1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/// @file hashtab.c
///
/// Handling of a hashtable with Vim-specific properties.
///
/// Each item in a hashtable has a NUL terminated string key. A key can appear
/// only once in the table.
///
/// A hash number is computed from the key for quick lookup. When the hashes
/// of two different keys point to the same entry an algorithm is used to
/// iterate over other entries in the table until the right one is found.
/// To make the iteration work removed keys are different from entries where a
/// key was never present.
///
/// The mechanism has been partly based on how Python Dictionaries are
/// implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4.
///
/// The hashtable grows to accommodate more entries when needed. At least 1/3
/// of the entries is empty to keep the lookup efficient (at the cost of extra
/// memory).
#include <string.h>
#include "vim.h"
#include "hashtab.h"
#include "message.h"
#include "memory.h"
#include "misc2.h"
// Magic value for algorithm that walks through the array.
#define PERTURB_SHIFT 5
static int hash_may_resize(hashtab_T *ht, int minitems);
/// Initialize an empty hash table.
///
/// @param ht
void hash_init(hashtab_T *ht)
{
// This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray".
memset(ht, 0, sizeof(hashtab_T));
ht->ht_array = ht->ht_smallarray;
ht->ht_mask = HT_INIT_SIZE - 1;
}
/// Free the array of a hash table. Does not free the items it contains!
/// If "ht" is not freed then you should call hash_init() next!
///
/// @param ht
void hash_clear(hashtab_T *ht)
{
if (ht->ht_array != ht->ht_smallarray) {
vim_free(ht->ht_array);
}
}
/// Free the array of a hash table and all the keys it contains. The keys must
/// have been allocated. "off" is the offset from the start of the allocate
/// memory to the location of the key (it's always positive).
///
/// @param ht
/// @param off
void hash_clear_all(hashtab_T *ht, int off)
{
long todo;
hashitem_T *hi;
todo = (long)ht->ht_used;
for (hi = ht->ht_array; todo > 0; ++hi) {
if (!HASHITEM_EMPTY(hi)) {
vim_free(hi->hi_key - off);
todo--;
}
}
hash_clear(ht);
}
/// Find "key" in hashtable "ht". "key" must not be NULL.
/// Always returns a pointer to a hashitem. If the item was not found then
/// HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key
/// would be added.
/// WARNING: The returned pointer becomes invalid when the hashtable is changed
/// (adding, setting or removing an item)!
///
/// @param ht
/// @param key
///
/// @return Pointer to the hashitem stored with the given key.
hashitem_T* hash_find(hashtab_T *ht, char_u *key)
{
return hash_lookup(ht, key, hash_hash(key));
}
/// Like hash_find(), but caller computes "hash".
///
/// @param ht
/// @param key
/// @param hash
///
/// @return Pointer to the hashitem stored with the given key.
hashitem_T* hash_lookup(hashtab_T *ht, char_u *key, hash_T hash)
{
hash_T perturb;
hashitem_T *freeitem;
hashitem_T *hi;
unsigned idx;
#ifdef HT_DEBUG
hash_count_lookup++;
#endif // ifdef HT_DEBUG
// Quickly handle the most common situations:
// - return if there is no item at all
// - skip over a removed item
// - return if the item matches
idx = (unsigned)(hash & ht->ht_mask);
hi = &ht->ht_array[idx];
if (hi->hi_key == NULL) {
return hi;
}
if (hi->hi_key == HI_KEY_REMOVED) {
freeitem = hi;
} else if ((hi->hi_hash == hash) && (STRCMP(hi->hi_key, key) == 0)) {
return hi;
} else {
freeitem = NULL;
}
// Need to search through the table to find the key. The algorithm
// to step through the table starts with large steps, gradually becoming
// smaller down to (1/4 table size + 1). This means it goes through all
// table entries in the end.
// When we run into a NULL key it's clear that the key isn't there.
// Return the first available slot found (can be a slot of a removed
// item).
for (perturb = hash;; perturb >>= PERTURB_SHIFT) {
#ifdef HT_DEBUG
// count a "miss" for hashtab lookup
hash_count_perturb++;
#endif // ifdef HT_DEBUG
idx = (unsigned)((idx << 2U) + idx + perturb + 1U);
hi = &ht->ht_array[idx & ht->ht_mask];
if (hi->hi_key == NULL) {
return freeitem == NULL ? hi : freeitem;
}
if ((hi->hi_hash == hash)
&& (hi->hi_key != HI_KEY_REMOVED)
&& (STRCMP(hi->hi_key, key) == 0)) {
return hi;
}
if ((hi->hi_key == HI_KEY_REMOVED) && (freeitem == NULL)) {
freeitem = hi;
}
}
}
/// Print the efficiency of hashtable lookups.
/// Useful when trying different hash algorithms.
/// Called when exiting.
void hash_debug_results(void)
{
#ifdef HT_DEBUG
fprintf(stderr, "\r\n\r\n\r\n\r\n");
fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
hash_count_perturb * 100 / hash_count_lookup);
#endif // ifdef HT_DEBUG
}
/// Add item with key "key" to hashtable "ht".
///
/// @param ht
/// @param key
///
/// @returns FAIL when out of memory or the key is already present.
int hash_add(hashtab_T *ht, char_u *key)
{
hash_T hash = hash_hash(key);
hashitem_T *hi = hash_lookup(ht, key, hash);
if (!HASHITEM_EMPTY(hi)) {
EMSG2(_(e_intern2), "hash_add()");
return FAIL;
}
return hash_add_item(ht, hi, key, hash);
}
/// Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and
/// "hi" must have been obtained with hash_lookup() and point to an empty item.
/// "hi" is invalid after this!
///
/// @param ht
/// @param hi
/// @param key
/// @param hash
///
/// @returns OK or FAIL (out of memory).
int hash_add_item(hashtab_T *ht, hashitem_T *hi, char_u *key, hash_T hash)
{
// If resizing failed before and it fails again we can't add an item.
if (ht->ht_error && (hash_may_resize(ht, 0) == FAIL)) {
return FAIL;
}
ht->ht_used++;
if (hi->hi_key == NULL) {
ht->ht_filled++;
}
hi->hi_key = key;
hi->hi_hash = hash;
// When the space gets low may resize the array.
return hash_may_resize(ht, 0);
}
/// Remove item "hi" from hashtable "ht". "hi" must have been obtained with
/// hash_lookup().
///
/// The caller must take care of freeing the item itself.
///
/// @param ht
/// @param hi
void hash_remove(hashtab_T *ht, hashitem_T *hi)
{
ht->ht_used--;
hi->hi_key = HI_KEY_REMOVED;
hash_may_resize(ht, 0);
}
/// Lock a hashtable: prevent that ht_array changes.
/// Don't use this when items are to be added!
/// Must call hash_unlock() later.
///
/// @param ht
void hash_lock(hashtab_T *ht)
{
ht->ht_locked++;
}
/// Unlock a hashtable: allow ht_array changes again.
/// Table will be resized (shrink) when necessary.
/// This must balance a call to hash_lock().
void hash_unlock(hashtab_T *ht)
{
ht->ht_locked--;
(void)hash_may_resize(ht, 0);
}
/// Shrink a hashtable when there is too much empty space.
/// Grow a hashtable when there is not enough empty space.
///
/// @param ht
/// @param minitems minimal number of items
///
/// @returns OK or FAIL (out of memory).
static int hash_may_resize(hashtab_T *ht, int minitems)
{
hashitem_T temparray[HT_INIT_SIZE];
hashitem_T *oldarray, *newarray;
hashitem_T *olditem, *newitem;
unsigned newi;
int todo;
long_u oldsize, newsize;
long_u minsize;
long_u newmask;
hash_T perturb;
// Don't resize a locked table.
if (ht->ht_locked > 0) {
return OK;
}
#ifdef HT_DEBUG
if (ht->ht_used > ht->ht_filled) {
EMSG("hash_may_resize(): more used than filled");
}
if (ht->ht_filled >= ht->ht_mask + 1) {
EMSG("hash_may_resize(): table completely filled");
}
#endif // ifdef HT_DEBUG
if (minitems == 0) {
// Return quickly for small tables with at least two NULL items. NULL
// items are required for the lookup to decide a key isn't there.
if ((ht->ht_filled < HT_INIT_SIZE - 1)
&& (ht->ht_array == ht->ht_smallarray)) {
return OK;
}
// Grow or refill the array when it's more than 2/3 full (including
// removed items, so that they get cleaned up).
// Shrink the array when it's less than 1/5 full. When growing it is
// at least 1/4 full (avoids repeated grow-shrink operations)
oldsize = ht->ht_mask + 1;
if ((ht->ht_filled * 3 < oldsize * 2) && (ht->ht_used > oldsize / 5)) {
return OK;
}
if (ht->ht_used > 1000) {
// it's big, don't make too much room
minsize = ht->ht_used * 2;
} else {
// make plenty of room
minsize = ht->ht_used * 4;
}
} else {
// Use specified size.
if ((long_u)minitems < ht->ht_used) {
// just in case...
minitems = (int)ht->ht_used;
}
// array is up to 2/3 full
minsize = minitems * 3 / 2;
}
newsize = HT_INIT_SIZE;
while (newsize < minsize) {
// make sure it's always a power of 2
newsize <<= 1;
if (newsize == 0) {
// overflow
return FAIL;
}
}
if (newsize == HT_INIT_SIZE) {
// Use the small array inside the hashdict structure.
newarray = ht->ht_smallarray;
if (ht->ht_array == newarray) {
// Moving from ht_smallarray to ht_smallarray! Happens when there
// are many removed items. Copy the items to be able to clean up
// removed items.
memmove(temparray, newarray, sizeof(temparray));
oldarray = temparray;
} else {
oldarray = ht->ht_array;
}
} else {
// Allocate an array.
newarray = (hashitem_T *)alloc((unsigned)(sizeof(hashitem_T) * newsize));
if (newarray == NULL) {
// Out of memory. When there are NULL items still return OK.
// Otherwise set ht_error, because lookup may result in a hang if
// we add another item.
if (ht->ht_filled < ht->ht_mask) {
return OK;
}
ht->ht_error = TRUE;
return FAIL;
}
oldarray = ht->ht_array;
}
memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize));
// Move all the items from the old array to the new one, placing them in
// the right spot. The new array won't have any removed items, thus this
// is also a cleanup action.
newmask = newsize - 1;
todo = (int)ht->ht_used;
for (olditem = oldarray; todo > 0; ++olditem) {
if (!HASHITEM_EMPTY(olditem)) {
// The algorithm to find the spot to add the item is identical to
// the algorithm to find an item in hash_lookup(). But we only
// need to search for a NULL key, thus it's simpler.
newi = (unsigned)(olditem->hi_hash & newmask);
newitem = &newarray[newi];
if (newitem->hi_key != NULL) {
for (perturb = olditem->hi_hash;; perturb >>= PERTURB_SHIFT) {
newi = (unsigned)((newi << 2U) + newi + perturb + 1U);
newitem = &newarray[newi & newmask];
if (newitem->hi_key == NULL) {
break;
}
}
}
*newitem = *olditem;
todo--;
}
}
if (ht->ht_array != ht->ht_smallarray) {
vim_free(ht->ht_array);
}
ht->ht_array = newarray;
ht->ht_mask = newmask;
ht->ht_filled = ht->ht_used;
ht->ht_error = FALSE;
return OK;
}
/// Get the hash number for a key.
/// If you think you know a better hash function: Compile with HT_DEBUG set and
/// run a script that uses hashtables a lot. Vim will then print statistics
/// when exiting. Try that with the current hash algorithm and yours. The
/// lower the percentage the better.
///
/// @param key
///
/// @return Hash number for the key.
hash_T hash_hash(char_u *key)
{
hash_T hash;
char_u *p;
if ((hash = *key) == 0) {
// Empty keys are not allowed, but we don't want to crash if we get one.
return (hash_T) 0;
}
p = key + 1;
// A simplistic algorithm that appears to do very well.
// Suggested by George Reilly.
while (*p != NUL) {
hash = hash * 101 + *p++;
}
return hash;
}
|