A state monad that keeps track of operations
- and will compile them into a buffer -}
data BuilderM b a = BuilderM (Builder (BuildDatum b)) a
data Builder b = Builder
!(Builder b) -- before
!(Builder b) -- after
| LeafBuilder !(Seq b) deriving Show
instance IsModelBuilder GLfloat (BuilderM GLfloat) where
plotVertex3 x y z = bVertex3 (x,y,z)
plotNormal x y z = bNormal3 (x,y,z)
plotTexture x y = bTexture2 (x,y)
data BuildDatum b =
VertexLink (b,b,b) |
NormalLink (b,b,b) |
ColorLink (b,b,b,b) |
TextureLink (b,b) deriving Show
data CompiledBuild b = CompiledBuild {
bStride :: Int,
bEnabled :: (Bool,Bool,Bool),
nElems :: Int,
array :: Ptr b,
arrayBytes :: Int
}
bufferLength :: (Integral a) => CompiledBuild b -> a
bufferLength = fromIntegral . nElems
instance Show (CompiledBuild x) where
show (CompiledBuild stride enabled n ptr nbytes) =
"[CompiledBuild stride="++!stride++" enabled"++!enabled++" n="++!n++" ptr="++!ptr++" nbytes="++!nbytes++"]"
instance (Num t) => Monad (BuilderM t) where
(BuilderM !builder1 _) >> (BuilderM !builder2 ret) =
BuilderM (builder1 ><> builder2) ret
where
b1@(LeafBuilder !seq1) ><> b2@(LeafBuilder !seq2)
| Seq.length seq1 + Seq.length seq2 < 128 = LeafBuilder (seq1 >< seq2)
| otherwise = Builder b1 b2
(Builder !b1 !b2) ><> leaf@(LeafBuilder !_) =
(Builder b1 (b2 ><> leaf))
builder1 ><> builder2 = (Builder builder1 builder2)
b1@(BuilderM _ ret) >>= func = b1 >> func ret
return = BuilderM (LeafBuilder Seq.empty)
fail = undefined
instance Functor Builder where
fmap f (Builder b1 b2) = (Builder (fmap f b1) (fmap f b2))
fmap f (LeafBuilder seq) = (LeafBuilder (fmap f seq))
instance Fold.Foldable Builder where
foldl f ini (Builder b1 b2) =
Fold.foldl f (Fold.foldl f ini b1) b2
foldl f ini (LeafBuilder seq) =
Fold.foldl f ini seq
foldr f ini (Builder b1 b2) =
Fold.foldr f (Fold.foldr f ini b2) b1
foldr f ini (LeafBuilder seq) =
Fold.foldr f ini seq
expandBuilder :: Builder a -> b -> (b -> a -> (b,[a])) -> Builder a
expandBuilder builder ini f = snd $ expandBuilder' builder ini f
where expandBuilder' :: Builder a -> b -> (b -> a -> (b,[a])) -> (b,Builder a)
expandBuilder' (Builder builder1 builder2) ini f =
let (snowball1,newBuilder1) = expandBuilder' builder1 ini f
(snowball2,newBuilder2) = expandBuilder' builder2 snowball1 f in
(snowball2,Builder newBuilder1 newBuilder2)
expandBuilder' (LeafBuilder seq1) ini f =
let (seq,snow) = Fold.foldl' (\(seq', snow) datum ->
let (snow',lst) = f snow datum in
(seq' >< Seq.fromList lst,snow')) (Seq.empty,ini) seq1 in
(snow,LeafBuilder seq)
{- Add a vertex to the current builder -}
bVertex3 :: (a,a,a) -> BuilderM a ()
bVertex3 vert = BuilderM (LeafBuilder (Seq.singleton $ VertexLink vert)) ()
bTexture2 :: (a,a) -> BuilderM a ()
bTexture2 tex = BuilderM (LeafBuilder (Seq.singleton $ TextureLink tex)) ()
bNormal3 :: (a,a,a) -> BuilderM a ()
bNormal3 norm = BuilderM (LeafBuilder (Seq.singleton $ NormalLink norm)) ()
bColor4 :: (a,a,a,a) -> BuilderM a ()
bColor4 col = BuilderM (LeafBuilder (Seq.singleton $ ColorLink col)) ()
writeAndAvance :: (Storable a) => [a] -> Ptr a -> IO (Ptr a)
writeAndAvance (a:as) ptr = poke ptr a >> writeAndAvance as (advancePtr ptr 1)
writeAndAvance [] ptr = return ptr
compilingBuilder :: (Storable b, Num b, Show b) => BuilderM b x -> IO (CompiledBuild b)
compilingBuilder (BuilderM builder _) = do
putStrLn "COMPILING"
-- Size of the elements TODO unhardcode this
let sizeof = sizeOf $ builderElem builder
where builderElem :: Builder (BuildDatum a) -> a
builderElem _ = unsafeCoerce (0::Int)
{- Simply figure out what types of elementse
- exist in this buffer -}
let (bn,bc,bt,nVerts) = Fold.foldl' (\(bn,bc,bt,len) ele ->
case ele of
NormalLink _ -> (True,bc,bt,len)
ColorLink _ -> (bn,True,bt,len)
TextureLink _ -> (bn,bc,True,len)
VertexLink _ -> (bn,bc,bt,len+1)) (False,False,False,0) builder
{- Calculate the stride; number of floats per element -}
let stride = (3 + (?)bn * 3 + (?)bc * 4 + (?)bt * 2) * sizeof
where (?) True = 1
(?) False = 0
let nbytes = stride * nVerts
putStrLn $ "Mallocing array of size: " ++! nbytes
array <- mallocArray nbytes
-- Tuple
-- Pointer to current element, current normal/color/texture
putStrLn "Writing array buffer"
!_ <- Fold.foldlM (\(ptr, cn, cc, ct) ele ->
-- trace ("foldl " ++! ele) $
case ele of
NormalLink nn -> return (ptr,nn,cc,ct)
ColorLink nc -> return (ptr,cn,nc,ct)
TextureLink nt -> return (ptr,cn,cc,nt)
VertexLink vert -> do
ptr' <- writeAndAvance (tp3 True vert) ptr >>=
writeAndAvance (tp3 bn cn) >>=
writeAndAvance (tp4 bc cc) >>=
writeAndAvance (tp2 bt ct)
return (ptr',cn,cc,ct) ) ( array, (0,0,0), (0,0,0,0), (0,0) ) builder
putStrLn "Buffer written"
let !compiledRet = CompiledBuild stride (bn,bc,bt) nVerts array nbytes
putStrLn $ "COMPILE COMPLETE" ++! compiledRet
return compiledRet
where
tp2 True (a,b) = [a,b]
tp2 False _ = []
tp3 True (a,b,c) = [a,b,c]
tp3 False _ = []
tp4 True (a,b,c,d) = [a,b,c,d]
tp4 False _ = []
storableArrayToBuffer :: (Storable el) => BufferTarget -> StorableArray Int el -> IO BufferObject
storableArrayToBuffer target arr = do
let sizeof = sizeOf $ unsafePerformIO (readArray arr 0)
[buffer] <- genObjectNames 1
bindBuffer target $= Just buffer
len <- getBounds arr >>= (\(a,b) -> return $ (b - a) * sizeof )
withStorableArray arr $ \ptr ->
bufferData target $= (fromIntegral len, ptr, StaticDraw)
return buffer
ptrToBuffer :: (Storable b) => BufferTarget -> Ptr b -> Int -> IO BufferObject
ptrToBuffer target ptr len = do
-- len is length in bytes
[buffer] <- genObjectNames 1
bindBuffer target $= Just buffer
bufferData target $= (fromIntegral len, ptr, StaticDraw)
return buffer
vertexArrayDescriptor :: CompiledBuild GLfloat -> VertexArrayDescriptor GLfloat
vertexArrayDescriptor (CompiledBuild stride _ _ _ _) = VertexArrayDescriptor 3 Float (fromIntegral stride) (wordPtrToPtr 0)
normalArrayDescriptor :: CompiledBuild GLfloat -> Maybe (VertexArrayDescriptor GLfloat)
normalArrayDescriptor (CompiledBuild stride (True,_,_) _ _ _) =
Just $ VertexArrayDescriptor 3 Float
(fromIntegral stride) (wordPtrToPtr (3*4))
normalArrayDescriptor _ = Nothing
colorArrayDescriptor :: CompiledBuild GLfloat -> Maybe (VertexArrayDescriptor GLfloat)
colorArrayDescriptor (CompiledBuild stride tup@(_,True,_) _ _ _) =
Just $ VertexArrayDescriptor 4 Float
(fromIntegral stride) (wordPtrToPtr (offset tup))
where offset (b1,_,_) = if b1 then (6*4) else (3*4)
colorArrayDescriptor _ = Nothing
textureArrayDescriptor :: CompiledBuild GLfloat -> Maybe (VertexArrayDescriptor GLfloat)
textureArrayDescriptor (CompiledBuild stride tup@(_,_,True) _ _ _) =
Just $ VertexArrayDescriptor 2 Float
(fromIntegral stride) (wordPtrToPtr (offset tup))
where offset (b1,b2,_) = (3 + (ifp b1 3) + (ifp b2 4)) * 4
ifp b x = if b then x else 0
textureArrayDescriptor _ = Nothing
createBufferObject :: BufferTarget -> CompiledBuild GLfloat -> IO BufferObject
createBufferObject target (CompiledBuild _ _ _ arr len) = ptrToBuffer target arr len
mapListInsert :: (Ord k) => k -> a -> Map.Map k [a] -> Map.Map k [a]
mapListInsert key val map =
flip (Map.insert key) map $
case Map.lookup key map of
Nothing -> [val]
Just x -> (val:x)
inferingNormals :: (RealFloat a,Ord a,Show a) => BuilderM a b -> BuilderM a b
inferingNormals (BuilderM builder ret) =
let (normalMap,_,_) = Fold.foldl' (\(newMap, v1, v2) datum ->
case datum of
VertexLink w ->
case (v1,v2) of
(Just u, Just v) ->
let (Vec3 normal) = (Vec3 u <-> Vec3 v) × (Vec3 u <-> Vec3 w) in
(insertWith (zipWithT3 (+)) w normal newMap, Nothing, Nothing)
(Just u, Nothing) -> (newMap, v1, Just w)
(Nothing,Nothing) -> (newMap, Just w, Nothing)
_ -> (newMap,v1,v2)
) (Map.empty,Nothing,Nothing) builder in
let newBuilder = expandBuilder builder () $ \() datum ->
case datum of
VertexLink tup ->
let normalLink = NormalLink $ maybe (0,0,0) id $ Map.lookup tup normalMap in
((),[normalLink, datum])
_ -> ((),[datum]) in
(BuilderM newBuilder ret)
trianglesFromQuads :: [a] -> [a]
trianglesFromQuads (a:b:c:d:xs) = [a,b,c,a,c,d] ++ trianglesFromQuads xs
trianglesFromQuads l = l
translating :: (Num a) => (a,a,a) -> BuilderM a b -> BuilderM a b
translating trans (BuilderM builder ret) = do
BuilderM (flip fmap builder $ \datum ->
case datum of
VertexLink tup -> VertexLink $ zipWithT3 (+) tup trans
_ -> datum) ret
translating _ x = x
|