aboutsummaryrefslogtreecommitdiff
path: root/Graphics/Glyph/Util.hs
blob: ba3b54ae440d82624dfb10ef8f0b66d430dba900 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
module Graphics.Glyph.Util where

import Data.Angle
import Graphics.Rendering.OpenGL
import Data.Maybe
import Data.Char
import Data.Either
import Control.Exception

import Data.Foldable as Fold

if' :: Bool -> a -> a -> a
if' True a _ = a
if' False _ a = a

(?) :: Bool -> a -> a -> a
(?) = if'

int :: (Integral a, Num b) => a -> b
int = fromIntegral 

uncurry7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> (a,b,c,d,e,f,g) -> h
uncurry7 func (a,b,c,d,e,f,g) = func a b c d e f g

uncurry6 :: (a -> b -> c -> d -> e -> f -> g) -> (a,b,c,d,e,f) -> g
uncurry6 func (a,b,c,d,e,f) = func a b c d e f

uncurry5 :: (a -> b -> c -> d -> e -> f) -> (a,b,c,d,e) -> f
uncurry5 func (a,b,c,d,e) = func a b c d e

uncurry4 :: (a -> b -> c -> d -> e) -> (a,b,c,d) -> e
uncurry4 func (a,b,c,d) = func a b c d

uncurry3 :: (a -> b -> c -> e) -> (a,b,c) -> e
uncurry3 func (a,b,c) = func a b c

const2 :: a -> b -> c -> a
const2 = const.const

const3 :: a -> b -> c -> d -> a
const3 = const2.const

const4 :: a -> b -> c -> d -> e -> a
const4 = const3.const

gsin :: (Floating a) => a -> a
gsin = sine . Degrees

gcos :: (Floating a) => a -> a
gcos = cosine . Degrees

toEuclidian :: (Floating a) => (a, a, a) -> (a, a, a)
toEuclidian (r, th, ph) = (
        -r * gsin th * gcos ph,
         r * gsin ph,
         r * gcos th * gcos ph
    )

mapT2 :: (a -> b) -> (a,a) -> (b,b) 
mapT2 f (a, b) = (f a, f b)

mapT3 :: (a -> b) -> (a,a,a) -> (b,b,b) 
mapT3 f (a, b, c) = (f a, f b, f c)

mapT4 :: (a -> b) -> (a,a,a,a) -> (b,b,b,b) 
mapT4 f (a, b, c, d) = (f a, f b, f c, f d)

mapT5 :: (a -> b) -> (a,a,a,a,a) -> (b,b,b,b,b) 
mapT5 f (a, b, c, d, e) = (f a, f b, f c, f d, f e)

mapT6 :: (a -> b) -> (a,a,a,a,a,a) -> (b,b,b,b,b,b) 
mapT6 f (a, b, c, d, e, _f) = (f a, f b, f c, f d, f e, f _f)

mapT7 :: (a -> b) -> (a,a,a,a,a,a,a) -> (b,b,b,b,b,b,b) 
mapT7 f (a, b, c, d, e, _f, g) = (f a, f b, f c, f d, f e, f _f, f g)

foldT2 :: (a -> b -> a) -> a -> (b,b) -> a
foldT2 f ini (x,y) = ini `f` x `f` y

foldT3 :: (a -> b -> a) -> a -> (b,b,b) -> a
foldT3 f ini (x,y,z) = ini `f` x `f` y `f` z

foldT4 :: (a -> b -> a) -> a -> (b,b,b,b) -> a
foldT4 f ini (x,y,z,w) = ini `f` x `f` y `f` z `f` w

foldT5 :: (a -> b -> a) -> a -> (b,b,b,b,b) -> a
foldT5 f ini (x,y,z,w,v) = ini `f` x `f` y `f` z `f` w `f` v

tup2Len :: (Real a,Floating b) => (a,a) -> b
tup2Len = sqrt . foldT2 (+) 0 . mapT2 ((**2).toFloating)

tup3Len :: (Real a,Floating b) => (a,a,a) -> b
tup3Len = sqrt . foldT3 (+) 0 . mapT3 ((**2).toFloating)

tup4Len :: (Real a,Floating b) => (a,a,a,a) -> b
tup4Len = sqrt . foldT4 (+) 0 . mapT4 ((**2).toFloating)

tup5Len :: (Real a,Floating b) => (a,a,a,a,a) -> b
tup5Len = sqrt . foldT5 (+) 0 . mapT5 ((**2).toFloating)

expand3 :: a -> (a,a,a)
expand3 t = (t,t,t)

expand4 :: a -> (a,a,a,a)
expand4 t = (t,t,t,t)

expand5 :: a -> (a,a,a,a,a)
expand5 t = (t,t,t,t,t)

expand6 :: a -> (a,a,a,a,a)
expand6 t = (t,t,t,t,t)

zipWithT2 :: (a -> b -> c) -> (a,a) -> (b,b) -> (c,c)
zipWithT2 fu (a, b) (d, e) = (fu a d, fu b e)

zipWithT3 :: (a -> b -> c) -> (a,a,a) -> (b,b,b) -> (c,c,c)
zipWithT3 fu (a, b, c) (d, e, f) = (fu a d, fu b e, fu c f)

zipWithT4 :: (a -> b -> c) -> (a,a,a,a) -> (b,b,b,b) -> (c,c,c,c)
zipWithT4 fu (a, b, c, d) (e, f, g, h) = (fu a e, fu b f, fu c g, fu d h)

toFloating :: (Real a, Floating b) => a -> b
toFloating = fromRational . toRational

(!!%) :: [a] -> Int -> a
(!!%) lst idx = lst !! (idx `mod` length lst)

(++!) :: (Show a) => String -> a -> String
(++!) str = (str++) . show

clamp :: (Ord a) => a -> (a, a) -> a 
clamp var (low, high) = min (max var low) high

floatVertex :: (GLfloat,GLfloat,GLfloat) -> Vertex3 GLdouble
floatVertex tup = uncurry3 Vertex3 (mapT3 toFloating tup)

floatVector :: (GLfloat,GLfloat,GLfloat) -> Vector3 GLdouble
floatVector tup = uncurry3 Vector3 (mapT3 toFloating tup)

-- Maps a function across a list, except this function
-- can also be given a state variable like how foldl
-- works
mapWith :: (s -> a -> (b,s)) -> s -> [a] -> ([b], s)
mapWith func state (x:xs) = 
    let (x',s') = func state x in
    let (l,s) = mapWith func s' xs in (x':l, s)

mapWith _ s [] = ([],s)

{- Useful function that accepts two functions
 - and applies the third argument to both. Useful for
 - building up data flows with the same argument. Such
 - as:
 -
 - (bVertex3 >&> bNormal3) (0,0,1)
 - vs
 - bVertex3 (0,0,1) >> bNormal3 (0,0,1)
 -}
(>&>) :: (Monad m) => (a -> m b) -> (a -> m c) -> a -> m c
(>&>) f1 f2 a = f1 a >> f2 a

{- Instance where a monad can deconstruct
 - when the operation has failed -}
class (Monad m) => MonadHasFailure m where
    isFail :: m a -> Bool

instance MonadHasFailure Maybe where
    isFail = isNothing

instance MonadHasFailure [] where
    isFail = null

instance MonadHasFailure (Either a) where
    isFail (Left _) = True
    isFail _ = False


{- A way of chaining together commands such
 - that the first function in the chain that
 - returns a non-failing result is the one
 - that returns the result
 -
 - This is similar to the double pipe (||) operator
 - in imperative languages but with monads instead of
 - booleans.
 -}
(>|>) :: (MonadHasFailure m) => (a -> m c) -> (a -> m c) -> a -> m c
(>|>) f1 f2 a =
    let res = f1 a in
    isFail res ? f2 a $ res

(>||>) :: (MonadHasFailure m) => m a -> m a -> m a
(>||>) a b
        | isFail a = b
        | otherwise = a

whileM_ :: (Monad m) => (a -> Bool) -> m a -> a -> m a
whileM_ func routine start = do
    case func start of
        True -> routine >>= whileM_ func routine
        False -> return start

whileM :: (Monad m) => (a -> Bool) -> m a -> a -> m [a]
whileM bool routine' start' =
    whileM' bool routine' start' []
    where
        whileM' func routine start lst = do
            case func start of
                True -> do
                    next <- routine 
                    whileM' func routine next (lst ++ [start])
                False -> return lst

untilM_ :: (Monad m) => (a -> Bool) -> m a -> m a
untilM_ func routine = do
    start <- routine
    case func start of
        True -> untilM_ func routine
        False -> return start

untilM :: (Monad m) => (a -> Bool) -> m a -> m [a]
untilM func' routine' =
    untilM' func' routine' []
    where untilM' func routine lst = do
            start <- routine
            case func start of
                True -> untilM' func routine (lst ++ [start])
                False -> return lst

dFold :: [a] -> b -> (a -> a -> b -> b) -> b
dFold (x1:x2:xs) next func = dFold (x2:xs) (func x1 x2 next) func
dFold _ next _ = next

(!>>) :: a -> (a -> b) -> b
(!>>) a f = a `seq` f a

(!>>=) :: Monad m => m a -> (a -> m b) -> m b
(!>>=) a f = a !>> (flip (>>=) f)

toHex :: (Integral a,Show a) => a -> String
toHex n | n == 0 = ""
        | otherwise = 
            let (quot',rem') = n `divMod` 16 in
            toHex quot' ++ [(index' !! fromIntegral rem')]
        where index' = "0123456789ABCDEFGHIJKlMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

average :: (Fold.Foldable a, Real c, Fractional b) => a c -> b
average lst =
    let (sum',count) = Fold.foldl' (\(sum_,count_) x -> (sum_ + x, count_ + 1)) (0,0) lst in
        (realToFrac sum') / count

maybeDefault :: a -> Maybe a -> a
maybeDefault a b = fromJust $ b >||> Just a

maybeDefaultM :: (Monad m) => Maybe a -> (a -> m ()) -> m () -> m ()
maybeDefaultM Nothing _ a = a
maybeDefaultM (Just a) b _ = b a