aboutsummaryrefslogtreecommitdiff
path: root/Graphics/Glyph/GLMath.hs
blob: 7614cf75d9c0192120501f83fec8f1cdb8fcea54 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

module Graphics.Glyph.GLMath where

import Data.Angle
import Data.Maybe
import Debug.Trace
import Graphics.Glyph.Mat4
import Graphics.Rendering.OpenGL (GLfloat, Uniform, UniformComponent, Vertex3 (..), uniform)
import qualified Graphics.Rendering.OpenGL as GL

data Vec2 a = Vec2 (a, a) deriving (Show, Eq)

data Vec3 a = Vec3 (a, a, a) deriving (Show, Eq)

data Vec4 a = Vec4 (a, a, a, a) deriving (Show, Eq)

instance UniformComponent a => Uniform (Vec3 a) where
  uniform loc =
    GL.makeStateVar
      ( do
          (Vertex3 x y z) <-
            GL.get (uniform loc)
          return (Vec3 (x, y, z))
      )
      (\(Vec3 (x, y, z)) -> uniform loc GL.$= Vertex3 x y z)
  uniformv _ = undefined

instance UniformComponent a => Uniform (Vec4 a) where
  uniform loc =
    GL.makeStateVar
      ( do
          (GL.Vertex4 x y z w) <-
            GL.get (uniform loc)
          return (Vec4 (x, y, z, w))
      )
      (\(Vec4 (x, y, z, w)) -> uniform loc GL.$= GL.Vertex4 x y z w)
  uniformv _ = undefined

class (Floating flT) => Vector flT b where
  (<+>) :: b flT -> b flT -> b flT
  (<->) :: b flT -> b flT -> b flT
  norm :: b flT -> flT
  normalize :: b flT -> b flT
  vDot :: b flT -> b flT -> flT
  vScale :: flT -> b flT -> b flT
  vNegate :: b flT -> b flT

(<.>) :: (Vector a b) => b a -> b a -> a
(<.>) = vDot

(|||) :: (Vector a b) => b a -> a
(|||) = norm

instance (Floating flT) => Vector flT Vec2 where
  (<+>) (Vec2 (a, b)) (Vec2 (c, d)) = Vec2 (a + c, b + d)
  (<->) (Vec2 (a, b)) (Vec2 (c, d)) = Vec2 (a - c, b - d)
  vDot (Vec2 (a, b)) (Vec2 (c, d)) = a * c + b * d
  vScale c (Vec2 (a, b)) = Vec2 (a * c, b * c)
  norm (Vec2 (a, b)) = sqrt (a * a + b * b)
  normalize vec@(Vec2 (a, b)) =
    let n = norm vec in Vec2 (a / n, b / n)
  vNegate (Vec2 (a, b)) = Vec2 (- a, - b)

instance (Floating flT) => Vector flT Vec3 where
  (<+>) (Vec3 (a, b, c)) (Vec3 (d, e, f)) = Vec3 (a + d, b + e, c + f)
  (<->) (Vec3 (a, b, c)) (Vec3 (d, e, f)) = Vec3 (a - d, b - e, c - f)
  vDot (Vec3 (a, b, c)) (Vec3 (d, e, f)) = a * d + b * e + c * f
  vScale x (Vec3 (a, b, c)) = Vec3 (a * x, b * x, c * x)
  norm (Vec3 (a, b, c)) = sqrt (a * a + b * b + c * c)
  normalize vec@(Vec3 (a, b, c)) =
    let n = norm vec in Vec3 (a / n, b / n, c / n)
  vNegate (Vec3 (a, b, c)) = Vec3 (- a, - b, - c)

instance (Floating flT) => Vector flT Vec4 where
  (<+>) (Vec4 (a, b, c, g)) (Vec4 (d, e, f, h)) = Vec4 (a + d, b + e, c + f, g + h)
  (<->) (Vec4 (a, b, c, g)) (Vec4 (d, e, f, h)) = Vec4 (a - d, b - e, c - f, g - h)
  vDot (Vec4 (a, b, c, g)) (Vec4 (d, e, f, h)) = a * d + b * e + c * f + g * h
  vScale x (Vec4 (a, b, c, d)) = Vec4 (a * x, b * x, c * x, d * x)
  norm (Vec4 (a, b, c, d)) = sqrt (a * a + b * b + c * c + d * d)
  normalize vec@(Vec4 (a, b, c, d)) =
    let n = norm vec in Vec4 (a / n, b / n, c / n, d / n)
  vNegate (Vec4 (a, b, c, d)) = Vec4 (- a, - b, - c, - d)

cross :: (Num a) => Vec3 a -> Vec3 a -> Vec3 a
cross (Vec3 (u1, u2, u3)) (Vec3 (v1, v2, v3)) =
  Vec3
    ( u2 * v3 - u3 * v2,
      u3 * v1 - u1 * v3,
      u1 * v2 - u2 * v1
    )

(×) :: (Num a) => Vec3 a -> Vec3 a -> Vec3 a
(×) = cross

lookAtMatrix :: Vec3 GLfloat -> Vec3 GLfloat -> Vec3 GLfloat -> Mat4 GLfloat
lookAtMatrix e c u =
  let f@(Vec3 (fx, fy, fz)) = normalize (c <-> e)
      s@(Vec3 (sx, sy, sz)) = normalize (f × u)
      u'@(Vec3 (ux, uy, uz)) = s × f
   in Matrix4
        ( sx,
          ux,
          - fx,
          0,
          sy,
          uy,
          - fy,
          0,
          sz,
          uz,
          - fz,
          0,
          - (s <.> e),
          - (u' <.> e),
          f <.> e,
          1
        )

orthoMatrix :: GLfloat -> GLfloat -> GLfloat -> GLfloat -> GLfloat -> GLfloat -> Mat4 GLfloat
orthoMatrix top bot right left near far =
  Matrix4
    ( 2 / (right - left),
      0,
      0,
      - (right + left) / (right - left),
      0,
      2 / (top - bot),
      0,
      - (top + bot) / (top - bot),
      0,
      0,
      -2 / (far - near),
      - (far + near) / (far - near),
      0,
      0,
      0,
      1
    )

perspectiveMatrix :: GLfloat -> GLfloat -> GLfloat -> GLfloat -> Mat4 GLfloat
{- as close to copied from glm as possible -}
perspectiveMatrix fov asp zn zf =
  let tanHalfFovy = tangent (Degrees fov / 2)
      res00 = 1 / (asp * tanHalfFovy)
      res11 = 1 / tanHalfFovy
      res22 = - (zf + zn) / (zf - zn)
      res23 = - 1
      res32 = - (2 * zf * zn) / (zf - zn)
   in trace ("res22=" ++ show res22) $
        Matrix4
          ( res00,
            0,
            0,
            0,
            0,
            res11,
            0,
            0,
            0,
            0,
            res22,
            res23,
            0,
            0,
            res32,
            0
          )

class VectorMatrix vecT matT where
  vTranslate :: matT -> vecT -> matT
  (-*|) :: matT -> vecT -> vecT

instance (Num a) => VectorMatrix (Vec3 a) (Mat3 a) where
  vTranslate
    ( Matrix3
        ( a00,
          a01,
          a02,
          a10,
          a11,
          a12,
          a20,
          a21,
          a22
          )
      )
    (Vec3 (a, b, c)) =
      Matrix3
        ( a00,
          a01,
          a02 + a,
          a10,
          a11,
          a12 + b,
          a20,
          a21,
          a22 + c
        )

  ( Matrix3
      ( a00,
        a01,
        a02,
        a10,
        a11,
        a12,
        a20,
        a21,
        a22
        )
    )
    -*| (Vec3 (a, b, c)) =
      Vec3
        ( a00 * a + a01 * b + a02 * c,
          a10 * a + a11 * b + a12 * c,
          a20 * a + a21 * b + a22 * c
        )

instance (Num a) => VectorMatrix (Vec4 a) (Mat4 a) where
  vTranslate mat (Vec4 tmp) = translateMat4 mat tmp
  mat -*| tmp = glslMatMul mat tmp

glslMatMul :: (Num a) => Mat4 a -> Vec4 a -> Vec4 a
glslMatMul
  ( Matrix4
      ( m00,
        m01,
        m02,
        m03,
        m10,
        m11,
        m12,
        m13,
        m20,
        m21,
        m22,
        m23,
        m30,
        m31,
        m32,
        m33
        )
    )
  (Vec4 (v0, v1, v2, v3)) =
    Vec4
      ( v0 * m00 + v1 * m10 + v2 * m20 + v3 * m30,
        v0 * m01 + v1 * m11 + v2 * m21 + v3 * m31,
        v0 * m02 + v1 * m12 + v2 * m22 + v3 * m32,
        v0 * m03 + v1 * m13 + v2 * m23 + v3 * m33
      )

glslModelViewToNormalMatrix :: Mat4 GLfloat -> Mat3 GLfloat
glslModelViewToNormalMatrix = fromJust . inverse . transpose . trunc4

(==>) :: (Num a) => Mat4 a -> Vec4 a -> Mat4 a
(==>) = glslMatTranslate

glslMatTranslate :: (Num a) => Mat4 a -> Vec4 a -> Mat4 a
glslMatTranslate
  mat@( Matrix4
          ( m00,
            m01,
            m02,
            m03,
            m10,
            m11,
            m12,
            m13,
            m20,
            m21,
            m22,
            m23,
            m30,
            m31,
            m32,
            m33
            )
        )
  vec =
    let (Vec4 (v0, v1, v2, v3)) = mat -*| vec
     in Matrix4
          ( m00,
            m01,
            m02,
            m03,
            m10,
            m11,
            m12,
            m13,
            m20,
            m21,
            m22,
            m23,
            m30 + v0,
            m31 + v1,
            m32 + v2,
            m33 + v3
          )

rotationMatrix :: GLfloat -> Vec3 GLfloat -> Mat3 GLfloat
rotationMatrix ang (Vec3 (u, v, w)) =
  let l = (u * u + v * v + w * w)
      u2 = u * u
      v2 = v * v
      w2 = w * w
   in Matrix3
        ( (u2 + (v2 + w2) * cos (ang)) / l,
          (u * v * (1 - cos (ang)) - w * sqrt (l) * sin (ang)) / l,
          (u * w * (1 - cos (ang)) + v * sqrt (l) * sin (ang)) / l,
          (u * v * (1 - cos (ang)) + w * sqrt (l) * sin (ang)) / l,
          (v2 + (u2 + w2) * cos (ang)) / l,
          (v * w * (1 - cos (ang)) - u * sqrt (l) * sin (ang)) / l,
          (u * w * (1 - cos (ang)) - v * sqrt (l) * sin (ang)) / l,
          (v * w * (1 - cos (ang)) + u * sqrt (l) * sin (ang)) / l,
          (w2 + (u2 + v2) * cos (ang)) / l
        )

zRotationMatrix :: GLfloat -> Mat3 GLfloat
zRotationMatrix ang = rotationMatrix ang (Vec3 (0, 0, 1))

maybeNormalize :: (Vector f a, Eq f) => a f -> a f
maybeNormalize x = if norm x == 0 then x else normalize x

coordinateConvert :: Vec3 GLfloat -> Vec3 GLfloat -> Vec3 GLfloat -> Vec3 GLfloat
coordinateConvert forward up' vector =
  if vector == Vec3 (0, 0, 0)
    then vector
    else
      let right = forward × up'
          up = right × forward
       in case (normalize forward, normalize up, normalize right, vector) of
            (za, ya, xa, Vec3 (x, y, z)) -> (x `vScale` xa) <+> (y `vScale` ya) <+> (z `vScale` za)

rotateFrom :: Vec3 GLfloat -> Vec3 GLfloat -> Vec3 GLfloat -> Vec3 GLfloat
rotateFrom vector relative newRelative =
  if vector == Vec3 (0, 0, 0)
    then vector
    else case (normalize relative, normalize newRelative) of
      (r', n') ->
        if r' == n'
          then vector
          else
            let axis = r' × n'
                ang = acos $ r' `vDot` n'
             in rotationMatrix ang axis -*| vector