1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
module Graphics.Glyph.Util where
import Control.Exception
import Control.Monad
import Data.Angle
import Data.Array.MArray
import Data.Char
import Data.Either
import Data.Foldable as Fold
import Data.Maybe
import Foreign.Marshal.Alloc
import Foreign.Ptr
import Graphics.Rendering.OpenGL
if' :: Bool -> a -> a -> a
if' True a _ = a
if' False _ a = a
(?) :: Bool -> a -> a -> a
(?) = if'
flipIf :: a -> a -> Bool -> a
flipIf a b c = if c then a else b
int :: (Integral a, Num b) => a -> b
int = fromIntegral
uncurry7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> (a, b, c, d, e, f, g) -> h
uncurry7 func (a, b, c, d, e, f, g) = func a b c d e f g
uncurry6 :: (a -> b -> c -> d -> e -> f -> g) -> (a, b, c, d, e, f) -> g
uncurry6 func (a, b, c, d, e, f) = func a b c d e f
uncurry5 :: (a -> b -> c -> d -> e -> f) -> (a, b, c, d, e) -> f
uncurry5 func (a, b, c, d, e) = func a b c d e
uncurry4 :: (a -> b -> c -> d -> e) -> (a, b, c, d) -> e
uncurry4 func (a, b, c, d) = func a b c d
uncurry3 :: (a -> b -> c -> e) -> (a, b, c) -> e
uncurry3 func (a, b, c) = func a b c
const2 :: a -> b -> c -> a
const2 = const . const
const3 :: a -> b -> c -> d -> a
const3 = const2 . const
const4 :: a -> b -> c -> d -> e -> a
const4 = const3 . const
gsin :: (Floating a) => a -> a
gsin = sine . Degrees
gcos :: (Floating a) => a -> a
gcos = cosine . Degrees
toEuclidian :: (Floating a) => (a, a, a) -> (a, a, a)
toEuclidian (r, th, ph) =
( - r * gsin th * gcos ph,
r * gsin ph,
r * gcos th * gcos ph
)
mapT2 :: (a -> b) -> (a, a) -> (b, b)
mapT2 f (a, b) = (f a, f b)
mapT3 :: (a -> b) -> (a, a, a) -> (b, b, b)
mapT3 f (a, b, c) = (f a, f b, f c)
mapT4 :: (a -> b) -> (a, a, a, a) -> (b, b, b, b)
mapT4 f (a, b, c, d) = (f a, f b, f c, f d)
mapT5 :: (a -> b) -> (a, a, a, a, a) -> (b, b, b, b, b)
mapT5 f (a, b, c, d, e) = (f a, f b, f c, f d, f e)
mapT6 :: (a -> b) -> (a, a, a, a, a, a) -> (b, b, b, b, b, b)
mapT6 f (a, b, c, d, e, _f) = (f a, f b, f c, f d, f e, f _f)
mapT7 :: (a -> b) -> (a, a, a, a, a, a, a) -> (b, b, b, b, b, b, b)
mapT7 f (a, b, c, d, e, _f, g) = (f a, f b, f c, f d, f e, f _f, f g)
foldT2 :: (a -> b -> a) -> a -> (b, b) -> a
foldT2 f ini (x, y) = ini `f` x `f` y
foldT3 :: (a -> b -> a) -> a -> (b, b, b) -> a
foldT3 f ini (x, y, z) = ini `f` x `f` y `f` z
foldT4 :: (a -> b -> a) -> a -> (b, b, b, b) -> a
foldT4 f ini (x, y, z, w) = ini `f` x `f` y `f` z `f` w
foldT5 :: (a -> b -> a) -> a -> (b, b, b, b, b) -> a
foldT5 f ini (x, y, z, w, v) = ini `f` x `f` y `f` z `f` w `f` v
tup2Len :: (Real a, Floating b) => (a, a) -> b
tup2Len = sqrt . foldT2 (+) 0 . mapT2 ((** 2) . toFloating)
tup3Len :: (Real a, Floating b) => (a, a, a) -> b
tup3Len = sqrt . foldT3 (+) 0 . mapT3 ((** 2) . toFloating)
tup4Len :: (Real a, Floating b) => (a, a, a, a) -> b
tup4Len = sqrt . foldT4 (+) 0 . mapT4 ((** 2) . toFloating)
tup5Len :: (Real a, Floating b) => (a, a, a, a, a) -> b
tup5Len = sqrt . foldT5 (+) 0 . mapT5 ((** 2) . toFloating)
expand3 :: a -> (a, a, a)
expand3 t = (t, t, t)
expand4 :: a -> (a, a, a, a)
expand4 t = (t, t, t, t)
expand5 :: a -> (a, a, a, a, a)
expand5 t = (t, t, t, t, t)
expand6 :: a -> (a, a, a, a, a)
expand6 t = (t, t, t, t, t)
zipWithT2 :: (a -> b -> c) -> (a, a) -> (b, b) -> (c, c)
zipWithT2 fu (a, b) (d, e) = (fu a d, fu b e)
zipWithT3 :: (a -> b -> c) -> (a, a, a) -> (b, b, b) -> (c, c, c)
zipWithT3 fu (a, b, c) (d, e, f) = (fu a d, fu b e, fu c f)
zipWithT4 :: (a -> b -> c) -> (a, a, a, a) -> (b, b, b, b) -> (c, c, c, c)
zipWithT4 fu (a, b, c, d) (e, f, g, h) = (fu a e, fu b f, fu c g, fu d h)
zipWithT5 :: (a -> b -> c) -> (a, a, a, a, a) -> (b, b, b, b, b) -> (c, c, c, c, c)
zipWithT5 fu (a, b, c, d, i) (e, f, g, h, j) = (fu a e, fu b f, fu c g, fu d h, fu i j)
toFloating :: (Real a, Floating b) => a -> b
toFloating = fromRational . toRational
(!!%) :: [a] -> Int -> a
(!!%) lst idx = lst !! (idx `mod` length lst)
(++!) :: (Show a) => String -> a -> String
(++!) str = (str ++) . show
clamp :: (Ord a) => a -> (a, a) -> a
clamp var (low, high) = min (max var low) high
floatVertex :: (GLfloat, GLfloat, GLfloat) -> Vertex3 GLdouble
floatVertex tup = uncurry3 Vertex3 (mapT3 toFloating tup)
floatVector :: (GLfloat, GLfloat, GLfloat) -> Vector3 GLdouble
floatVector tup = uncurry3 Vector3 (mapT3 toFloating tup)
-- Maps a function across a list, except this function
-- can also be given a state variable like how foldl
-- works
mapWith :: (s -> a -> (b, s)) -> s -> [a] -> ([b], s)
mapWith func state (x : xs) =
let (x', s') = func state x
in let (l, s) = mapWith func s' xs in (x' : l, s)
mapWith _ s [] = ([], s)
{- Useful function that accepts two functions
- and applies the third argument to both. Useful for
- building up data flows with the same argument. Such
- as:
-
- (bVertex3 >&> bNormal3) (0,0,1)
- vs
- bVertex3 (0,0,1) >> bNormal3 (0,0,1)
-}
(>&>) :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c
(>&>) f1 f2 a = f1 a >> f2 a
{- Instance where a monad can deconstruct
- when the operation has failed -}
class (Monad m) => MonadHasFailure m where
isFail :: m a -> Bool
instance MonadHasFailure Maybe where
isFail = isNothing
instance MonadHasFailure [] where
isFail = null
instance MonadHasFailure (Either a) where
isFail (Left _) = True
isFail _ = False
{- A way of chaining together commands such
- that the first function in the chain that
- returns a non-failing result is the one
- that returns the result
-
- This is similar to the double pipe (||) operator
- in imperative languages but with monads instead of
- booleans.
-}
(>|>) :: (MonadHasFailure m) => (a -> m c) -> (a -> m c) -> a -> m c
(>|>) f1 f2 a =
let res = f1 a
in isFail res ? f2 a $ res
(>||>) :: (MonadHasFailure m) => m a -> m a -> m a
(>||>) a b
| isFail a = b
| otherwise = a
whileM_ :: (Monad m) => (a -> Bool) -> m a -> a -> m a
whileM_ func routine start = do
case func start of
True -> routine >>= whileM_ func routine
False -> return start
whileM :: (Monad m) => (a -> Bool) -> m a -> a -> m [a]
whileM bool routine' start' =
whileM' bool routine' start' []
where
whileM' func routine start lst = do
case func start of
True -> do
next <- routine
whileM' func routine next (lst ++ [start])
False -> return lst
untilM_ :: (Monad m) => (a -> Bool) -> m a -> m a
untilM_ func routine = do
start <- routine
if'
(func start)
(untilM_ func routine)
(return start)
untilM :: (Monad m) => (a -> Bool) -> m a -> m [a]
untilM func' routine' =
untilM' func' routine' []
where
untilM' func routine lst = do
start <- routine
if'
(func start)
(untilM' func routine (lst ++ [start]))
(return lst)
dFold :: [a] -> b -> (a -> a -> b -> b) -> b
dFold (x1 : x2 : xs) next func = dFold (x2 : xs) (func x1 x2 next) func
dFold _ next _ = next
(!>>) :: a -> (a -> b) -> b
(!>>) a f = a `seq` f a
(!>>=) :: Monad m => m a -> (a -> m b) -> m b
(!>>=) a f = a !>> flip (>>=) f
{- Objective function composition. Useful to say
- (drawArrays <..> numInstances) obj
-}
(<..>) :: (b -> a -> c) -> (a -> b) -> a -> c
(<..>) f1 f2 a = f1 (f2 a) a
toHex :: (Integral a, Show a) => a -> String
toHex n
| n == 0 = ""
| otherwise =
let (quot', rem') = n `divMod` 16
in toHex quot' ++ [index' !! fromIntegral rem']
where
index' = "0123456789ABCDEFGHIJKlMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
average :: (Fold.Foldable a, Real c, Fractional b) => a c -> b
average lst =
let (sum', count) = Fold.foldl' (\(sum_, count_) x -> (sum_ + x, count_ + 1)) (0, 0) lst
in realToFrac sum' / count
maybeDefault :: a -> Maybe a -> a
maybeDefault a b = fromJust $ b >||> Just a
maybeDefaultM :: (Monad m) => Maybe a -> (a -> m ()) -> m () -> m ()
maybeDefaultM Nothing _ a = a
maybeDefaultM (Just a) b _ = b a
data MonadPlusBuilder a b = MonadPlusBuilder a b
plusM :: a -> MonadPlusBuilder a ()
plusM a = MonadPlusBuilder a ()
runMonadPlusBuilder :: MonadPlusBuilder a b -> a
runMonadPlusBuilder (MonadPlusBuilder !a _) = a
instance (MonadPlus a) => Functor (MonadPlusBuilder (a b)) where
fmap f b = b >>= return . f
instance (MonadPlus a) => Applicative (MonadPlusBuilder (a b)) where
(<*>) afn aa = do
fn <- afn
fn <$> aa
pure = return
instance (MonadPlus a) => Monad (MonadPlusBuilder (a b)) where
return = MonadPlusBuilder mzero
MonadPlusBuilder a1 _ >> MonadPlusBuilder a2 b = MonadPlusBuilder (a1 `mplus` a2) b
builder@(MonadPlusBuilder _ b) >>= f = builder >> f b
untilM2 :: (Monad m) => (a -> m Bool) -> a -> (a -> m a) -> m a
untilM2 cond ini bod = do
bool <- cond ini
if bool
then return ini
else bod ini >>= \newini -> untilM2 cond newini bod
(<!>) :: (MArray a e IO, Ix i) => a i e -> i -> StateVar e
(<!>) arr idx =
let setter = writeArray arr idx
getter = readArray arr idx
in makeStateVar getter setter
for :: [a] -> (a -> b) -> [b]
for = flip map
distribMaybe :: Maybe (a, b) -> (Maybe a, Maybe b)
distribMaybe Nothing = (Nothing, Nothing)
distribMaybe (Just (a, b)) = (Just a, Just b)
whenM :: IO Bool -> IO () -> IO ()
whenM b = (>>=) b . flip when
mix :: (Floating a) => a -> a -> a -> a
mix a b c = a * c + b * (1 - c)
fpart :: (RealFrac a) => a -> a
fpart x = x - (fromIntegral (floor x :: Int))
ifNaN :: (RealFloat a) => a -> a -> a
ifNaN reg def = if' (isNaN reg) def reg
everyN :: Int -> [a] -> [a]
everyN _ [] = []
everyN n (x : xs) = x : (everyN n $ drop n xs)
chunkList :: [a] -> [(a, a)]
chunkList l = zip [x | x <- everyN 1 l] [x | x <- everyN 1 (tail l)]
chunkList3 :: [a] -> [(a, a, a)]
chunkList3 l =
zip3
[x | x <- everyN 2 l]
[x | x <- everyN 2 (tail l)]
[x | x <- everyN 2 (tail $ tail l)]
|